
PQCRYPTO

Post-Quantum Cryptography for Long-Term Security

Project number: Horizon 2020 ICT-645622

D3.5
D3.5 Cloud: Advanced applications

Due date of deliverable: February, 28th 2018
Actual submission date: April 13, 2018

WP contributing to the deliverable: WP3

Start date of project: 1. March 2015 Duration: 3 years

Coordinator:
Technische Universiteit Eindhoven
Email: coordinator@pqcrypto.eu.org
www.pqcrypto.eu.org

Revision 0.001

Project co-funded by the European Commission within Horizon 2020
Dissemination Level

PU Public X
PP Restricted to other programme participants (including the Commission services)
RE Restricted to a group specified by the consortium (including the Commission services)
CO Confidential, only for members of the consortium (including the Commission services)

D3.5 Cloud: Advanced applications

Daniel Augot, André Chailloux, Matthieu Rambaud

April 13, 2018
Revision 0.001

The work described in this report has in part been supported by the Commission of the European Commu-
nities through the Horizon 2020 program under project number 645622 PQCRYPTO. The information in this
document is provided as is, and no warranty is given or implied that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.

Abstract

This document recommends to use secure multiparty computation as a conclusion of the Task
D3.3 Advanced applications of the work package WP3: Post-quantum cryptography for the
cloud. Typically, advanced applications involve both encryption and computing: this is for
example the case when a user delegates her data to a remote system, in an encrypted form.
Yet, the user, the system, or a third party may want to extract (autorized) results of some
computation on the secret data, without leaking no more information than the result of the
computation. Secure multiparty computation enables exactly to do this when instantiated in
a proper way.

We report here on the techniques of multiparty computation and the security models for
which the protocols are proven secure. Multiparty computation has several strong advantages
relevant for post-quantum cryptography: it does not rely on a particular hardness assumption
and is information theoretically secure. This implies that whatever the adversary, even with
infinite or quantum power, all leaked information has no correlation with the hidden data:
this is the same exact security as the one-time pad which is well known to be information
theoretically secure. Furthermore, secure multiparty computation is fast and huge progress
has been achieved recently on the efficiency issues, making it more than 100 times faster than
homomorphic encryption ([EMV17]

Keywords: multi-party computation, secret sharing, post-quantum, cloud computing

ii

D3.5 — D3.5 Cloud: Advanced applications 1

Contents

1 Summary 2
1.1 Encryption and computing, FHE versus MPC 2
1.2 Organisation of the document . 3

2 Definitions 4
2.1 Basic definitions . 4

2.1.1 Generalities . 4
2.2 Security definition in the UC framework . 7

3 Perfect security when less than a third of participants cheat. 8
3.1 Summary of the section . 8

3.1.1 Theory . 8
3.1.2 Efficiency issues . 9

3.2 Perfect security with t < n/2 semi-honest adversaries 10
3.3 Perfect security with t < n/3 adversaries . 10

3.3.1 Preliminary: need to implement a broadcast channel for t < n/3. 10
3.3.2 Principle: upgrading the protocol with perfectly secure commitments . . 12
3.3.3 Realizing a perfectly secure commitment protocol, and why the limit n/3 14

4 Statistical security when less than half of participants cheat, conditionned
to broadcast or correlated randomness 17
4.1 Summary of the section . 17

4.1.1 Theory . 17
4.1.2 Efficiency issues . 17

4.2 How assuming access to a broadcast channel enables the bound t < n/2 18
4.2.1 Main idea: signing each message during the commitment protocol 18
4.2.2 Implementing IC signatures . 18

4.3 Assuming access to a source of correlated randomness also enables the bound
t < n/2 . 19

5 Breaking the honest majority limit with more crypto, and the problem of
early aborters 21
5.1 Summary of the section . 21
5.2 Preprocessing for a fast and secure online phase 22

5.2.1 Principle (the semi-honest case) . 22
5.2.2 Protocols robust against t < n active adversaries, with possibility of abort 22

5.3 Identifiable abort . 24
5.4 Security against covert adversaries: ones that do not want being seen cheating

or aborting . 24
5.4.1 Security notion . 24
5.4.2 State of the art for covert security . 24

5.5 Public auditability . 25
5.5.1 Public blame of cheaters . 25
5.5.2 Public proof of correctness of the result 26

5.6 When synchronicity or completeness of the network cannot be achieved 26

2 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

5.6.1 Asynchronous MPC . 26
5.6.2 Server-based one-pass protocols . 26
5.6.3 Non-interactive MPC . 27

6 Versatility of use-cases and best general protocols 27
6.1 MPC and encryption (AES) . 27
6.2 MPC as a computing network . 28
6.3 MPC as a privacy preserving reporting tool . 28
6.4 Best available generalistic protocols . 28

6.4.1 Are specific protocols faster ? . 28
6.4.2 Fastest generalistic implemented protocols 29

1 Summary

1.1 Encryption and computing, FHE versus MPC

PQCrypto H2020 projet is devoted to post-quantum, long term security, since in particu-
lar, it is aimed at preparing for a post-quantum future, when most cryptographic primitives
nowadays used will be “broken”, may this happening fifty years from now. Most objectives
of the projet are devoted to classical and fundamental cryptographic primitives, encryption
(symmmetric and asymmetric), public-key signatures, etc.

Work package 3 is devoted to the particular setting of applications for the cloud, meaning
interactions between a particular user or simple system with a remote and powerful system,
managed by a single corporation, like Google Drive, OVH, Dropbox. Workpackage 3 proposes
several basic subproblems, like 3.1 encrypt at home, 3.2 share files, and finally 3.3
advanced applications, which is the object the current document.

Advanced applications typically involve both computation and encryption, where some
output (encrypted or not) is obtained as a result of a computation on encrypted or secret data.
The two principal approaches to this broadly defined area are so-called homomorphic encryp-
tion and multi-party computation. (Fully) homomorphic encryption (FHE) enables to perform
computations on several ciphertexts with associated plaintexts, to obtain a new ciphertext,
which is such that, when decrypted, the obtain plaintext is the same as the result of these
computations on the associated plaintexts. It can be seen a classical public-key encryption
scheme, with one more features which is homomorphic computation, and as such, relies on the
classical paradigm of a trapdoored hard problem. Typically, lattice based cryptography forms
the ground for FHE. On the other hand, secure multiparty computation (SMC, also known as
multi-party computation, MPC), allows two or more parties to perform a computation over
their inputs while hiding the inputs from each other. MPC has furthermore the property
that it can be made information theoretically secure (IT-secure), which means that it does
not rely on some hardness assumption. So security holds against adversaries with unlimited
computing power, be it classical or quantum computing. This property has furthermore a
positive consequence on performance: citing the master’s thesis [Zys06] (linked with MIT’s
Enigma) "As information theoretically secure-MPC protocols do not depend on the hardness
of specific computational problems, they often admit faster implementations using a smaller
prime field for data representations ([DGH12] , [ELC12], [WLC14])".

Beyond the application of MPC for the cloud as a privacy preserving computing platform,
the versatility of these protocols allow to address any problem where no trusted third party

D3.5 — D3.5 Cloud: Advanced applications 3

exists. The most known use-cases are auctions and coercion-proof voting [DKR06, CCM08],
or the less known matchmarking problem [CDN, p 10]. Consider a set of companies, each
of whom having a private list of companies that it would like to do business with. The goal
of the computation is to match companies that mutually want to do business with, without
revealing the private lists. Popular variants today are (byzantine) consensus algorithms for
blockchains [CGLR17]. The most currently needed functionality might be public secure ran-
dom generation, which is not a simple problem —as illustrated with the Dual EC DRBG
backdoor [Fer07, BLN16]—, for cryptography or blockchain proof of stake applications: see
[CD17, KRDO17, SJK+17]. Finally, MPC makes possible to perform cross-mining and numer-
ical analysis in sensible databases (police, bank, social network users) without downloading
nor merging them: see [HHIL+17, UftFPotE15, ZNP15].

With PQCrypto objectives in mind (security within 50 years), and that lattice-based
cryptography is relatively new (meaning that cryptanalysis of it has not reach a sufficient level
of knowledge to set the size of the keys for long term security), we have decided to restrict
the discussion to MPC. Furthermore, MPC is becoming more and more efficent, orders of
magnitude faster than FHE [EMV17].

1.2 Organisation of the document

Research in the MPC area has been ongoing for more than thirty years, and this document
can not thoroughly review all the research in this area (an heavy book would not even suffice).
We will essentially focus on most important and relevant results, while at the same time giving
a flavor of the techiques used in MPC, mainly secret sharing and cooperation between players
to obtain sub-primitives, like broadcast or homomorphic commitments.

We have tried to make the exposition simple, well-organized and straigthforward, with the
(admitedly questionnable) choice of leaving sub-topics, minor improvements, disgression, etc,
in footnotes. Indeed, over 35 years of active research, MPC has grown into a rich and complex
topic, with many incomparable flavors and numerous protocols and techniques [IKP+16]: just
cataloguing the state of the art results is a non-trivial research project in itself, as exemplified
by the recent work of Perry et al. [PGFW14], which proposes classifying the existing protocols
using 22 dimensions. Similarly, we do not go into full length formal presentations and defi-
nitions of the security models and theorems, which would need a lot of space and notation,
with the drawback of driving the reader away from core ideas. Thus we given informal yet
hopefully sensible presentations of the definitions, protocols and security results, to allow the
reader to get a flavor of the area.

The review is organized as follows. In Section 2, we review (informal) basic definitions, and
the security model we will restrict to and which is the strongest possible security requirement:
Canetti’s universal composability (UC). It guarantees that a UC protocol will remain secure
when arbitrarily composed or executed in parallel with other protocols. Thus we less discuss
GMW-like protocols or Yao’s/BMR garbled circuits techniques [Yao82, BMR90].

In Section 3, we review the protocols which are unconditionally secure, even in the quantum
setting, provided that less than one third of participants cheat. The limit is raised up to half
of participants, if cheaters are just honest-but-curious.

In Section 4, we review protocols which are also quantum secure, but with a less stringent
security goal than perfect security: stastitical security, where the adversary, interacting with a
run of a MPC protocol, has a non-zero but negligible probability of getting some information.
This is doable within the limit of one-half corrupted players.

4 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Then, in Section 5, we review even less stronger security, yet quite relevant, security models,
which allow to break the one half limit, and to have a correct execution of the protocol, even
when all the players but one are corrupted. These security models essentially allow the protocol
to abort or fail due to some corrupted players, yet the honest players will learn who had such
a corrupt influence on the protocol. This knowledge can be made auditable and transferable
to an external party who did not participate in the protocol, like a judge.

Finally, Section 6, we present how MPC protocols can be versatilely adaped to several use
cases, which are not exactly the one given by the definition, like MPC for auditability, and
MPC as privacy preserving computing platform.

2 Definitions

2.1 Basic definitions

2.1.1 Generalities

First we summarize the strongest possible security notion, called ‘”Universal composability”,
following the seminal article of [Can01] and borrowing freely from [CDN, chap 4], but with a
simplified presentation.

Players P1, . . . , Pn hold secret input values x1, . . . xn (e.g. their ages), and want to obtain
a common result1 y = f(x1, . . . , xn) from them (e.g. the median age), where f is previously
agreed upon function. An ideal functionality Ff represents what we expect from secure
multiparty computation: Ff is an imaginary machine, with which each player Pi interacts
individually and privately (e.g. Pi gives Ff his secret xi, without leaking it to other players)2

. Then, F returns the result y to every P1, . . . , Pn then blows up, leaving no trace of secrets
(xi)i, neither any data about its internal states, if any, see Fig. 2.1.1.

Note than the ideal functionnality can actually leak information, depending on the very
nature of the function f . Consider for instance P1, P2, P3 three players who about to ask
Fmedian for their median age. But suppose that the real agenda of malicious players P1 and
P2 is to learn the age of P3. Then P1 and P2 are going to give false inputs to Ff : say x1 = 1
and x2 = 200. Thus x1 ≤ x3 ≤ x2, so Fmedian will return the median input to everybody,
which is x3, the age of P3. This example stresses that it is not possible to prevent players from
lying on their inputs, and to obtain some information about inputs of honest players from the
final result.

Adversarial (or malicious) players P1, . . . , Pt are a subgroup of players who collude (w.l.o.g.
we assume that they are the players P1, . . . , Pt, yet they are unknown to honest players).
Roughly speaking, they want to discover secret inputs of other players. Then, as the example
above illustrates, they can obtain information, depending on the function f , by tweaking the
inputs they give to the ideal functionality: This is called allowed influence on the process.
Thus, when implementing Ff by a real-life protocol πf , what one can expect at best is that
adversary players cannot gather more information or have more influence on the final result
than in the ideal setting:

1 We stress that this is equivalent to [Can01]. There, environment E learns basically: adversary A’s inputs,
the final result (communicated by A), and public messages from honest players of type “success” or “abort”.

2Canetti [Can01] allows reactivity : F can have a state that depends on previous interactions.

D3.5 — D3.5 Cloud: Advanced applications 5

Definition 2.1 (Simplified security definition). We want that adversaries playing the protocol
πf have no more influence on the result (robustness)3; and gather no more information (pri-
vacy), than what they could be obtain from merely lying on their inputs (allowed influence on
the ideal functionality)4Ff .

Definition 2.2. Let P1, . . . , Pn be a set of players. Suppose that (i) there are secure authen-
ticated point to point channels between each pair of players Pi and Pj; (ii) and that players
are able to communicate by rounds of simultaneous communication, during which each player
Pi sends simultaneously messages {mi,j}i,j to other players (Pj)j, and this for all players Pi

at the same time. 5

A protocol π ([CDN, §1.3]) is then a set of instructions that players are supposed to follow
to obtain the desired result.

Typically these instructions consist in when a player Pi must send a message to Pj , or
what must be the format of each message6m, and its content: see fig 2.1.1.

Definition 2.3. Honest players Pt+1, . . . , Pn always follow the protocol.
Semi-honest adversaries (aka. passive or honest but curious): P1, . . . , Pt always follow the

instructions but share all their informations: they have a collective view of the protocol7.
Active adversaries [CDN, §4.2.3] (aka. actively corrupted or malicious) moreover don’t

necessarily follow instructions of the protocol.

Definition 2.4. In some cases, an ideal functionality F or a protocol π can be aborted by
certain players, and this event is called abort . To simplify, we will consider only situations
where all honest players are simultaneously informed that the functionality or protocol did
abort8.

Definition 2.5 (Perfect and statistical (IT) security - simplified). Perfect security: if Defini-
tion 2.1 always holds against an unbounded adversary, then we say that protocol πF perfectly
implements F . Statistical security: if perfect security always holds except in some executions
of protocols where security is failed, then we say that protocol πF statistically implements F .
The probability of failure is assumed to be exponentially small in a security parameter k9 (e.g.
with a finite field of size 2128, the probability of a security failure is 2−128)

3In particular the protocol always returns a result (“guaranteed output”) if the functionality F is meant to
do so

4Simplifying [Can01], we do not mention other information gathered by environment E . Corruption is
always static, and finally we consider E and A as acting as a single entity (which is harmless, as noticed in
[Can01, top of p4]).

5More formally we have assumed a synchronous environment with access to FPPC: see [CDN, §4.3.5 & th
5.9]. Notice that malicious players (see below) can read the messages intended to them first, and then change
their mind: [CDN, 4.4.2]

6A player not following the two previous instructions is likely to publicly provoque an abort . Robust
protocols will typically have him excluded: see end of §3.3.2.

7Thus they are often seen as a single entity in the litterature: the adversary A (often forgetting environment
E , as we do here).

8In general it can be more complex: as stressed in [FGMvR02], an adversary player could well achieve that
some players end the protocol thinking it ran successfully (e.g. for signature protocol: that a message was
successfully signed although it was not).

9Notice the weaker notion of partial fairness where the probability of such cases is inverse polynomial,
which is greater than negligible: see [IOS12, 5.3] for results in this case.

6 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

F

Pt+1 . . . Pn

Honest players

P1 . . . Pt

Adversarial players

Figure 2.1: Ideal functionnality

P1

Pt

Pt+1

Pn

...
...

...

...

...

Figure 2.2: Real-life MPC protocol

D3.5 — D3.5 Cloud: Advanced applications 7

We stress that these two security levels are information-theoretically secure, since the
adversary is assumed unbounded.

Remark 2.1. Typically in the statistical case, the adversary tries to cheat and guess a random
secret held by an honest player: if he guesses right, he will achieve a forbidden influence on
the process10. In this unlucky event, perfect security does not then hold anymore. But if he
fails, then the protocol abort s. This probability of a correct guess decreases exponentially in
the bit-size of the secret, whatever computational power the adversary has.

2.2 Security definition in the UC framework

To say that adversaries have only an allowed influence means that, whatever they do during the
protocol, everything happens as if they interacting with the functionnality F . This formalized
by:

Definitions 2.6 (Perfect and statistical (IT) security11). We say that protocol πF uncon-
ditionally perfectly (resp. statistically) implements a funcionnality F if there exists to craft
a polytime12interface SF between adversaries P1, . . . , Pt and F , the “simulator”13, such that
adversaries with an illimited computational power14 have no distinguishing advantage (resp.
have a statistically small distinguishing advatange15) for making a difference between an actual
execution of protocol πF and the following situation, shown in Fig. 2.2, where:

• honest players Pt+1, . . . , Pn interact directly with F

• the simulator SF interacts with the dishonest players P1, . . . , Pt, by impersonating honest
players Pt+1,virtual, . . . , Pn,virtual;

• the simulator SF interacts with F by impersonating the adversarial players Pt+1,virtual,
. . . , Pn,virtual.

Here SF has no choice but to have an allowed influence.
We insist that SF only receives information from the output of F : he does’t learn the

honest players’ messages in the protocol, let alone their secret inputs. This guarantees that
adversaries can’t obtain more information than what is available from the ideal functionality
(privacy: cf [CDN, §4.1.1 & §4.1.3]). Adversaries still hear final messages of type “success” or
“abort” from the honest players (see footnote 1). So S should also act consistently with the
success or failure of the protocol (see[CDN, p, 108]).

Remark 2.2. So the simulator has to work in two directions16:
10See e.g. [CDN, p109] or [DKL+13]: here, the cheater can try to guess a “MAC” and thus disguise a message

of his own into an authenticated one from some other player.
11See also [FLNW17] and [DBP14, Th 3] for easier criterions of universal composability in particular cases.
12See [CDN, def 2.9 & 4.2.4]
13In the original UC model, and [CDN], where corrupt entities and the environment are disjoint entities, the

simulator impersonates the adversary to the environment, but doesn’t act as the environment tell him to (see
also [Can06, figure 1]). As [Can01] puts it: "S now has to interacts with E , throughout the execution, just as
A did. Furthermore, S cannot “rewind” E . Indeed, it is this pattern of free interaction between E and A that
allows proving that security is preserved under universal composition.

14See [CDN, 4.3.4]
15[CDN, 2.2.2 & 2.3.1 & 2.3.2] fot the definitions of (statistical) indistinguishability. Here, κ should be

understood as a security parameter, typically the input’s size (size of the base field F in bits).
16In the [CDN] the simulator is efficient : he can’t solve cryptographic problems. But he actually could in

the proofs of security below, this wouldn’t make any difference

8 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

P1

...

Pt

F

SF

Pt+1 . . . PnAdversarial players
Honest players

Grey zone: opaque to the players

Pt+1,virtual

Pn,virtual

...

Figure 2.3: Equivalent view: a simulator interface for adversaries P1, . . . , Pt

⇒ It transforms the messages of (possibly cheating) adversaries playing the protocol into
an allowed influence producing the same result (robustness: cf [CDN, p54]).

⇐ It returns messages to adversaries, so that they can’t make the difference with a real
protocol (privacy). The simulator has in fact only access to the output of the ideal
functionality.

UC framework owns its success from Canetti’s universal composition theorem [CDN, 4.20].
It states that, if πf perfectly implements Ff , then πf can be used as a black box for Ff in
any larger UC secure protocol without weakening its security.

Of even greater importance to us is Unruh’s theorem [Unr10, th 2], that states that a UC
secure protocol in the classic world remains UC secure in the quantum setting17.

As stressed by [FLNW17], UC property also enables to run the protocol and subprotocols
in parallel and concurrently, which enables to obtain a more general computation model, e.g.
by running many executions in parallel or running layers of an evaluation circuit in parallel.

3 Perfect security when less than a third of participants cheat.

3.1 Summary of the section

3.1.1 Theory

Theorem 3.1 ([CDN, Th 3.6 & §3.4 ; Th 5.10 & Th 5.11]). Any MPC functionality can be
unconditionaly implemented with perfect security against t < n/2 passive adversaries. This
bound is optimal. Any MPC functionality can be unconditionaly implemented with perfect UC
security against t < n/3 active adversaries. This bound is optimal.

Recall that the perfect security property is information-theoretically secure, meaning that
the implementation protects against adversaries with unlimited computational power, for ex-
ample quantum computers. It dates back to Ben-Or, Goldwasser and Wigderson [MBOW88]

17“That is, the protocol parties, the adversary, the simulator, and the environment are allowed to store, send,
and compute with quantum state”

D3.5 — D3.5 Cloud: Advanced applications 9

and independantly Chaum, Damgard and Crépeau [CCD88]. A possibly simpler approach
can be found in [IKP+16]. Let us first study the simplest case, which is security against
semi-honest (or passive) adversaries.

Let us precise that from now on, we will only consider circuits based on addition and
multiplication in a finite field F, as described by the ideal functionality Ff

SFE in Figure 3.1.
There, the circuit performs the computation of f(x1, . . . , xn) on the inputs xi ∈ F, where f is
a function composed of additions and multiplications (we simplify [CDN, p88]). Indeed, any
boolean circuit can be implemented with these operations by [CDN, exercice 3.1].

Ff
SFE

Input Every player Pi gives her input xi to Ff
SFE. Furthermore, adversarial players

P1, . . . Pt can change their minds on their inputs at anytime before the computation.

Computation and leak to the adversaries When all players ask Ff
SFE to do so, then it

computes f(x1, . . . , xn) and delivers this in advance to adversarial players.

Output When all players ask Ff
SFE to do so, then it returns f(x1, . . . , xn) to all players.

Figure 3.1: Ideal functionality for circuit evaluation

The reason why we formalized a delivery in advance step is that, as we will see in 5.1, the
adversary can make the functionality abort after this step when more than n/2 players are
adversaries. We will then discuss solutions to prevent this.

3.1.2 Efficiency issues

As described in Figure 3.3, the protocol against semi-honest adversaries requires each field
element input to be shared as n field elements. Then each hard multiplication requires n2

field elements exchanged, because of the resharing step.
On the other hand, making this protocol resilient against active adversaries as explained

in §3.3.2 is much costlier. Each share of a secret must itself be committed, which by Figure 3.7
requires n2 shares per commitment. In addition, the t < n/3 adversarial players can force their
shares to be broadcasted in Figure 3.7. Using the broadcast protocols of [CW92, BGP92] with
complexity n2 and at worse t < n/3 rounds, this further multiplies the total message size by
O(n2) and adds O(n) rounds18. At last, one multiplication requires two resharing processes19,
which multiplies by a factor linear n the total message size. Finally we have a message size of
O(n6) for one multiplication, which is comparable to the state of the art obtained in 1992 by
[Bea92] with different techniques.

Fortunately, recent progress on the message-size for processing shared secrets has firstly
been made by [HMP00] in 2000 with n3 message-size per multiplication. Then [DN07, BTH08]
achieved in 2008 a linear size in n per multiplication when the circuit is horizontal (all gates in
parallel), but still in n2 when the circuit is vertical (maximum depth). See also [CDN, §8.7].
An orthogonal improvement direction consists in packing more than one secret in n shares (e.g.
by considering also the evaluation of polynomials at 1 and not only 0). This naive approach

18A publicly cheating committer could further slow down the protocol, but we do not take this into account
19[CDN, p110] for multiplication of committed values, plus the resharing step of Figure 3.3

10 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

needs to assume one less malicious adversary per additional secret packed. But fortunately
[DIK10] could (nearly completely) remove this assumption, at the cost of a computational
overhead independant of n. It remains that such packed shared secrets can be only processed
by the same gates in parallel (SIMD circuits): see [GIP15] for a discussion.

Nevertheless, it remains an issue with the number of rounds for processing shared secrets.
Indeed, we stressed that t < n/3 hidden adversaries can cause disputes in Figure 3.7 and
slow the process down to two more rounds. Each of these rounds involves broadcasts, which
themselves decompose in t < n/3 rounds, so the round complexity explodes. This possibility
of slowdown also occurs in the classical Byzantine consensus [LSP82]. Detecting and deterring
such malicious behavior thus seems desirable: see §5.4 and §5.5 for solutions.

The issues of malicious behavior and the bound of n message size per multiplication seem
linked. Indeed as stressed by [CDN, §8.6], when all but one players behave maliciously, it is
difficult to imagine a solution where this player would have to work less than computing the
whole circuit himself.

3.2 Perfect security with t < n/2 semi-honest adversaries

The main tool needed is secret sharing. Consider a secret a, fa a polynomial of degree less
than t such that fa(0) = a, and suppose, to make it simple, that 1, . . . , n are distinct values
in the finite field F. Then note

〈a ; fa〉t the distributed state where P1 holds fa(1), P2 holds fa(2) , . . . , Pn holds fa(n) .

Then t+ 1 players who put in common their shares fa(i) can interpolate the polynomial f by
Lagrange’s interpolation theorem, and thus find its value at zero. Let us formalize this tool:
for all integer n, there exists a set of coefficients r = (r1, . . . , rn) in the field F, such that for
any polynomial h of degree ≤ n−1 it holds that h(0) =

∑n
i=1 rih(i). Finally let us stress that

in the previous situation where fa is of degree ≤ t, then the knowledge of t shares doesn’t
learn anything about the secret value a = fa(0): it is uniformly distributed. So that t colluding
players don’t learn anything about the secret: this is Shamir’s secret sharing scheme.

The simulator for πmult-passive is described later in Fig. 3.6 (see also [CDN, §3.3 p43]) and is
very easy to describe: it just needs to send t random shares to the adversaries on behalf of each
honest player Pi, pretending that these are shares of fi. Indeed, as t shares of a polynomial
of degree t give no information on its value at zero, adversaries are unable to distinguish this
from a real-world execution. On the other hand, the simulator for the opening phase, also
described later in Fig. 3.6 is a bit more involved: from the value of the final result y and t
shares yi of it, the simulator interpolates the shares of honest players then send them to the
adversaries. So that they receive values consistent with the output y and their shares.

3.3 Perfect security with t < n/3 adversaries

3.3.1 Preliminary: need to implement a broadcast channel for t < n/3.

We will need to use a functionnality called broadcast, described in figure 3.4 and similar to a
loudspeaker: when a player Pi says something in it, then all players Pj have the guarantee to
hear the same message. Indeed without broadcast, players do not have the guarantee that a
malicious player sends the same message to every players, when he claims to do so.

It is possible to unconditionally implement broadcast (so assuming only secure point to
point channels and synchronous communications) for t ≤ n/3 adversaries: [LSP82] or [CDN,

D3.5 — D3.5 Cloud: Advanced applications 11

πSFE

Input sharing Each player Pi holding input xi chooses a random polynomial fxi con-
ditioned to fxi(0) = xi, and distributes the shares fxi(1), . . . , fxi(n) to players
P1, . . . , Pn, resulting in the state 〈xi ; fxi〉t

Computation the shared secrets will go through addition and multiplication gates, such
that an invariant is preserved: every output of these gates is itself a shared secret
〈b; fb〉t with a polynomial fb of degree t:

1) addition: the players hold 〈a ; fa〉t and 〈b ; fb〉t, they add their shares to obtain
〈a+ b ; fa + fb〉t

2) multiplication by a public constant λ: the players hold 〈a ; fa〉t, they multiply
their shares by λ to obtain 〈λa ;λfa〉t.

3) multiplication between two variables (hard): naively multiplying the shares
would result in evaluations of a polynomial fafb of degree 2t, which violates
the invariant. Thus see figure 3.3 for how to circumvent this.

Output At this point, the players hold a shared secret 〈y ; fy〉t, which is the result of the
computation, and want to learn its value. Each player Pj sends fy(j) to each Pi,
who uses Lagrange interpolation to compute y = fy(0) from fy(1), . . . , fy(t+ 1) or
any other t+ 1 points.

Figure 3.2: Circuit evaluation algorithm for t < n
2 honest but curious adversaries

πmult-passive

Input: Two shared secrets 〈a ; fa〉t and 〈b ; fb〉t, with degree t
Output: A secret sharing of the product 〈ab ;h〉t, with degree t

1) The players compute 〈a ; fa〉t •〈b ; fb〉t = 〈ab ; fafb〉2t
2) Define h = fafb . Then h(0) = fa(0)fb(0) = ab, and the parties hold 〈ab ;h〉2t ; that

is, Pi holds h(i). Each Pi chooses a random polynomial fi of degree t that takes
value h(i) at 0, and distributes that way 〈h(i) ; fi〉t.

3) Note that deg(h) = 2t ≤ n − 1. Let r be the recombination vector, that is, the
vector r = (r1, . . . , rn) such that h(0) =

∑n
i=1 rih(i) for any polynomial h of degree

≤ n− 1. The players compute

n∑
i=1

ri〈h(i) ; fi〉t =

n∑
i=1

〈rih(i) ; rifi〉t

= 〈h(0),

n∑
i=1

rifi〉t = 〈ab
n∑

i=1

rifi〉t

Figure 3.3: Multiplication algorithm for t < n
2 honest but curious adversaries

12 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Fbroad

Input: Player P1 sends a message m to Fbroad.
Output: All players receive message m from Fbroad.

Figure 3.4: Broadcast functionality

th 5.9]. It requires a number of rounds equal to the number of adversaries corrupted: see
[CDN, p90] .

3.3.2 Principle: upgrading the protocol with perfectly secure commitments

In a nutshell, players will “outsource” all operations performed in algorithm πmult-passive (in-
cluding evaluation and resharing), to an ideal enhanched committing functionality FCom.

The point is that FCom performs an operation only il all players publicly order her to do
so. Thus, as long as there is at least one honest player, she can but only follow the instructions
of πmult-passive, or abort the process because of a publicly dishonest player. In particular in the
resharing phase, dishonest players will commit to coefficients of the resharing polynomial fi
they choose. Evaluation of this resharing polynomial at 1, . . . , n is then a linear computation
performed by the commitment functionality —and likewise for the opening of fi(j) to every
other player Pj .

This approach is from Cramer, Damgaard and Maurer [CDM00]. As stressed in [CDN,
§5.6], the original approach of [MBOW88] is faster but offers less modularity (as using more
modern secret sharing, commitment or signature schemes).

Let us recall that a commitment is like a safebox in a public place, whose owner keeps the
key. Assume that Bob wants to convince Alice that he has made a choice and will stick to
it. But Bob doesn’t want to reveal that choice right now. So Bob writes his choice on an
enveloppe and deposits it in a closed safebox, that he puts in Alices’ home. So Alice can’t
open it, and Bob can’t change the letter inside. One year later, Bob comes back and open the
safebox in front Alice: thus she learns Bob’s choice.

As we will want here that commited values be added and even multiplied (fully homomor-
phic commitment), we describe in Figure 3.5 an ideal commitment agent with these additional
features (straight from [CDN, §5.2]).

From now on, players will commit to their shares of secret. We note such an enhanced
shared-secret:

〈〈a, f〉〉t ,which means{[[f(1)]]1, . . . , [[f(n)]]n}

They will execute the passive algorithm in figure 3.3 by publicly outsourcing every operation
to FCom (addition, multiplication, resharing).

The consequence is that FCom will necessarily follow the rules of algorithm in figure 3.3.
Indeed to deviate from this would require (every) honest players to tell FCom to do something
wrong (by construction of FCom). Which is impossible, by definition of honest players. A
adversarial player Pi can still make an operation of FCom abort but then, as described in
figure 3.5, all players will be aware that he made this happen.

In conclusion, as described in [CDN, §5.3]:

• either all players follow the rules, as if adversaries were passive;

D3.5 — D3.5 Cloud: Advanced applications 13

FCom

Commit. Pi (the Committer) holds a secret value a. When all honest players (Pj)j ask
FCom to do so, then the secret a is committed. It is stored in the form (a, cid(a), i)
where cid(a) is a public commitment identifier and i refers to the (publicly known)
player Pi who commited it. We note this internal state [[a]]i, sometimes forgetting
the i when clear.

Pi can also make the commitment abort if he is an active adversary. Then all players
learn that he made this happen.

Public commit. Here a is known by all the players before being commited, so the com-
mitment can be seen as merely putting a on a tamperproof bulletin board.

Open. When all honest players (Pj)j ask FCom to reveal the value stored under the
identifier cid(a) (a is still unknown to them), then FCom does so.

The committer Pi can also make the opening abort if he is an active adversarya .
Then all players learn that he made this happen.

Designated open. Same, but a is only opened to a particular player Pj

Add. When all honest players ask FCom to add two values [[a]]i and [[b]]i committed by the
same player Pi (players only know the public identifiers (cid(a), i) and (cid(b), i)),
then FCom creates the internal state [[a+ b]]i.

Mult. by constant. Similarly, when honest players ask FCom to multiply [[a]]i by a publicly
known constant λ, then FCom creates the internal state [[λa]]i.

Some advanced (and costlier) functionnalities for FCom, that can be implemented from
the previous ones:
Transfer. When all honest players ask FCom to transfer [[a]]i from Pi to Pj , then he creates

the internal state [[a]]j
b.

The committer Pi can also make transfer abort if he is an active adversary. Also
either sender Pi or receiver Pj can make the value of [[a]]i opened to everyone if one
of them is an active adversaryc(allowed "leakeage" of information by an adversary).

Pj can also make the transfer abort if he is an active adversary. Then all players
learn that he made this happen.

Mult. When all honest players ask FCom to multiply two values [[a]]i and [[b]]i committed
by the same committer Pi, it creates the internal state [[a+ b]]i.

The committer Pi can also make the multiplication abort if he is an active adversary.
Then all players learn that he made this happen.

aBy contrast, verifiable secret sharing doesn’t enable a dishonest committer Pi to abort the opening.
This additional security property actually holds for the protocol that we are going to see because it is
based on Shamir secret sharing scheme, as in Rabin and Ben Or [RBO89]. This is no longer true for
arithmetic secret sharing: see end of [CDN, §5.6]

bIn particular, Pj will then be able the make opening of [[a]]j abort if he is an active adversary.
cNotice that the definition in [CDN, 5.2] doesn’t allow a corrupt Pi to leak a. But we do it here, since

the two protocols proposed in [CDN, 5.2.1] enable this (here Pi can force alone to go in the "exception
handler").

Figure 3.5: Ideal commitment agent

14 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

• or a player Pi makes an operation abort .He is then excluded from the protocol by the
honest majority, and the protocol goes on without him.

Let us describe formally the simulator sketched at the end of §3.2, that also suits to the
active adversary setting (see [CDN, §5.3 p116]):

3.3.3 Realizing a perfectly secure commitment protocol, and why the limit n/3

The idea is to have the commiter P1 secret-share the value a he wants to commits to between
the players, but with extra redundant information ensuring unicity of a. So instead of using a
polynomial fa(X) in degree t and distributing its values at 1, 2, . . . n, he will choose a bivariate
symmetric polynomial

fa(X,Y) =

t∑
u=0

t∑
v=0

au,vX
uY v

evaluating to a at zero; and distribute its evaluations in Y = 1, 2, . . . n, which are univariate
polynomials:

fk(X) = fa(X, k) =
t∑

u=0

(t∑
v=0

au,vk
v
)
Xu

In particular the values fk(0) are a classical secret sharing of a with polynomial fa(0, Y)
of degree t.

The protocol consists in having players check that the information shared is consistent. In
particular by symmetry of fa, we should have for any two players Pk and Pj that

fk(j) = fa(k, j) = fa(j, k) = fj(k)

Let us formalize the commitment protocol in figure 3.7 (from [CDN, p 124]).
Let us finally explain the reason for the bound t < n/3 as in [CDN, p 121]. Let f(X) =

fa(X, 0) be a univariate polynomial of degree less than t, as the one obtained in step 8) of
figure 3.7, such that f(0) = a is the secret. Consider the vector of shares:

sf =
(
f(1), . . . , f(n)

)
.

Let now e be an arbitrary vector of hamming weight ≤ t, that represents the errors introduced
by the t < n/3 adversarial players. Define accordingly

s̃f := sf + e

the vector of shares with errors. Then we claim that a is still uniquely determined by sf . In
fact the whole polynomial f(X) is determined by sf . Indeed suppose that there exists another
polynomial g(X) of degree at most t that also explains the vector sf with at most t errors.
Let u the vector of errors that accounts for this:

s̃f =sg + u subtracting both equalities yields:
sf−g =sf − sg = u− e

But by assumption, the vector u − e is of Hamming weight smaller than 2t. So there exists
more than n− 2t ≥ t+ 1 coordinates at which sf−g is zero. This means that the polynomial
f − g of degree ≤ t vanishes at more than t+ 1 values, and thus is zero.

D3.5 — D3.5 Cloud: Advanced applications 15

SSFE

Initialization The simulator S creates virtual honest players Pt+1, . . . , Pn, and arbitrarily
chooses their inputs (for example x̃i = 0 for all of them).

Input sharing The simulator interpolatesa the inputs xi of adversarial players Pt, . . . , Pn

from the shares they sent to him (and addressed to the virtual honest players).
These shares are consistent since adversaries were forced to behave honestly by
using FCom). S then passes these inputs xi to the functionality Ff

SFE. The real
honest players (that S doesn’t interact with) also pass their inputs to Ff

SFE.

Computation During the computation, the simulator S acts as if virtual honest players
Pt+1, . . . , Pn followed the protocol. In fact the only moment when S interacts with
adversaries is during the resharing round of the multiplication protocol. There, as
stressed by [CDN, Observation 1 p40], the simulator also could well send random
shares to the adversaries during this step.

Opening At this stage, since the adversaries were forced to follow protocol πSFE because
everything was done by FCom, we are in a state 〈ỹ ; fỹ〉t where all the players, both
adversaries and virtual players, hold consistent shares ỹi = fỹ(i) of the output ỹ of
the circuit. The problem is that this output is not the one y of the real execution,
since it ỹ was obtained from dummy inputs x̃i of the virtual honest players. So the
simulator will compensate for this. In detail:

1) S asks Ff
SFE to evaluate the function (remember that Ff

SFE was given all the
inputs at input sharing step). When the real honest players also ask her to do
so, then Ff

SFE returns the output y to S (and to the real honest players).

2) S has thus t + 1 shares y, ỹ1, . . . , ỹt, from which it can interpolate the unique
polynomial fy of degree t evaluating to y at zero and to ỹi at i.

3) S then derives n− t consistent shares yj = fy(j), j = t+1, . . . , n that he sends
to the adversaries on behalf of the honest players. The adversarial players are
then able to interpolate y from these shares.

aNotice that in the equivalent presentation of [Can01], the simulator impersonates the adversaries to
the environment E . But this doesn’t imply that S will learn the adversaries’ inputs directly from the
environment E . So S also needs to interpolate them in this setting.

Figure 3.6: Simulator for multiplication and opening, which holds against t < n/2 semi-honest
adversaries (§3.2) and against t < n/3 active adversaries, proving Theorem 3.1

16 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

πCommit

1) When all players ask him to do so, the committer Pi samples a bivariate symmetric
polynomial fa(X,Y) such that fa(0, 0) = a. She sends the polynomial fk(X) =
fa(X, k) to each Pk.

2) Each Pj computes βk,j = fj(k) and sends βk,j to each Pk.

3) Each Pk checks that deg(fk) ≤ t and that βk,j = fk(j), for j = 1, . . . , n. If so, he
broadcasts success and, if not, broadcasts that there is a dispute with Pi or Pj for
each inconsistency.

4) For each dispute reported in the preceding step, Pi samples the correct value of βk,j .

5) If any Pk finds a disagreement between what Pi has broadcast and what he received
privately from her, he knows that Pi is corrupt and broadcasts an accusation against
her.

6) For any accusation against her from Pk in the preceding step, Pi broadcasts fk(X)

7) If any player Pk finds a disgreement between what Pi has now broadcast and what
he received privately from her, he knows that Pi is corrupt and publicly accuses her.

8) If all the information broadcast by Pi is not consistent or if more than t players
have accused her, players abort the protocol. Otherwise, players who accused Pi

and had a new polynomial fk(X) broadcast will accept it as their polynomial. Now
each player Pk output success and stores fk(0) = fa(0, k) = fa(k, 0) (along with the
commitment identifier). In addition, Pi stores the polynomial fa(X, 0): notice that
the values fa(k, 0) are shares of this univariate polynomial.

Figure 3.7: Commitment protocol

D3.5 — D3.5 Cloud: Advanced applications 17

4 Statistical security when less than half of participants cheat,
conditionned to broadcast or correlated randomness

4.1 Summary of the section

4.1.1 Theory

Unconditional secure MPC is impossible in general for more than one third participants,
because a functionality as simple as broadcast cannot be implemented ([CDN, th 5.10]), even
with statistical security.

Now, if one assumes access to a broadcast functionality as part of the model, then one can
reach the bound t < n/2. This was first proved by Rabin and Ben-Or20 [RBO89] and will be
detailed in the §4.2.

Theorem 4.1 ([CDN, Th 5.13]). Assuming availability of a broadcast channel, then any MPC
functionality can be implemented with statistical security against t < n/2 active adversaries.

We will briefly mention in §4.3 why the assumption on broadcasting can be replaced by
assuming access to a functionality called correlated randomness.

4.1.2 Efficiency issues

The size of messages sent for one multiplication with information-theoretic security grows at
least linearly in n and in the depth of the circuit, according to [DNPR16] or [Pol16, Corollary
5.7]. See also the latter for a discussion on communication complexity in various models. This
lower bound is nearly matched by [BSFO12].

Better than the commitment protocol described below figure 3.7, [GGOR13] provides a
verifiable secret sharing scheme (see footnote in figure 3.5) for t < n/2 that makes only a
constant number of calls to broadcast (at most three).

Considering the impact of circuit’s depth, which is the bottleneck of FHE : the resilient
circuits proposed by [GIP+14, Table 1, Th 1.3 and 1.4] or [GIP15]21 , enable protocols that
are not affected by depth, but only by the circuit’s overall size |C|. This is not surprising since
[DNPR16] states that gains from multiplications in parallel can be at most linear in n.

Finally, if using garbled circuits (a priori non UC secure) and a communication scheme
centered around a server, then it is possible to achieve a number of rounds independent of
the size of the circuit : see [DI05]22 , which makes black box use of a pseudorandom genera-
tor23. and of a consant number of broadcasts. With the same hypotheses, [DI06] furthermore
achieves scalability, i.e. a number of rounds independant from the number of players. Here it
is discussed how to implement correlated randomness from linear codes, a pseudo random gen-
erator and broadcast. It is actually claimed that the broadcast assumption could be remove
without harming the average performance of the protocol.

Finally, if one doesn’t have access to broadcast nor correlated randomness, then [FGMvR02]
still proves that for t < n/2 adversaries, one can achieve a weaker version of MPC where out-
put delivery is not guaranteed. More precisely, although the adversary can neither violate

20[FM00] prove that a three-players broadcast is actually enough.
21Which has the advantage to be compatible with secret sharing-based protocols
22[IKP+16] further compiles this protocol to make the number of rounds independant of the security param-

eter.
23I.e. a functionality that takes as input a seed, and outputs a number following uniform distribution. The

same seed will output the same number

18 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

correctness, nor privacy, nor learn the result and quit without letting the other parties also
learn it24; he can anonymously make the functionality abort before it delivers its result. 25

4.2 How assuming access to a broadcast channel enables the bound t < n/2

4.2.1 Main idea: signing each message during the commitment protocol

The idea is that in figure 3.7 during step 1), every message fk(X) of the commitment protocol
is now signed by the committer Pi. Thus any player Pk accusing Pi of inconsistency at step
4) from Pj , will be able to prove to all the players that inconsistent messages were indeed sent
to him by Pj . As illustrated in [CDN, §5.4 p134], this makes a shorter commitment protocol
that now achieves the bound t < n/2.

4.2.2 Implementing IC signatures

In figure 4.1 we describe the exact functionality needed: the information checking (IC) signa-
ture26 FIC-sign . We stress that is is not a public key signature, nor does it rely on public key
cryptography. Instead they are additively homomorphic signatures, whose binding property
only relies on the existence of a majority of honest players.

FICSign

Signature A player P1 (the sender) gives a messagem to FICSign. When all honest players
ask FICSign to do so, then: FICSign outputs "signed" along with an identification
number for message m; and also sends message m privately to a particular player
P2 (the intermediary).

P1 and P2 can also together make the signing abort if they are active adversaries.
All players will then be aware that they both made this happen.

(Designated) Reveal When all honest players ask FICSign to reveal messagem (identified
by its identification number), then FICSign outputs m to all the players (or to one
single player).

The intermediary P2 can also make the reveal abort if he is an active adversary.

Add and mult by constant Same as in the committment protocola. This can’t be
aborted by any player.

aSuch signatures are therefore called additively homomorphic.

Figure 4.1: Information checking (IC) signature
24This means that the protocol is fair: see [CL14, §1.2]. In this model, an adversary can’t aborts just after he

has learnt an output and before the other honest players could learn it. But this may occur for an intermediary
output, before the whole computation terminates. Plus, the cheater may remain undetected. So this doesn’t
prevent anonymous early abort, which constitutes a denial of service attack (see below). Thus we won’t review
this line of research.

25See also [CHOR16] who investigate functionalities that are computable without broadcast for t < n/2,
and even t < n assuming one-way functions

26See [IOZG14, Appendix A] for a survey of implementations. Notice also a more efficient signature protocol
in [CBO14], involving only one broadcast (by the signing player), but where the signing player is assumed
honest.

D3.5 — D3.5 Cloud: Advanced applications 19

As in many protocols with statistical security, the implementation described in [CDN,
§5.4.1] uses the following flavor of one-time pad:

Definition 4.1 (Message authentification code (MAC)). Let F be the finite field in which
messages live. A pair K = (α, β) of elements of F is called a MAC key.

Let m be an element of F (a message), then αm+ β is called the MAC of m with key K.

MACs are additively homomorphic for two messages having the same α key.

πICSign

Signature The sender P1 gives message m to the intermediary P2, along with several
MACs of it. Separately, P1, gives one of each MAC keys Kj)(αj , βj) to every other
player Pj .

Check of consistency Players check with challenges that MACs are well formed. Now,
everybody has the guarantee that message m is correclty signed, but only P2 has
access to the value of m.

Addition (analogous for multiplication by a constant) P1 computes the MACs of the
sum, P2 computes the sum of the messages and the sum of their MACs, and finally
every other player Pj adds the linear parts of the two MAC keys that he holds (the
βj ’s).

Opening and proof Later, P2 discloses m to everybody along with the MACs, such that
all players are convinced that the message received was indeed m.

Figure 4.2: Information checking signature protocol

4.3 Assuming access to a source of correlated randomness also enables the
bound t < n/2

To start with, let us discuss a simpler functionality: multiparty coin tossing. This functionality
consists in outputing a uniformly distributed value27 . So from the point of view of the players
it is a public random source: see [CD17, KRDO17, SJK+17] for improvements and applications
to blockchain consensus for t < n/2.

According to the introduction of [BOO10], computing a random value between players
would be well known to be in the scope of MPC, and in particular would be perfectly im-
plementable for the bound t < n/3 with the techniques described above in §3.3, although no
reference explaining this fact is known to us. On the other hand the authors also recalls the
naive solution for two players, from the seminal work of [Blu83], and stresses why it produces
a bias. Basically this solution consists in having Alice and Bob commit to random values, then
open the commitment and make the sum. The problem is that if Alice reveals her commitment
first to Bob, then he has the possibility to make the opening fail if he is not satisfied with the
value. Upon failure, Alice will then output her sole random bit: summing all cases, Bob has
probability 3/4 to win.28

27As stressed in [FGMvR02, §3], it can be proven that this sole functionality does not help to improve the
classical bound of t < n/3 for broadcast (and hence for MPC in general).

28Notice that in this example, Alice will then be aware that Bob is a cheater: we have achieved covert

20 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Hence, [Cle86] has shown that with t ≥ n/2, then, in any r-round coin-tossing protocol,
the malicious parties can cause a bias.

The modern solutions for t ≤ n/2 quoted above involve verifiable secret sharing, that
prevent a commiter to make the protocol abort.

Now, the more demanding correlated randomness functionality, described in figure 4.3, has
a status comparable to broadcast:

• on the one hand, it is impossible to realize it unconditionaly for more that t < n/3
adversaries,

• but on the other hand, assuming it given for free (as an assumption of the model) enables
the bound t < n/2 adversaries.

The last point was proven by [FGMvR02]29 . We describe in 4.3 the general version of
correlated randomness, as found informally in the update [FWW04, §3.2], and from which
they implement signatures (and thus MPC for t < n/2 as in §4.2) from it.

FCorrRand

Let (X1, . . . , Xn) a (fixed) random vector with probability law P(X1,...,Xn).
Input: Each of the n players, P1, . . .Pn, asks FCorrRand to deliver the output.
Output: FCorrRand randomly samples (x1, . . . , xn) following P(X1,...,Xn) and sends xi to
each Pi.

Figure 4.3: Correlated randomness functionality

[IKM+13] further discusses the topic. E.g. how correlated randomness implements the
primitive oblivious transfer, described in Figure 4.4, which is itself complete in the sense that
it enables MPC for t < n/2 with statistical security. See [CGS16] for a discussion on to what
extent it is possible to implement this functionality in a quantum state. Finally [WW10]
gives linear lower bounds on the storage complexity of secure computation with correlated
randomness.

FOT

Input: The sender P1 inputs two values x1 and x2 in F. The receiver P2 inputs a bit b.
Output: P2 receives message xb.

Figure 4.4: Oblivious transfer

The previous primitive can actually be amortized over several executions with a fixed b
(Correlated oblivious transfer). Let us now describe the different flavour of OT, FCOPe, used
in preprocessing-based protocols [FKOS15, KOS16].

security as described in 5.4, and actually the paper provides a proof of cheating auditable by an external party.
Notice that for t < n/3 (or t < n/2 with a broadcast channel), then the commitment described in 3.3.2 also
identifies the player who makes the opening abort (since only the committer can cause this), so also achieves
covert security.

29From a three-player correlated randomness instance, they built a broadcast, and thus any MPC for t < n/2
adversaries by Theorem 4.1.

D3.5 — D3.5 Cloud: Advanced applications 21

FCOPe
a

Input: The receiver P2 inputs a fixed ∆ ∈ F. The sender inputs x ∈ ∆. (The cost for
several executions with different x and a fixed ∆ being amortized).
Output: P1 receives t ∈ F and P2 receives q ∈ F such that q + t = x ·∆.

aWe describe only the semi-honest functionality, which is simpler than the actual functionality FOT in
the active adversary setting, where the adversary has additional powers. There, if PB is corrupt he can
choose t. If PA is corrupt he can replace the finite field product x·∆ by a more complicated transformation
applied on ∆, that does not necessarily corresponds to a finite field product.

Figure 4.5: (Correlated-) oblivious transfer with errors

Correlated randomness can today be built from: cryptographic tools as OT or zero-
knowledge proofs30 , or AES computations as promoted in [AFL+16, FLNW17], or noisy
communication channels between the players / weakly correlated pieces of information as
stressed in [FWW04]. But it could also be obtained from an external dealer. Beaver [Bea97]
indeed sets a model with several independant dealers, such that a minority of them collud-
ing with adversary players can’t harm the overall randomness. The thesis work [Dow16] also
studies (among other issues) what can be done in this "dealer" model.

5 Breaking the honest majority limit with more crypto, and
the problem of early aborters

5.1 Summary of the section

Security with abort : As we saw in the last section, when there is no honest majority, uncondi-
tional security cannot be achieved. One can still obtain an even weaker version of MPC than
mentionned at the end of §4.1: security with abort. This means that the adversary can make
the protocol abort in 3.1 after it has learned the output, before it is output to honest players31

§5.3 Identifiable abort : A solution to fix this would be that honest players agree on at least
on the identity of an adversary player when early abort happens. This intermediary security
property is defined in [IOZG14]. This property is hard to reach, since [IOS12] claims (without
proof) that identifiable abort is impossible to obtain for t < n adversaries, even assuming
trusted access to every pairwise functionalities and a broadcast channel. But solutions exist
provided correlated randomness, as proposed in [IOS12, IOZG14].32.

§5.2 Preprocessing-based protocols: such protocols decompose themselves in two phases.
Firstly, players communicate without needing to know their inputs, in a so-called offline
phase. Technically, they create correlated randomness between them as described in figure
4.3. When this phase is finished, and when players learn their inputs, then the second phase
can start: this is thus called online phase. It is typically much faster than the offline phase.
The practical use cases are thus when players need to perform fast computations and know

30See §5.2: the protocols [KOS16, KPR18] preprocess a flavour of correlated randomness (Beaver triples).
31For example, assuming access to oblivious transfer provides this relaxed security: see [IPS08] or [KOS16]

for a recent preprocessing-based implementation.
32With cryptographic asumptions and removing the UC security, then [GMW, Gol06] also provides this

functionality but is not UC secure: see [DO10]

22 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

in advance the other players, so that they can perform the offline phase before. Another
advantage is that the identifiable abort security property can be efficiently obtained during
the online phase.

§5.4 Covert security : Instead of trying to achieve both security against malicious adver-
saries and identifiable abort, which may slow down protocols a lot, a recent orthogonal direc-
tion consists in designing algorithms that identify misbehaving players (or just early aborters)
with a non negligible probability.

§5.5 Public auditability : is a security feature that issues a proof that the protocol was
correctly executed or not, which can be checked by any external person. In costlier protocols,
this proof also identifies players who misbehaved during the protocol.

Before we detail these additional security properties in the next subsections, we would like
to point that most of the protocols studied in the litterature do not satisfy them: they satisfy
only security with abort. Nevertheless, being aware of them seems still important. Indeed,
since they are more investigated, they have a priori optimized performances. So that a possible
direction for research would be to transform them as explained in [IKP+16], in order obtain
the desired security properties —in particular identifiable abort. A comparison of security
with abort protocols can be found in [GIP+14, Table 1]33 (whose results are nailed down
by [GIW16]) or [GIP15]34 or the generic active-to-passive compiler of [DO10]. Let us finally
mention a study [NR17] about the —less known— overall computational cost of security with
abort protocols.

5.2 Preprocessing for a fast and secure online phase

5.2.1 Principle (the semi-honest case)

We saw that linear operations on linearly shared-secrets, namely addition and scalar multi-
plication, are easy, because each player simply performs it on his share. On the contrary it
is hard to multiply two shared secrets. The trick of Figure 5.1 is often credited to [Bea92].
It enables to replace each hard multiplication with a couple of (easy) scalar multiplications
and additions —but provided a long preprocessing phase (or access to a trusted correlated
randomness dealer).

The input phase is described in [CDN, p176], where the players share their inputs 〈x〉 and
〈y〉 with the help of extra preprocessed random variables. Addition and multiplication by a
constant are obvious.

5.2.2 Protocols robust against t < n active adversaries, with possibility of abort

We present today’s most used online phase, which originates from e.g. [BDOZ11]. It resists
against a dishonest majority thanks to consistency checks with MACs (see definition 4.1),
which work as follows:

An fixed random global MAC key is also additively secret-shared among the players in the
offline phase 〈α〉, α = α1 + . . . αn.

Then each share xi of an additively shared secret 〈x〉, x = x1 + · · ·+ xn, is packed with a
33Notice in particular a solution with correlated randomness provided by a corrupt dealer, in n2|C| commu-

nication complexity.
34Which has the advantage to be compatible with secret sharing-based protocols

D3.5 — D3.5 Cloud: Advanced applications 23

πPreprocessedMult

Preprocessing A functionality distributes to the players three perfectly random shared
secrets: 〈a〉, 〈b〉 and a sharing of the product: 〈c〉, c = ab.

Multiplication of shared inputs They compute (sharewise) the additions

〈ε〉 = 〈x− a〉 and 〈δ〉 = 〈y − b〉

Then they open the values of ε and δ. Finally they compute (sharewise) the linear
multiplications and additions:

〈z〉 = εδ + ε〈b〉 + δ〈a〉 + 〈c〉 .

Figure 5.1: Multiplication of additively shared secrets, with preprocessing

share αi of 〈α〉 and also with a share ∆i of the MAC of the secret:

MAC(x) := αx = ∆1 + · · ·+ ∆n.

Thanks to the additive-homomorphic property of MACs, the global MAC key α is not
changed throughout the circuit evaluation if players behave honestly (see below). But when
malicious behavior is detected then this happens (see below). So every shared data is also
matched with the secret-shared MAC key that applies to it. Every shared data is thus (un-
fortunately also) noted:

[[x]] = {〈x〉, 〈α〉, 〈αx〉} , (1)

In particular the preprocessing functionality is required to secret-share every random vari-
able [[r]], and every triple ([[a]], [[b]], [[c]]) in the form (1). Notice that one secret-shared (prepro-
cessed) random variable is required for each time a player shares an input.

Since this form behaves well under linear operations (provided adequate addition and
scalar multiplication rules on shares) and since only linear operations should be performed
during the online phase, then the MAC of the final result 〈z〉 should be again equal to α.z.
To check that this is true, players compute then open

〈α〉.z − 〈α.z〉 (2)

which should be zero. Notice that no information on the actual value of α has been disclosed
if the result is indeed zero. Also, several MACs done with the same α can be checked at once:
just take a random linear combination of them and perform the previous test (2) on it.

Theorem 5.1 ([CDN, 8.7]35). Taking the preprocessing step for granted, then the previous
protocol provides MPC with statistical security against t < n adversaries with possibility of
early abort.

Furthermore, no secure point to point authenticated messages are needed anymore.

See subsections 5.4, 5.3 and 6.4 for very recent progress and implementations. See also
[LSSV16] for a number-of-rounds-efficient preprocessing-based protocol, using a tradeoff be-
tween somewhat homomorphic encryption and garbled circuits.

Replacing statistical security by perfect security is not possible (even with more assump-
tions): see [IKM+13, Th 4].

35or [IOS12, §5] or see [PW92] for the general setting

24 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

5.3 Identifiable abort

The ability to detect adversaries who make the protocol abort was formalized in [IOZG14]36.
[BOS16] solves the problem with a precomputation-based protocol, where the identifiable

abort security property also holds in the offline phase. On the contrary, [SF16, CFY17] settle
this security level for the online phase only.

Notice finally that [SF16] allow only every honest player to identify at least one cheater,
but without consensus between honest players.

5.4 Security against covert adversaries: ones that do not want being seen
cheating or aborting

5.4.1 Security notion

Aumann and Lindell [AL10] introduced the following notion, mainly known as UC-covert
security37 . It deters adversaries that don’t want to risk being caught cheating or making the
protocol abort (possibly taking the result just before, or simply to make a denial of service
attack):

Definition 5.1 (Explicit Cheat Formulation (ECF)). We say that a protocol has ECF if when
a player Pi cheats, then there is a nonnegligible probability ε (the deterrence factor) that all
the honest players will identify him as a cheater.

In particular when there is a majority of honest players, then if a majority of players accuse
Pi to cheat, this proves that Pi really is a cheater.

As stressed in [AL10, p290], we ask that an adversary making the protocol abort must be
identified by all the players38.

Such solutions thus seem desirable when players don’t want to be seen cheating by a
business partner (e.g. satellite collision between states: see e.g. [CFY17]). Or if one wants to
create a reputation system between players39 , with possibly financial rewards or penalties.

It can allow faster protocols than fully secure against against adversaries. To illustrate
this, [DKL+13, table 1 vs. table 2] builts a preprocessing-based algorihm (now superseeded)
that achieves covert security 6 times faster than against active adversaries, the gap being even
greater in [DKL+12, table 4]40.

5.4.2 State of the art for covert security

Against t < n/2 adversaries: [DGN10] explains how converts a passive secure protocol into
a covert secure one, with deterrence probability 1/4. It consists in running twice the pas-
sive protocol while committing to every messages and inputs, and then opening the dummy

36See an identifiable secret sharing in [IOS12] for an arbitrary number of adversaries (and applications to
MPC). Also UC commitments with identifiable abort and dishonest majority: in [IOZG14, §4] conditionned
to correlated randomness (although not required in [IOS12, 4.2]), and [DKL+13, A.] with just randomness

37We add the UC prefix, although seldom used, because the original definition is really an equivalent of UC
security, with probability of failure. In particular it admits a covert universal composability theorem

38Relaxed by [DGN10, §2]
39[ALZ13]): from the reputation marks, they deduce subsets of players that should contain a honest majority

except with small probability.
40This belief is contested by [KPR18]. But their protocol doesn’t achieve identifiable abort, so doesn’t deter

early aborters, contrary to covert secure protocols

D3.5 — D3.5 Cloud: Advanced applications 25

execution (cut and choose). This idea is specified by [LP14, LPJ17], which also bring the
improvement to work over any ring (not only finite fields). The authors implemented it only
on the platform Sharemind [Cyb18] (for three players).

Against t < n − 1 adversaries: [NME13] converts any passive protocol to a UC covert
secure one. Due to the impossibility to implement an unconditional UC commitment without
honest majority, the authors use instead cryptographically-binding functions for this purpose.
The difficulty is then the following. Recall that the simulator of Figure 3.6 (or the one of
commitment), when doing the opening step 2), could adjust the shares of virtual honest-
players such that adversaries receive messages consistent with the output (it performed a
linear shift of the polynomial). In this setting it is no longer possible to do adjust messages, in
polynomial-time, so as to make them consistent with encrypted data. Therefore the authors
use a weaker primitive, called "lossy encryption scheme" (the authors’ implementation of
which being based on Pallier encryption).

Against t < n − 1 adversaries, with preprocessing: [DKL+13] that also sets for covert
security even in the preprocessing phase, and is based on lattice-cryptography. Contrary to
the previous one, based on a cut-and-choose zero-knowledge proof of correct execution, the
improvement [DKL+12] uses Schnorr-like zero knowledge proofs (as generalized [CD09]). The
paper reports on implementations and benchmarks41.

5.5 Public auditability

5.5.1 Public blame of cheaters

In the previous framework of covert security, an honest player will not actually be able to
prove anyone else that the person they identified was indeed a cheater42.

This has limits, especially from the point of view of a small player seeing a big player
cheating.

A fix could be to let players decide to vote for cheaters at majority. But still one cannot
avoid that a majority of players be dishonest and falsely accuse an honest player.

Thus it could be desirable to exhibit a proof of misbehavior, that would be readable by
any external person (a "judge"): [AO12] for the definition.

Solutions with garbled circuits are proposed for two players in [KM15, Mal16]. The main
building block is an (efficient) oblivious transfer (see figure 4.4) enhancement, where the
message sent to the receiver is augmented with a signature that proves that it was sent by the
sender during this execution.

As regards preprocessing-based protocols, a solution is sketched by [BOS16, chap 8]. By
contrast, [CFY17] settles this only for the online phase (after the players have been asked for
their inputs). This could be sufficient in real use-cases.

41Let us remind the practical performance parameters used when benchmarking algorithms (from e.g.
[SAM+17]): We define latency as the time it takes to perform one operation. For example, we define the
latency of an AES call as the time it takes all the parties to compute this single AES call. The throughput of
an operation is measured as the number of operations that can be performed in one second. This has to do on
how well we can parallelise the operation. For example, the number of AES calls we can make in one second.

42Let us mention that the previous protocols would easily be made publicly auditable if honest players were
willing to disclose their inputs to a judge: see [BOS16, chap 8].

26 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

5.5.2 Public proof of correctness of the result

A close notion is "public verifiability", where the computation comes along with a public proof
of correct execution. If the execution suffers from cheating, then the proof will report it, but
will not identify which participant cheated. See [CBO14] for a construction based on additive
crypto commitments.

This is thus interesting from the point of view of a client asking a cluster of servers to
perform a MPC. For example data mining of proprietary databases: see [ZNP15].

Another example is [CD17], where public randomness is produced by a multiparty compu-
tation between an external cluster of servers: assuming honest majority43 among them, then
their output is guaranteed by a publicly verifiable certificate.

5.6 When synchronicity or completeness of the network cannot be achieved

5.6.1 Asynchronous MPC

In this model, messages are no longer simultaneously delivered in rounds: each message can
suffer arbitrary delay. On the other hand, players do not wait the end of a round to start
sending messages for the next round. [CGHZ16] defines asynchronous model with eventual
delivery in the UC framework and introduces a notion of asynchronous round complexity. It
then provides a constant-round protocol for t < n/3 adversary players, provided that garbled
circuits have been jointly produced by players in a preprocessing phase. Black-box one-way
functions and a pseudorandom functionality are also used, very similarly to what was described
in §4.1.2.

Under the additional assumption that there exists an upper-bound on the delivery time
of messages, [CGLR17] (re)explains how to implement broadcast unconditionally for t < n/3,
and applies it to implement a generalistic consensus functionality (motivated blockchains).

5.6.2 Server-based one-pass protocols

[HLP11] introduced the concept of "server-based one-pass protocol". Here, to the parties
P1, . . . , Pn (the "clients"), the model adds a possibly adversarial party Pn+1 called the "server".
Each client Pi is asked to interact only once with the server, independently of the other clients.
At the end, the server knows the output of the computation f(x1, . . . , xn).

Each interaction with the server consists in a two-party computation between Pi and Pn+1.
The secret input of Pi is xi. Whereas the secret input of Pn+1 is the output of its successive
2PC

(
fj
)
with all the previous clients: call it yi. The output of the server is:

yi+1 = fi(xi, yi).

The functions fi are tailored so that the coalition of the server with a clique of players
learn as little as possible about the inputs xi (see [GMRW13, definition 2]). The desirable
security notion for the overall protocol being, on its turn, stated in [GMRW13, definition 3].
This paper achieves the two previous objectives for a wide range of possible functions f .

43Because of the impossibility result of [Cle86]

D3.5 — D3.5 Cloud: Advanced applications 27

5.6.3 Non-interactive MPC

[BGI+14] introduced the notion of non interactive protocols, where players need not send
messages except at the end of the protocol. The model requires a preprocessing functionality
to send the players Pi a particular instance of correlated randomness ri at the beginning of
the protocol. Then, each player Pi does a local computation from ri and his input xi, and
outputs a final result mi. The mi can be then gathered by a server to reconstitute the output
(or every player could do this, but this is not prescribed by the model). This scheme is similar
to preprocessing-based protocol, except that players need not even share their inputs at the
beginning. The drawback is that [YO16] showed that even in the semi-honest model, achieving
security requires that the sum of the size of the outputs mi grows linearly with the size of the
set of messages xi (e.g. the cardinality of the finite field F), so is exponential in the bit-length
of xi. [OY16] proposed a protocol achieving this lower bound.

6 Versatility of use-cases and best general protocols

In this Section, we show various uses and instantiations of MPC, which deviate from the basic
definition, and show the versatility of applications of MPC.

6.1 MPC and encryption (AES)

The computation of AES encryptions is a standard benchmark for most authors. Let us
explained why evaluation of encryption is relevant in practice. Imagine relevant shares of
secret data are held by several players of a MPC protocol: depending on the models (see
above), the players learn no information on the data. Then a computation can be performed
on the shares, and the user wishes to learn the result of the computation on plaintext data.
One solution would be that the user collect shares himself, and rebuild the result.

This solution has the drawback that the user must hold a platform able to do the recom-
bination, that his work is linear in the number of servers. Also, an external eavesdropper who
see all shares transiting through the servers to the user can get the result. In [DK10], a frame-
work is proposed, where the servers cooperate for encrypting the result under a symmetric
key (AES) K, and also to encrypt K under the user’s public key. The players need not know
the plaintext data, neither the secret K. On the receiving side, the user only needs to be able
to do public-key and symmetric encryption, which is much more standard than MPC.

As a consequence, research has emerged in the field of symmetric cryptography, to design
ciphers that needs a very low number of multiplication, see for instance [DR17], since multi-
plication is the most delicate operation in MPC (and also in FHE). Nevertheless, there are
many situations where AES, being a standard, is required, and it is not possible to use new
ciphers not as thoroughly evaluated as AES.

In a similar vein, MPC can used to support distributed cryptographic primitives, like dis-
tributed key generation [DM10]. It can also to have a group of servers generate authentication
tokens, without knowing the secret data used for building the tokens, for example in a car
sharing system [SAM+17, Dho16].

In the following, we assume that variants of these ideas can be deployed for offering com-
puting facilities on encrypted data.

28 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

6.2 MPC as a computing network

Secure multiparty computation can be thought as MPC-as-a-service, where one or several
users distribute shares of their data to several computing nodes whose role is to do service
computation. Thanks to secret sharing, homomorphic properties and MPC, the computing
nodes can cooperate to evaluate any function the users require. This has been proposed for
example in the Sepia system [BSMD10] where several network operators wish to do event
correlation and statistics aggregation. See also [LS11], where it is shown that, in the setting of
secure outsourced computation a less stringent security model can be used than the standard
MPC requirements44.

In a similar vein, MIT’s Enigma [ZNP15] proposal (see also Zyskind’s master thesis [Zys06])
is to create a private marketplace, where users can distribute shares of their data to some
computing peers, who can, on user’s demand, do computation and report the result of compu-
tation. Enigma’s can also be supported by a blockchain token to give incentives to computing
nodes for computing and well behaving.

6.3 MPC as a privacy preserving reporting tool

A possible scenario is when users, e.g. companies, have to interact with analysts, who have
to do various studies on users’ data, yet the users do not want to reveal all their data to
the analysts. In contrast to previous scenario, the users and the analysts are different, but
MPC allows users to submit shares to a MPC platform, which reports only the minimum
possible information to analysts, see for instance Rmind [BKLS14]. Similarly, Estonia made
a prototype for detecting and reporting VAT tax fraud without compromising companies
data [BJSV15]. Stanford’s Prio is also a recent platform where aggregate statistics over private
user data can be computed [CGB17].

6.4 Best available generalistic protocols

6.4.1 Are specific protocols faster ?

Let us take the example of private set intersection (PSI). For two parties in the semi honest
setting, the recent benchmark [PSZ18] indeed found that "generic circuit-based protocols are
less efficient than the newer, OT-based constructions"

But this remark was immediatly followed by: "but [generic approaches] are more flexible
and can easily be adapted for computing variants of the set intersection functionality". Indeed,
mere algorithms for private-set intersection might face formatting issues, similar to real-life
problems with big data. Assume that two entities (bank or hospital) want to match clients
that they have in common: the same client might not have exactly the same tag in the two
databases. [HHIL+17] provides solutions for two semi-honest participants plus a semi-honest
third party (an intermediary with no access to private data). See the ongoing european
project [pro17] for a survey on available protocols for secure multiparty big data analytics, (in
particular §2.6 on private set intersection).

44The general theory of secure multiparty computation enables to consider more complicated settings than
an upper bound on the number of adversaries, using the notion of access structure, which is simply the set of
all the authorized sets and the set of all the adversarial serts. The reference [LS11] shows that “easier” access
structures can be afforded when MPC is used for outsourced computations

D3.5 — D3.5 Cloud: Advanced applications 29

We are not aware of any implementation benchmark for the (recently studied) case of n
parties with active adversaries45. [GN17] proposes the first UC specific protocol (but assuming
a n-parties linear OT), along with an asymptotic study of complexities (in Table 1 loc. cit.).
It remains to be benchmarked against generalistic preprocessing-based implementations (for
t < n malicious adversaries), in particular [KOS16].

6.4.2 Fastest generalistic implemented protocols

As of February 2018 we can report the following. All timings are from experiments on local
networks by the authors. To fix ideas, [GLNP15, table 7] shows that a one-round two party
protocol becomes 5− 10 times slower when deployed between Ireland and the US. Finally we
are not aware if the most recent preprocessing-based protocol [KPR18]46, which also performs
2 and 3 party computations, competes with protocols against active adversaries mentionned
below.

• two-party computation (2PC) with security against passive adversaries: [GLNP15]. It
is based on preprocessed garbled circuits and not proven to be UC. Preprocessing 1000
garbled circuits for AES encryption with the same key takes the authors 0.4s, then 1000
encryptions (in one round) using these circuits takes 0.2s.

• 2PC with security against active adversaries: [WM17] (based on garbled circuits and
not proven to be UC) is fast for one single execution: with statistical security parameter
40, an encryption takes 0.07s. For a better amortized cost on many executions and with
preprocessing —and UC security asuming oblivious transfer— then [NST17, Table 4]
computes 1024 AES encryptions in a single round (on a local LAN) in 0.008s, provided
a preprocessing of 61s —this timing dropping down to 3s when tailored to AES (and
not generalistic). This paper furthermore provides a benchmark with other protocols47.

• three-party computation (3PC) with at most one passive adversary or one active ad-
versary in the client/servers model : [AFL+16], proven to be UC, is the fastest and is
directly designed for arithmetic circuits. Contrary to the previous algorithms it takes
more than one round, because every multiplication needs every player to send one field
element to other players. However he size of messages being smaller than with garbled
circuits, more computations can be done in parallell on the same network. Summariz-
ing: the protocol takes more latency than the previous ones: 0.2s for one single AES,
whereas the throughput is much more larger: 1, 300, 000 AES computations in one sec-
ond (so 1000 AES in 0.0008s if making abstraction of latency). It is unconditionally
secure provided correlated randomness assumptions (in practice, correlated randomness
is extracted from previous AES computations).

• 3PC with at most one active adversary : [FLNW17], implemented and improved in
[ABF+17] is based on secret-sharing and preprocessing48 and is proven to be UC. But
the adversary may anonymously abort the protocol and learn the output while the

45See [KMP+17] for a recent implementation in the passive case for n = 5.
46Which is not proven to be UC secure
47In particular [RR16], which is also UC secure. On the contrary [LR15], which is not mentionned, is not

proven to be uc secure (an ad hoc security notion with indistinguishability is proven) so might be faster. It
also remains to be compared to the 2-parties version of [KPR18], though not UC secure

48with Beaver’s triples and a cut-and-choose scheme

30 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

honest parties do not49 This approach enables more throughput than one-round garbled
circuits, at the cost of more latency. Scaling their results, the authors can compute 1000
AES in 0.0005 seconds (making abstraction of the minimum latency of 0.7s reported
in their table 7). The same table shows that a preprocessing would allow twice more
performance.

• n > 3 PC with t < n passive adversaries [CHK+12] implements the passive version of the
classical [GMW] protocol50 , simulates a private market place that "easily handles tens
of customers/providers and thousands of resources successfully". Whereas [BELO16]’s
implementation of the classical BMR51 achieves the same security.

• n > 3 PC with t < n active adversaries: [DKL+12, Table 1] shows that the online
phase of preprocessing-based protocols scales well with the number of parties, since it is
essentially non-interactive (from 0.2s for a 2PC AES to 0.3s for a 10PC AES. By con-
trast the online phase performance suffers from the number of parties: the UC protocol
[KOS16]52 shows that whereas 5000 128 bits multiplications can be preprocessed for 2
parties in one second, only 1000 can be preprocessed for 5 parties. Notice that the recent
[KPR18] (relying on hardness of ring LWE) reports 10 times faster preprocessing than
the previous for 2 players. It furthermore claims scalable-friendly zero-knowledge proofs
of correct encryption, that enable them to implement preprocessing on 100 players while
only suffering a division by 5 of performances compared to the 2 players case (Figure 13).
All these preprocessing-based protocols do not allow identifiable abort. See subsection
5.3 for (slower) preprocessing-based protocols enhanced with this functionality.

Let us finally mention the Sharemind platform, that featured in 2015 more than 100 different
protocols for arithmetic, relational, and database operations with shared values. The authors
of [LP14] and [LPJ17] implemented covert security on it, plus [PL15] an automated prover
that tests if a protocol leaks information to an active adversary.

References

[ABF+17] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell,
Ariel Nof, Kazuma Ohara, Adi Watzman, and Or Weinstein. Optimized honest-
majority mpc for malicious adversaries — breaking the 1 billion-gate per second
barrier. 2017 IEEE Symposium on Security and Privacy (SP), 2017.

[AFL+16] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara.
High-throughput semi-honest secure three-party computation with an honest
majority. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’16, 2016.

49Let us also mention [MRZ15] which has the same security properties and, while slower, is easier to imple-
ment (based on garbled circuits and standard symmetric cryptography). The preprocessing time for one AES
is 0.002s, while the evaluation time is 0.002s.

50Recall that it is non UC and based on one-way functions, but on the other hand doesn’t require preprocess-
ing. GMW also exists in a theoretical version secure against t < n active adversaries and providing identifiable
abort

51Multiparty garbled circuits, and a priori non UC.
52Which also relies on the OT functionality of Figure 4.5 (generalizing [FKOS15] to non binary fields, and

thus to long integers)

D3.5 — D3.5 Cloud: Advanced applications 31

[AL10] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries:
Efficient protocols for realistic adversaries. Journal of Cryptology, 2010.

[ALZ13] Gilad Asharov, Yehuda Lindell, and Hila Zarosim. Fair and efficient secure
multiparty computation with reputation systems. In Advances in Cryptology -
ASIACRYPT 2013, 2013.

[AO12] Gilad Asharov and Claudio Orlandi. Calling out cheaters: Covert security with
public verifiability. In ASIACRYPT, 2012.

[BDOZ11] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In Kenneth G. Paterson,
editor, Advances in Cryptology – EUROCRYPT 2011, 2011.

[Bea92] Donald Beaver. Efficient multiparty protocols using circuit randomization. In
Advances in Cryptology — CRYPTO ’91, 1992.

[Bea97] Donald Beaver. Commodity-based cryptography (extended abstract). In Pro-
ceedings of the Twenty-ninth Annual ACM Symposium on Theory of Comput-
ing, STOC ’97, 1997.

[BELO16] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Optimizing semi-honest
secure multiparty computation for the internet. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, CCS
’16, 2016.

[BGI+14] Amos Beimel, Ariel Gabizon, Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard,
and Anat Paskin-Cherniavsky. Non-interactive secure multiparty computation.
In CRYPTO 2014, 2014.

[BGP92] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Bit Optimal Distributed
Consensus. 1992.

[BJSV15] Dan Bogdanov, Marko Jõemets, Sander Siim, and Meril Vaht. How the estonian
tax and customs board evaluated a tax fraud detection system based on secure
multi-party computation. In Rainer Böhme and Tatsuaki Okamoto, editors,
Financial Cryptography and Data Security - 19th International Conference, FC
2015, San Juan, Puerto Rico, January 26-30, 2015, Revised Selected Papers,
2015.

[BKLS14] Dan Bogdanov, Liina Kamm, Sven Laur, and Ville Sokk. Rmind: a tool for
cryptographically secure statistical analysis. IACR Cryptology ePrint Archive,
2014:512, 2014.

[BLN16] Daniel J. Bernstein, Tanja Lange, and Ruben Niederhagen. Dual EC: A Stan-
dardized Back Door. 2016.

[Blu83] Manuel Blum. Coin flipping by telephone a protocol for solving impossible
problems. SIGACT News, 1983.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of
secure protocols (extended abstract). In STOC, 1990.

32 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

[BOO10] Amos Beimel, Eran Omri, and Ilan Orlov. Protocols for multiparty coin toss
with dishonest majority. In CRYPTO’10, 2010.

[BOS16] Carsten Baum, Emmanuela Orsini, and Peter Scholl. Efficient secure multiparty
computation with identifiable abort. In TCC 2016: Theory of Cryptography,
2016.

[BSFO12] Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-linear unconditionally-
secure multiparty computation with a dishonest minority. In CRYPTO, 2012.

[BSMD10] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas A. Dimitropou-
los. SEPIA: privacy-preserving aggregation of multi-domain network events
and statistics. In 19th USENIX Security Symposium, Washington, DC, USA,
August 11-13, 2010, Proceedings, pages 223–240. USENIX Association, 2010.

[BTH08] Zuzana Beerliová-Trubíniová and Martin Hirt. Perfectly-secure mpc with linear
communication complexity. In Theory of Cryptography, 2008.

[Can01] R. Canetti. Universally composable security: a new paradigm for cryptographic
protocols. In Proceedings IEEE International Conference on Cluster Comput-
ing, 2001.

[Can06] Ran Canetti. Security and composition of cryptographic protocols: A tutorial.
Cryptology ePrint Archive, Report 2006/465, 2006.

[CBO14] Ivan Damgård Carsten Baum and Claudio Orlandi. Publicly auditable secure
multi-party computation. In Security and Cryptography for Networks - 9th
International Conference, SCN 2014, Amalfi, Italy, September 3-5, 2014. Pro-
ceedings, 2014.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty unconditionally
secure protocols. In Proceedings of the Twentieth Annual ACM Symposium on
Theory of Computing, 1988.

[CCM08] M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: Toward a secure voting
system. In 2008 IEEE Symposium on Security and Privacy (sp 2008), 2008.

[CD09] Ronald Cramer and Ivan Damgård. On the amortized complexity of zero-
knowledge protocols. In Advances in Cryptology - CRYPTO 2009, 2009.

[CD17] Ignacio Cascudo and Bernardo David. Scrape: Scalable randomness attested
by public entities. In Applied Cryptography and Network Security, 2017.

[CDM00] Ronald Cramer, Ivan Damgård, and Ueli Maurer. General secure multi-party
computation from any linear secret-sharing scheme. In Proceedings of the 19th
International Conference on Theory and Application of Cryptographic Tech-
niques, EUROCRYPT’00, 2000.

[CDN] Ronald J.F. Cramer, Ivan Damgård, and Jesper Buus Nielsen. Secure multiparty
computation : an information-theoretic approach. Cambridge University Press.

D3.5 — D3.5 Cloud: Advanced applications 33

[CFY17] Robert Cunningham, Benjamin Fuller, and Sophia Yakoubov. Catching mpc
cheaters: Identification and openability. In Junji Shikata, editor, ICITS 2017,
2017.

[CGB17] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable com-
putation of aggregate statistics. In Proceedings of the 14th USENIX Conference
on Networked Systems Design and Implementation, 2017.

[CGHZ16] Sandro Coretti, Juan Garay, Martin Hirt, and Vassilis Zikas. Constant-round
asynchronous multi-party computation based on one-way functions. In Ad-
vances in Cryptology – ASIACRYPT 2016, 2016.

[CGLR17] Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal.
(leader/randomization/signature)-free byzantine consensus for consortium
blockchains. CoRR, abs/1702.03068, 2017.

[CGS16] André Chailloux, Gus Gutoski, and Jamie Sikora. Optimal bounds for semi-
honest quantum oblivious transfer. Chicago J. Theor. Comput. Sci., 2016.

[CHK+12] Seung Geol Choi, Kyung-Wook Hwang, Jonathan Katz, Tal Malkin, and Dan
Rubenstein. Secure multi-party computation of boolean circuits with applica-
tions to privacy in on-line marketplaces. In Topics in Cryptology – CT-RSA
2012, 2012.

[CHOR16] Ran Cohen, Iftach Haitner, Eran Omri, and Lior Rotem. Characterization of
secure multiparty computation without broadcast. In Theory of Cryptography,
2016.

[CL14] Ran Cohen and Yehuda Lindell. Fairness versus guaranteed output delivery
in secure multiparty computation. In Advances in Cryptology – ASIACRYPT,
2014.

[Cle86] R Cleve. Limits on the security of coin flips when half the processors are
faulty. In Proceedings of the Eighteenth Annual ACM Symposium on Theory of
Computing, STOC ’86, 1986.

[CW92] Brian A. Coan and Jennifer L. Welch. Modular construction of a byzantine
agreement protocol with optimal message bit complexity. Inf. Comput., 1992.

[Cyb18] Estonia) Cybernetica, (Talinn. Sharemind platform.
https://sharemind.cyber.ee/secure-computing-platform/, 2018.

[DBP14] Sven Laur Dan Bogdanov, Peeter Laud and Pille Pullonen. From input-private
to universally composable secure multiparty computation primitives. Proc. of
CSF’14. IEEE Computer Society, 2014.

[DGH12] Casey Devet, Ian Goldberg, and Nadia Heninger. Optimally robust private
information retrieval. In Proceedings of the 21th USENIX Security Symposium,
Bellevue, WA, USA, August 8-10, 2012, pages 269–283, 2012.

[DGN10] Ivan Damgård, Martin Geisler, and Jesper Buus Nielsen. From passive to covert
security at low cost. In TCC, 2010.

34 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

[Dho16] Siemen Dhooghe. Applying Multiparty Computation to Car Access Provision.
PhD thesis, KU Leuven, 2016.

[DI05] Ivan Damgård and Yuval Ishai. Constant-round multiparty computation using
a black-box pseudorandom generator. In CRYPTO 2005, 2005.

[DI06] Ivan Damgård and Yuval Ishai. Scalable secure multiparty computation. In
CRYPTO, 2006.

[DIK10] Ivan Damgård, Yuval Ishai, and Mikkel Kroigaard. Perfectly secure multiparty
computation and the computational overhead of cryptography. In Advances in
Cryptology – EUROCRYPT 2010, 2010.

[DK10] Ivan Damgård and Marcel Keller. Secure multiparty aes. In Financial Cryp-
tography and Data Security, 2010.

[DKL+12] Ivan Damgård, Marcel Keller, Enrique Larraia, Christian Miles, and Nigel P.
Smart. Implementing AES via an actively/covertly secure dishonest-majority
MPC protocol. In Security and Cryptography for Networks - 8th International
Conference, SCN 2012, Amalfi, Italy, September 5-7, 2012. Proceedings, 2012.

[DKL+13] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl,
and Nigel P. Smart. Practical covertly secure MPC for dishonest majority - or:
Breaking the spdz limits. In Computer Security - ESORICS 2013 - 18th Eu-
ropean Symposium on Research in Computer Security, Egham, UK, September
9-13, 2013. Proceedings, 2013.

[DKR06] S. Delaune, S. Kremer, and M. Ryan. Coercion-resistance and receipt-freeness
in electronic voting. In 19th IEEE Computer Security Foundations Workshop
(CSFW’06), 2006.

[DM10] Ivan Damgård and Gert Læssœ Mikkelsen. Efficient, robust and constant-round
distributed RSA key generation. In Daniele Micciancio, editor, Theory of Cryp-
tography, pages 183–200, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[DN07] Ivan Damgård and Jesper Buus Nielsen. Scalable and unconditionally secure
multiparty computation. In Advances in Cryptology - CRYPTO 2007, 2007.

[DNPR16] Ivan Damgård, Jesper Buus Nielsen, Antigoni Polychroniadou, and Michael
Raskin. On the communication required for unconditionally secure multiplica-
tion. In CRYPTO, 2016.

[DO10] Ivan Damgård and Claudio Orlandi. Multiparty computation for dishonest
majority: From passive to active security at low cost. In CRYPTO, 2010.

[Dow16] Rafael Baião Dowsley. Cryptography Based on Correlated Data: Foundations
and Practice. PhD thesis, Karlsruher Instituts für Technologie, 2016.

[DR17] Martijn Stam Dragos Rotaru, Nigel P. Smart. Modes of operation suitable for
computing on encrypted data. IACR Transactions on symmetric cryptology,
2017.

D3.5 — D3.5 Cloud: Advanced applications 35

[ELC12] Sayed M. Saghaian Nejad Esfahani, Ying Luo, and Sen-Ching S. Cheung. Pri-
vacy protected image denoising with secret shares. In 19th IEEE International
Conference on Image Processing, ICIP 2012, Lake Buena Vista, Orlando, FL,
USA, September 30 - October 3, 2012, 2012.

[EMV17] N.P Smart E. Makri, D. Rotaru and F. Vercauteren. Pics: Private image
classification with svm. https://eprint.iacr.org/2017/1190.pdf, 2017.

[Fer07] Dan Shumow Niels Ferguson. On the possibility of a back door in the nist
sp800-90 dual ec prng. CRYPTO 2017 Rump session, 2007.

[FGMvR02] Matthias Fitzi, Nicolas Gisin, Ueli Maurer, and Oliver von Rotz. Unconditional
byzantine agreement and multi-party computation secure against dishonest mi-
norities from scratch. In Advances in Cryptology — EUROCRYPT, 2002.

[FKOS15] Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and Peter Scholl. A
unified approach to mpc with preprocessing using ot. In Advances in Cryptology
– ASIACRYPT 2015, 2015.

[FLNW17] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-throughput
secure three-party computation for malicious adversaries and an honest major-
ity. In Advances in Cryptology – EUROCRYPT 2017, 2017.

[FM00] Mattias Fitzi and Ueli Maurer. From partial consistency to global broadcast.
In Proceedings of the Thirty-second Annual ACM Symposium on Theory of
Computing, STOC ’00, 2000.

[FWW04] Matthias Fitzi, Stefan Wolf, and Jürg Wullschleger. Pseudo-signatures, broad-
cast, and multi-party computation from correlated randomness. In Matt
Franklin, editor, Advances in Cryptology – CRYPTO 2004, 2004.

[GGOR13] Juan Garay, Clint Givens, Rafail Ostrovsky, and Pavel Raykov. Broadcast (and
round) efficient verifiable secret sharing. In ICITS, 2013.

[GIP+14] Daniel Genkin, Yuval Ishai, Manoj M. Prabhakaran, Amit Sahai, and Eran
Tromer. Circuits resilient to additive attacks with applications to secure com-
putation. In Proceedings of the Forty-sixth Annual ACM Symposium on Theory
of Computing, STOC ’14, 2014.

[GIP15] Daniel Genkin, Yuval Ishai, and Antigoni Polychroniadou. Efficient multi-party
computation: From passive to active security via secure SIMD circuits. In
CRYPTO, 2015.

[GIW16] Daniel Genkin, Yuval Ishai, and Mor Weiss. Binary amd circuits from secure
multiparty computation. In Martin Hirt and Adam Smith, editors, Theory of
Cryptography, 2016.

[GLNP15] Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas. Fast garbling of
circuits under standard assumptions. In Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security, CCS ’15, 2015.

36 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

[GMRW13] S. Dov Gordon, Tal Malkin, Mike Rosulek, and Hoeteck Wee. Multi-party
computation of polynomials and branching programs without simultaneous in-
teraction. In EUROCRYPT, pages 575–591, 2013.

[GMW] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Comput-
ing, New York, NY, USA.

[GN17] Satrajit S Ghosh and Tobias Nilges. An algebraic approach to maliciously
secure private set intersection. 2017.

[Gol06] Oded Goldreich. Foundations of Cryptography: Volume 1. Cambridge Univer-
sity Press, 2006.

[HHIL+17] Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Richard Nock, Giorgio Pa-
trini, Guillaume Smith, and Brian Thorne. Private federated learning on ver-
tically partitioned data via entity resolution and additively homomorphic en-
cryption. 2017.

[HLP11] Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on the
web: Computing without simultaneous interaction. In CRYPTO 2011, 2011.

[HMP00] Martin Hirt, Ueli Maurer, and Bartosz Przydatek. Efficient secure multi-party
computation. In Advances in Cryptology — ASIACRYPT 2000, 2000.

[IKM+13] Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Claudio Orlandi, and Anat
Paskin-Cherniavsky. On the power of correlated randomness in secure compu-
tation. In Amit Sahai, editor, Theory of Cryptography, 2013.

[IKP+16] Yuval Ishai, Eyal Kushilevitz, Manoj Prabhakaran, Amit Sahai, and Ching-Hua
Yu. Secure protocol transformations. In Advances in Cryptology – CRYPTO
2016, 2016.

[IOS12] Yuval Ishai, Rafail Ostrovsky, and Hakan Seyalioglu. Identifying cheaters with-
out an honest majority. In Theory of Cryptography, 2012.

[IOZG14] Yuval Ishai, Rafail Ostrovsky, Vassilis Zikas, and Rosario Gennaro. Secure
multi-party computation with identifiable abort. In Advances in Cryptology –
CRYPTO 2014, 2014.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on
oblivious transfer – efficiently. In David Wagner, editor, Advances in Cryptology
– CRYPTO 2008, 2008.

[KM15] Vladimir Kolesnikov and Alex J. Malozemoff. Public verifiability in the covert
model (almost) for free. In Advances in Cryptology – ASIACRYPT 2015, 2015.

[KMP+17] Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu.
Practical multi-party private set intersection from symmetric-key techniques.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, 2017.

D3.5 — D3.5 Cloud: Advanced applications 37

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Mascot: Faster malicious
arithmetic secure computation with oblivious transfer. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security,
2016.

[KPR18] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making spdz
great again. to appear in Eurocrypt, 2018.

[KRDO17] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In CRYPTO,
2017.

[LP14] Peeter Laud and Alisa Pankova. Verifiable computation in multiparty protocols
with honest majority. In Provable Security - 8th International Conference,
ProvSec 2014, Hong Kong, China, October 9-10, 2014. Proceedings, 2014.

[LPJ17] Peeter Laud, Alisa Pankova, and Roman Jagomägis. Preprocessing based veri-
fication of multiparty protocols with honest majority. PoPETs, 2017.

[LR15] Yehuda Lindell and Ben Riva. Blazing fast 2pc in the offline/online setting with
security for malicious adversaries. In Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security, CCS ’15, 2015.

[LS11] Jake Loftus and Nigel P. Smart. Secure outsourced computation. In
AFRICACRYPT 2011, 2011.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals
problem. ACM Trans. Program. Lang. Syst., 1982.

[LSSV16] Yehuda Lindell, Nigel P. Smart, and Eduardo Soria-Vazquez. More efficient
constant-round multi-party computation from bmr and she. In TCC, 2016.

[Mal16] Alexis J. Malozemoff. EFFICIENT SECURE COMPUTATION FOR REAL-
WORLD SETTINGS AND SECURITY MODELS. PhD thesis, University of
Maryland, 2016.

[MBOW88] Shafi Goldwasser Michael Ben-Or and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation. In Proceedings of
the Twentieth Annual ACM Symposium on Theory of Computing, 1988.

[MRZ15] Payman Mohassel, Mike Rosulek, and Ye Zhang. Fast and secure three-party
computation: The garbled circuit approach. In Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security, CCS ’15,
2015.

[NME13] Isheeta Nargis, Payman Mohassel, and Wayne Eberly. Efficient multiparty com-
putation for arithmetic circuits against a covert majority. In AFRICACRYPT,
2013.

[NR17] Jesper Buus Nielsen and Samuel Ranellucci. On the computational overhead of
mpc with dishonest majority. In Serge Fehr, editor, Public-Key Cryptography
– PKC 2017, 2017.

38 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

[NST17] Jesper Buus Nielsen, Thomas Schneider, and Roberto Trifiletti. Constant round
maliciously secure 2pc with function-independent preprocessing using lego. In
NDSS ’17. San Diego, CA, 2017.

[OY16] Satoshi Obana and Maki Yoshida. An efficient construction of non-interactive
secure multiparty computation. In Cryptology and Network Security, 2016.

[PGFW14] Jason Perry, Debayan Gupta, Joan Feigenbaum, and Rebecca N. Wright. Sys-
tematizing secure computation for research and decision support. In Security
and Cryptography for Networks, 2014.

[PL15] Martin Pettai and Peeter Laud. Automatic proofs of privacy of secure multi-
party computation protocols against active adversaries. In IEEE 28th Computer
Security Foundations Symposium, CSF 2015, Verona, Italy, 13-17 July, 2015,
pages 75–89, 2015.

[Pol16] Antigoni Polychroniadou. On the Communication and Round Complexity of
Secure Computation. PhD thesis, Aarhus University, 2016.

[pro17] Horizon 2020 SODA project. Deliverable 2.1. https://www.soda-project.eu/wp-
content/uploads/2017/02/SODA-D2.1-WP2-State-of-the-art.pdf, 2017.

[PSZ18] Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set
intersection based on ot extension. ACM Trans. Priv. Secur., 2018.

[PW92] Birgit Pfitzmann and Michael Waidner. Unconditional byzantine agreement for
any number of faulty processors. In STACS 92, 1992.

[RBO89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols
with honest majority. In Proceedings of the Twenty-first Annual ACM Sympo-
sium on Theory of Computing, 1989.

[RR16] Peter Rindal and Mike Rosulek. Faster malicious 2-party secure computa-
tion with online/offline dual execution. In 25th USENIX Security Symposium
(USENIX Security 16), 2016.

[SAM+17] Iraklis Symeonidis, Abdelrahaman Aly, Mustafa Asan Mustafa, Bart Mennink,
Siemen Dhooghe, and Bart Preneel. Sepcar: A secure and privacy-enhancing
protocol for car access provision. In Computer Security – ESORICS 2017, 2017.

[SF16] Gabriele Spini and Serge Fehr. Cheater detection in spdz multiparty computa-
tion. In Information Theoretic Security, 2016.

[SJK+17] E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L. Gasser, I. Khoffi, M. J.
Fischer, and B. Ford. Scalable bias-resistant distributed randomness. In 2017
IEEE Symposium on Security and Privacy (SP), 2017.

[UftFPotE15] UaESMC: Usable and Efficient Secure Multiparty Computation (for 7th Frame-
work Programme of the EC). Deliverable 5.2.3. http://www.usable-security.eu,
2015.

D3.5 — D3.5 Cloud: Advanced applications 39

[Unr10] Dominique Unruh. Universally composable quantum multi-party computation.
In Advances in Cryptology – EUROCRYPT 2010, 2010.

[WLC14] Zhaohong Wang, Ying Luo, and Sen-ching Samson Cheung. Efficient multi-
party computation with collusion-deterred secret sharing. In IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing, ICASSP 2014,
Florence, Italy, May 4-9, 2014, pages 7401–7405, 2014.

[WM17] Xiao Wang and Jonathan Malozemoff, Alex J.and Katz. Faster secure two-
party computation in the single-execution setting. In Jean-Sébastien Coron and
Jesper Buus Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017,
2017.

[WW10] Severin Winkler and Jürg Wullschleger. On the efficiency of classical and quan-
tum oblivious transfer reductions. In Tal Rabin, editor, CRYPTO, 2010.

[Yao82] Andrew C. Yao. Protocols for secure computations. In Proceedings of the 23rd
Annual Symposium on Foundations of Computer Science, SFCS ’82, 1982.

[YO16] Maki Yoshida and Satoshi Obana. On the (in)efficiency of non-interactive secure
multiparty computation. In Information Security and Cryptology - ICISC 2015,
2016.

[ZNP15] Guy Zyskind, Oz Nathan, and Alex Pentland. Enigma: Decentralized compu-
tation platform with guaranteed privacy. CoRR, 2015.

[Zys06] Guy Zyskind. Efficient secure computation enabled by blockchain technology,
2006.

