
PQCRYPTO

Post-Quantum Cryptography for Long-Term Security

Project number: Horizon 2020 ICT-645622

Internet: Portfolio

Due date of deliverable: 1. March 2018
Actual submission date: 12. April 2018

Start date of project: 1. March 2015 Duration: 3 years

Coordinator:
Technische Universiteit Eindhoven
Email: coordinator@pqcrypto.eu.org
www.pqcrypto.eu.org

Revision 0.0

Project co-funded by the European Commission within Horizon 2020

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission services)

RE Restricted to a group specified by the consortium (including the Commission services)

CO Confidential, only for members of the consortium (including the Commission services)

Internet: Portfolio

Wouter Castryck
(Including documentation written by many authors.)

12. April 2018
Revision 0.0

The work described in this report has in part been supported by the Commission of the European Commu-
nities through the Horizon 2020 program under project number 645622 PQCRYPTO. The information in this
document is provided as is, and no warranty is given or implied that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.

Abstract

This portfolio compiles the specifications of the post-quantum cryptosystems which, accord-
ing to the members of the PQCRYPTO consortium, are the most promising alternatives for
all currently deployed digital signature, key establishment and public-key encryption schemes
(corresponding to the three main cryptographic tasks of secure internet communication).
Our document covers 20 of the 22 proposals to the NIST standardization project in which
PQCRYPTO is involved.

Keywords: Post-quantum cryptography, internet, digital signatures, key establishment,
public-key encryption

ii

— Internet: Portfolio 1

1 Introduction

In this portfolio we list the cryptographic systems that were judged, by the members of the
PQCRYPTO consortium, to be the most promising candidates for performing the central
tasks in secure internet communication (namely digital signatures, key establishment, and to
a lesser extent public-key encryption) in a post-quantum context. Currently, pre-quantum
systems performing these tasks are incorporated in ubiquitous internet protocols like TLS
and SSH, which are invoked multiple billions of times each day. Replacing these systems by
post-quantum versions is central to the successful deployment of post-quantum cryptography
on the internet. For each system we provide many concrete parameter sets, give detailed
security analyses, discuss pros and cons, and analyze the runtimes of a.o. our reference C
implementations (which are part of our library libpqcrypto, discussed in D2.4).

All our proposals were submitted to the ongoing NIST standardization project on post-
quantum cryptography,1 whose submission deadline was 30 November 2017 and which will
run for at most five years. Concretely, the current document covers 20 of the 22 PQCRYPTO
submissions, out of the 69 admissible submissions that NIST received in total. More precisely,
this portfolio is a compilation of the respective system specifications of these 20 proposals,
of which we give a concise overview in the next section; we stress that this also includes
work by our many collaborators world-wide. For the complete list of all 69 submissions,
we refer to the website https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/

Round-1-Submissions, which also discusses the current status of each competitor. We note
that PQCRYPTO plays an active role in the assessment of the other proposals, which already
led to complete breaks of Edon-K, HK7, RVB, SRTPI, WalnutDSA, as well as to the discovery
of a few other vulnerabilities. The PQCRYPTO submissions stand firm to date.

2 Overview

An overview of the 20 proposals is given below, along with the page number where the
corresponding specifications can be found. The names of the PQCRYPTO contributors are
printed in bold.

For the sake of comparison, we have included the targeted functionality (digital signatures,
key encapsulation, or public-key encryption) and the area of the underlying hard mathematical
problem (codes, lattices, multivariate systems of equations, or hash functions). In the latter
case this can be ambiguous, so we stress that this is included for indicative purposes only and
we refer to the specifications for more details. The same concern applies to the stated public
(pk), secret (sk), ciphertext (ctxt) and signature (sig) sizes in kilobytes (kB): most submissions
propose several parameter sets, and the table only samples one from these. Where possible
we have selected a parameter set that targets NIST’s security category 5, which means that
breaking the said scheme should amount to an effort equivalent to breaking AES-256. But
apart from security considerations (and how aggressively one plays this game), the space
requirements are also affected by trade-offs between key and ciphertext/signature sizes, speed,
failure rates, etc. Again we refer to the respective specifications for more details.

1https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/

2 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Name Functionality and sizes Underlying Contributors pp.
(at NIST security cat. 5) mathematics (PQCRYPTO members in bold)

BIG QUAKE Key Encapsulation Codes Magali Bardet 6

pk: 146.29 kB (QC Goppa) Élise Barelli
sk: 40.82 kB Olivier Blazy
ctxt: 0.48 kB Rodolfo Canto-Torres
(for BIG_QUAKE_5) Alain Couvreur

Philippe Gaborit
Ayoub Otmani
Nicolas Sendrier
Jean-Pierre Tillich

BIKE Key Encapsulation Codes Nicolas Aragon 38
(BIKE-1, pk: 4.00 kB (QC-MDPC) Paulo S. L. M. Barreto
BIKE-2, sk: 0.54 kB Slim Bettaieb
BIKE-3) ctxt: 4.00 kB Löıc Bidoux

(for BIKE-2 level 5) Olivier Blazy
Philippe Gaborit
Jean-Christophe Deneuville
Philippe Gaborit
Shay Gueron
Tim Güneysu
Carlos Aguilar Melchor
Edoardo Persichetti
Nicolas Sendrier
Jean-Pierre Tillich
Gilles Zémor

Classic McEliece Key Encapsulation Codes Daniel J. Bernstein 90
pk: 1022.78 kB (Goppa) Tung Chou
sk: 13.58 kB Tanja Lange
ctxt: 0.22 kB Ingo von Maurich
(for mceliece6960119) Rafael Misoczki

Ruben Niederhagen
Edoardo Persichetti
Christiane Peters
Peter Schwabe
Nicolas Sendrier
Jakub Szefer
Wen Wang

CRYSTALS- Digital Signatures Lattices Léo Ducas 128
Dilithium pk: 1.72 kB (MLWE/MSIS) Eike Kiltz

sk: 3.77 kB Tancrède Lepoint
sig: 3.29 kB Vadim Lyubashevsky
(for Dilithium-IV, Peter Schwabe
security cat. 3) Gregor Seiler

Damien Stehlé
CRYSTALS- Key Encapsulation Lattices Roberto Avanzi 158
Kyber pk: 1.41 kB (MLWE) Joppe W. Bos

sk: 3.10 kB Léo Ducas
ctxt: 1.49 kB Eike Kiltz
(for Kyber1024) Tancrède Lepoint

Vadim Lyubashevsky

— Internet: Portfolio 3

John M. Schanck
Peter Schwabe
Gregor Seiler
Damien Stehlé

DAGS Key Encapsulation Codes Gustavo Banegas 190
pk: 11.34 kB (Dyadic GS) Paulo S. L. M. Barreto
sk: 2178.00 kB Brice Odilon Boidje
ctxt: 1.58 kB Pierre-Louis Cayrel
(for DAGS_5) Gilbert Ndollane Dione

Kris Gaj
Cheikh Thiécoumba Gueye
Richard Haeussler
Jean Belo Klamti
Ousmane Ndiaye
Duc Tri Nguyen
Edoardo Persichetti
Jefferson E. Ricardini

FrodoKEM Key Encapsulation Lattices Michael Naehrig 213
pk: 15.27 kB (LWE) Erdem Alkim
sk: 30.54 kB Joppe W. Bos
ctxt: 15.40 kB Léo Ducas
(for Frodo-976, Karen Easterbrook
security cat. 3) Brian LaMacchia

Patrick Longa
Ilya Mironov
Valeria Nikolaenko
Christopher Peikert
Ananth Raghunathan
Douglas Stebila

Gui Digital Signatures Multivariate Jintai Ding 259
pk: 5789.20 kB systems of Ming-Shen Chen
sk: 155.90 kB equations Albrecht Petzoldt
sig: 0.65 kB Dieter Schmidt
(for Gui-448) Bo-Yin Yang

KINDI PK Encryption and Lattices Rachid El Bansarkhani 291
Key Encapsulation (MLWE)
pk: 1.94 kB
sk: 2.25 kB
ctxt: 2.63 kB
(for KINDI-256-5-2-2)

LUOV Digital Signatures Multivariate Ward Beullens 315
pk: 98.60 kB systems of Bart Preneel
sk: 0.03 kB equations Alan Szepieniec
sig: 0.51 kB Frederik Vercauteren
(for LUOV-8-117-404)

MQDSS Digital Signatures Multivariate Ming-Shing Chen 348
pk: 0.09 kB systems of Andreas Hülsing
sk: 0.05 kB equations Joost Rijneveld
sig: 66.2 kB Simona Samardjiska
(for MQDSS-31-64, Peter Schwabe
security cat. 4)

NewHope Key Encapsulation Lattices Thomas Poppelmann 436

4 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

pk: 1.78 kB (RLWE) Erdem Alkim
sk: 3.59 kB Roberto Avanzi
ctxt: 2.16 kB Joppe W. Bos
(for NewHope1024- Léo Ducas
CCA-KEM) Antonio de la Piedra

Peter Schwabe
Douglas Stebila

NTRU- Key Encapsulation Lattices John M. Schanck 480
HRSS-KEM pk: 1.11 kB (NTRU) Andreas Hülsing

sk: 1.38 kB Joost Rijneveld
ctxt: 1.25 kB Peter Schwabe
(for security cat. 1)

NTRU Key Encapsulation Lattices Daniel J. Bernstein 506
Prime pk: 1.19 kB (NTRU) Chitchanok

sk: 1.56 kB Chitchanok Chuengsatiansup
ctxt: 1.02 kB Tanja Lange
(for sntrup4591761) Christine van Vrenendaal

Picnic Digital Signatures Hash functions Greg Zaverucha 546
pk: 0.06 kB (SHA family) Melissa Chase
sk: 0.03 kB David Derler
sig: 204.56 kB Steven Goldfeder
(for picnic-L5-UR) Claudio Orlandi

Sebastian Ramacher
Christian Rechberger
Daniel Slamanig

qTESLA Digital Signatures Lattices Sedat Akleylek 568
pk: 8.03 kB (RLWE) Erdem Alkim
sk: 8.06 kB Paulo S. L. M. Barreto
sig: 6.03 kB Johannes Buchmann
(for qTESLA-256) Edward Eaton

Gus Gutoski
Juliane Krämer
Patrick Longa
Harun Polat
Jefferson E. Ricardini
Gustavo Zanon

Rainbow Digital Signatures Multivariate Jintai Ding 599
pk: 1683.30 kB systems of Ming-Shing Chen
sk: 1244.40 kB equations Albrecht Petzoldt
sig: 0.20 kB Dieter Schmidt
(for Rainbow Vc) Bo-Yin Yang

Ramstake Key Encapsulation Lattices Alan Szepieniec 634
pk: 92.42 kB (sparse
sk: 184.81 kB integers)
ctxt: 93.86 kB
(for Ramstake RS

756839)
SABER PK Encryption and Lattices Jan-Pieter D’Anvers 654

Key Encapsulation (MLWR) Angshuman Karmakar
pk: 1.27 kB Sujoy Sinha Roy
sk: 0.38 kB (PKE) Frederik Vercauteren
sk: 1.72 kB (KEM)

— Internet: Portfolio 5

ctxt: 1.44 kB
(for FireSaber-PKE
resp. FireSaber-KEM)

SPHINCS+ Digital Signatures Hash functions Daniel J. Bernstein 685
pk: 0.06 kB (SHA family) Christoph Dobraunig
sk: 0.13 kB Maria Eichlseder
sig: 29.09 kB Scott Fluhrer
(for SPHINCS+-256s) Stefan-Lukas Gazdag

Andreas Hülsing
Panos Kampanakis
Stefan Kölbl
Tanja Lange
Martin M. Lauridsen
Florian Mendel
Ruben Niederhagen
Christian Rechberger
Joost Rijneveld
Peter Schwabe

BIG QUAKE
BInary Goppa QUAsi–cyclic Key Encapsulation

Magali Bardet, University of Rouen, France

Élise Barelli, Inria & École Polytechnique, France

Olivier Blazy, University of Rouen, France

Rodolfo Canto–Torres, Inria, France

Alain Couvreur, Inria & École Polytechnique, France

Philippe Gaborit, University of Limoges, France

Ayoub Otmani, University of Rouen, France

Nicolas Sendrier, Inria, France

Jean-Pierre Tillich, Inria, France

Principal submitter: Alain Couvreur.

Auxiliary submitters: Listed above.

Inventors/Developers: Same as the submitters. Relevant prior work is credited where appropriate.

Implementation Owners: Submitters.

Email Address (preferred): alain.couvreur@inria.fr

Postal Address and Telephone (if absolutely necessary):
Alain Couvreur, LIX, École Polytechnique 91128 Palaiseau Cédex, +33 1 74 85 42 66 .

Signature: x. See also printed version of “Statement by Each Submitter”.

1

6 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Abstract

The present proposal is a key encapsulation scheme based on a Niederreiter–like public
key encryption scheme using binary quasi–cyclic Goppa codes.

Contents

1 Introduction 4
1.1 Motivation for this proposal . 4
1.2 Quasi–cyclic codes in cryptography . 4
1.3 Type of proposal . 5

2 Goppa codes, QC Goppa codes 5
2.1 Context . 5
2.2 Vectors, matrices . 5
2.3 Polynomials . 5
2.4 Generalized Reed Solomon codes and alternant codes 6
2.5 Binary Goppa codes . 7
2.6 Quasi–cyclic codes . 7

2.6.1 Definitions . 7
2.6.2 Polynomial representation . 8
2.6.3 Operations on quasi–cyclic codes . 8

2.7 Block–circulant matrices . 9
2.8 Quasi–cyclic Goppa codes . 9
2.9 QC–Goppa codes of interest in the present proposal 10
2.10 Difficult problems from coding theory . 10

3 Presentation of the scheme 11
3.1 Notation . 11
3.2 Key generation . 12
3.3 Description of the public key encryption scheme 13

3.3.1 Context . 13
3.3.2 Encryption . 13
3.3.3 Decryption . 13

3.4 Description of the KEM . 13
3.4.1 Context . 13
3.4.2 Key encapsulation mechanism . 13
3.4.3 Decapsulation . 14
3.4.4 The function F . 14

3.5 Semantic security . 15
3.5.1 IND-CPA security of the PKE . 15
3.5.2 Conversion to an IND-CCA2 KEM/DEM 16

4 Known attacks and counter–measures 16
4.1 Key recovery attacks . 16

4.1.1 Exhaustive search on Goppa Polynomials and supports 17
4.1.2 Distinguisher on the invariant code . 18
4.1.3 Algebraic cryptanalysis . 18

2

— Internet: Portfolio 7

4.1.4 Algebraic attacks on the invariant code 19
4.2 Message recovery attacks . 19

4.2.1 Generic decoding algorithms . 19
4.2.2 About the influence of quasi–cyclicity 20

4.3 Exploiting Quantum Computations. 21

5 Parameters 22
5.1 Choice of the quasi–cyclicity order ` . 22
5.2 Choice of the field extension m . 23
5.3 Proposition of parameters . 24

5.3.1 Parameters for reaching NIST security level 1 (AES128) 24
5.3.2 Parameters for reaching NIST security level 3 (AES192) 24
5.3.3 Parameters for reaching NIST security level 5 (AES256) 25

6 Implementation 25
6.1 Reference implementation . 25
6.2 Optimized implementation . 25

7 Performance Analysis 25
7.1 Running time in Milliseconds . 25
7.2 Space Requirements in Bytes . 25

8 Known Answer Tests – KAT 26

A How to get systematic blockwise circulant parity check matrix? 29

B Proof of Proposition 8 30

C Proof of Lemma 6 31

3

8 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

1 Introduction

1.1 Motivation for this proposal

The original McEliece system [McE78] is the oldest public key cryptosystem which is still
resistant to classical and quantum computers. It is based on binary Goppa codes. Up to
now, all known attacks on the scheme have at least exponential complexity. A security proof
is given in [Sen10] which relies on two assumptions (i) the hardness of decoding a generic
linear code and (ii) distinguishing a Goppa code from a random linear code. It is well known
to provide extremely fast encryption and fast decryption [BCS13], but has large public keys,
about 200 kilobytes for 128 bits of security and slightly less than one megabyte for 256 bits
of security [BLP08].

The aim of this proposal is to propose a key-encapsulation scheme based on binary Goppa
codes by reducing the key size by a moderate factor ` in the range [3..19]. This is obtained
by using binary quasi–cyclic Goppa codes of order ` instead of plain binary Goppa codes.
The rationale behind this is that for the original McEliece cryptosystem key-recovery attacks
have a much higher complexity than message recovery attacks. By focusing on quasi–cyclic
Goppa codes, there is a security loss with respect to key recovery attacks but this loss is
affordable due to the big gap between the complexity of key recovery attacks and message
recovery attacks, and because the security loss with respect to message recovery attacks is
negligible.

1.2 Quasi–cyclic codes in cryptography

This is not the first time that quasi–cyclic codes have been proposed in this context. The
first proposal can be traced back to [Gab05] where quasi–cyclic subcodes of BCH codes are
suggested. This proposal was broken in [OTD10], essentially because the number of possible
keys was too low.

A second proposal based on quasi–cyclic alternant codes (a family of codes containing the
Goppa code family) was made in [BCGO09]. Because of a too large order of quasi cyclicity,
all the parameters of this proposal have been broken in [FOPT10]. Another proposal with
quasi–dyadic and quasi–p–adic Goppa codes was given in [MB09, BLM11]. Some parameters
have been broken in [FOPT10, FOP+16b]. In both cases, the corresponding attacks are based
on an algebraic modeling of the key recovery attack and using Groebner basis techniques to
solve them. This can be done in this case because the quasi–cyclic/dyadic structure allows to
drastically reduce the number of variables in the system when compared to the polynomial
system associated to unstructured alternant or Goppa codes.

Later on [FOP+16a] provided a further insight on these algebraic attacks by proving that
in the case of quasi–cyclic alternant or Goppa codes of order ` it is possible to construct
another alternant or Goppa code whose length is divided by ` without knowing the secret
algebraic structure of the code. This code is called the folded code there. There is a strong
relation between this code and the invariant code considered in [Bar17]. This explains why
in the case of key-recovery attacks attacking quasi–cyclic alternant or Goppa codes we can
reduce the problem to a key recovery of a much smaller code.

This sequence of proposals and subsequent attacks lead to the following observations. For a
code based scheme using quasi–cyclic algebraic codes to be secure, the following requirements
are fundamental:

4

— Internet: Portfolio 9

1. The family of codes providing the keys should be large enough;

2. The security of the key must be studied in terms of the public key and all the smaller
codes deriving from the public key (invariant code, folded code, see §4 for further de-
tails).

3. The cryptosystem should be resistant to attacks on the message that is generic decoding
algorithms.

1.3 Type of proposal

We propose a public key encryption scheme (PKE) which is converted into a key encapsulation
mechanism (KEM) using a generic transformation due to Hohheinz, Hövelmanns and Kiltz
[HHK17] in order to get an INDCCA2 security. Our public key encryption scheme is a
Niederreiter–like scheme. Compared to the original Niederreiter scheme, our proposal avoids
the computation of a bijection between words of fixed length and constant weight words. This
avoids cumbersome computations involving large integers and provides a light scheme more
suitable for embedded system with restricted computing resources. The PKE is proved to be
IND–CPA and the generic conversion described in [HHK17] leads to an IND–CCA2 KEM.

Acknowledgements

The submitters express their gratitude to Daniel Augot and Julien Lavauzelle for their help-
ful comments. Submitters are are supported by French ANR grant CBCrypt and by the
Commission of the European Communities through the Horizon 2020 program under project
number 645622 PQCRYPTO.

2 Goppa codes, QC Goppa codes

2.1 Context

In what follows, any finite field is an extension of the binary field F2.That is, any field is of
the form F2m for some positive integer m.

2.2 Vectors, matrices

Vectors and matrices are respectively denoted in bold letters and bold capital letters such as
a and A. We always denote the entries of a vector u ∈ Fnq by u0, . . . , un−1.

2.3 Polynomials

Given a finite field F2m for some positive m, the ring of polynomials with coefficients in
Fq is denoted by Fq[z], while the subspace of Fq[z] of polynomials of degree strictly less
than t is denoted by Fq[z]<t. For every rational fraction P ∈ Fq(z), with no poles at the
elements u0, . . . , un−1, P (u) stands for (P (u0), . . . , P (un−1)). In particular for a vector y =
(y0, . . . , yn−1) that has only nonzero entries, the vector y−1 denotes (y−1

0 , . . . , y−1
n−1).

5

10 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

2.4 Generalized Reed Solomon codes and alternant codes

Definition 1 (Generalized Reed-Solomon code). Let q = 2m for some positive integer m
and k, n be integers such that 1 6 k < n 6 q. Let x and y be two n-tuples such that the
entries of x are pairwise distinct elements of Fq and those of y are nonzero elements in Fq.
The generalized Reed-Solomon code (GRS in short) GRSk(x,y) of dimension k associated to
(x,y) is defined as

GRSk(x,y)
def
=

{(
y0P (x0), . . . , yn−1P (xn−1)

) ∣∣ P ∈ Fq[z]<k
}
·

Reed-Solomon codes correspond to the case where y = (1 1 · · · 1) and are denoted as RSk(x).
The vectors x and y are called respectively the support and the multiplier of the code.

A GRS code of dimension k with support x and multiplier y has a generator matrix of
the form:

y0 · · · yn−1

x0y0 · · · xn−1yn−1
...

...

xk−1
0 y0 · · · xk−1

n−1yn−1

 ·

This leads to the definition of alternant codes. See for instance [MS86, Chap. 12, §2].

Definition 2 (Binary alternant code). Let x,y ∈ Fnq be a support and a multiplier as defined
in Definition 1. Let r be a positive integer, the binary alternant code Ar(x,y) is defined as

Ar(x,y)
def
= GRSr(x,y)⊥ ∩ Fn2 .

The integer r is referred to as the degree of the alternant code and m as its extension degree.

Another definition of alternant code, which will be useful in the proposal is given below.

Proposition 1. Let x,y, r be as in Definition 2. The binary alternant code Ar(x,y) is the
right kernel of the matrix:

H =

y0 · · · yn−1

x0y0 · · · xn−1yn−1
...

...

xr−1
0 y0 · · · xr−1

n−1yn−1

 .

Proposition 2 ([MS86, Chap. 12, § 2]). Let x,y, r be as in Definition 1.

1. dimF2 Ar(x,y) > n−mr;

2. dmin(Ar(x,y)) > r + 1;

where dmin(·) denotes the minimum distance of a code.

The key feature of an alternant code is the following fact (see [MS86, Chap. 12, § 9]):

Fact 1. There exists a polynomial time algorithm decoding all errors of Hamming weight at
most b r2c once the vectors x and y are known.

6

— Internet: Portfolio 11

2.5 Binary Goppa codes

Definition 3. Let x ∈ Fnq be a vector with pairwise distinct entries and Γ ∈ Fq[z] be a
polynomial such that Γ(xi) 6= 0 for all i ∈ {0, . . . , n − 1}. The binary Goppa code G (x,Γ)
associated to Γ and supported by x is defined as

G (x,Γ)
def
= Adeg Γ(x,Γ(x)−1).

We call Γ the Goppa polynomial and m the extension degree of the Goppa code.

The interesting point about this subfamily of alternant codes is that under some condi-
tions, Goppa codes can correct more errors than a general alternant code.

Theorem 1 ([SKHN76, Theorem 4]). Let Γ ∈ Fq[z] be a square-free polynomial. Let x ∈ Fnq
be a vector of pairwise distinct entries, then

G (x,Γ) = G
(
x,Γ2

)
.

From Fact 1, if viewed as A2 deg Γ(x,Γ(x)−2) the Goppa code corrects up to r = deg Γ

errors in polynomial-time instead of only bdeg Γ
2 c if viewed as Adeg Γ(x,Γ−1(x))). On the other

hand, these codes have dimension > n−mr instead of > n− 2mr.

2.6 Quasi–cyclic codes

In what follows ` denotes a positive integer.

2.6.1 Definitions

Definition 4. Let ` be a positive integer and σ : F`2 → F`2 be the cyclic shift map:

σ :

{
F`2 −→ F`2

(x0, x1, . . . , x`−1) 7−→ (x`−1, x0, x1, . . . , x`−2)

Now, let n be an integer divisible by `, we define the `–th quasi–cyclic shift σ` as the map
obtained by applying σ block-wise on blocks of length `:

σ` :

{
Fn2 −→ Fn2(

x0

∣∣ . . .
∣∣ xn

`
−1

)
7−→

(
σ(x0)

∣∣ . . .
∣∣ σ
(
xn

`
−1

)) ,

where x0,x1, . . . ,xn
`
−1 denote consecutive sub-blocks of ` bits.

This notion is illustrated by Figure 1.

Figure 1: Illustration of the quasi–cyclic shift

Definition 5. A code C ⊆ Fn2 is said to be `–quasi–cyclic (`–QC) if the code is stable by the
quasi–cyclic shift map σ`. ` is also called the order of quasi–cyclicity of the code.

7

12 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Example 1. The following matrix is a generator matrix for a 3–quasi–cyclic code.

1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 0 1

 .

2.6.2 Polynomial representation

Given a positive integer n such that ` divides n, then any vector of Fn2 can be divided into
n
` blocks of length `. To (m0, . . . ,m`−1), one associates naturally the polynomial m(z) =
m0 +m1z + . . .+m`−1z

`−1 ∈ F2[z]/(z` − 1). If we let

R def
= F2[z]/(z` − 1),

then, we get a canonical isomorphism

Fn2
∼−→ Rn

`

and, under this isomorphism, the quasi–cyclic shift corresponds to the scalar multiplication
by z. Hence quasi–cyclic codes can be regarded as R–sub–modules of Rn

` .

Example 2. The code of Example 1 corresponds to the submodule of Rn
` spanned by

(1 | 1 + z).

2.6.3 Operations on quasi–cyclic codes

For the analysis of some attacks and hence for the security analysis of our codes, we need
to introduce the notions of invariant code and folded code. These notions will be frequently
used in Sections 3 and 4.

Notation 1. We denote by Punct` the function

Punct` :

{
Fn2 −→ F

n
`
2

(x0, . . . , xn−1) 7−→ (x0, x`, x2`, . . . , xn−`)
.

That is, the map that keeps only the first entry of each block.

Definition 6 (Folding map). Let n be a positive integer such that ` divides n. The folding
map on Fn2 is the map obtained by summing up the components of each block:

ϕ` :

Fn2 −→ F
n
`
2

(x0, . . . , xn−1) 7−→
(
∑̀
i=0

xi,
2`−1∑
i=`

xi, . . . ,
n−1∑
i=n−`

xi

)
.

Equivalently, ϕ`
def
= Punct` ◦ (Id + σ` + · · ·+ σ`

`−1).

Definition 7 (Folded code). Given an `–quasi–cyclic code C ⊆ Fn2 , the folded code ϕ`(C) ⊆
F

n
`
2 is the image of C by the folding map.

8

— Internet: Portfolio 13

Definition 8 (Invariant code). Given an `–quasi–cyclic code C ⊆ Fn2 , the invariant code

C σ` ⊆ F
n
`
2 is the code composed of words fixed by σ` whose redundant entries have been

removed, i.e.

C σ` def
= Punct` ({c ∈ C | σ`(c) = c}) .

Remark 1. In the previous definitions, the map Punct` is always applied to invariant words,
i.e. words such that σ`(x) = x. Such words are constant on each block. Therefore, the use of
Punct` is only to remove repetitions. Actually one could have replaced Punct` by any map
that keeps one and only one arbitrary entry per block.

We recall a relation between folded and invariant code.

Proposition 3 ([Bar17]). If ` is odd (which always holds in the present proposal), then

ϕ`(C) = C σ` .

Example 3. If we reconsider the code in Example 1, then, we are in the context of the above
proposition, hence the invariant and the folding code are both equal to the code spanned by
the vector

(
1 0

)
which corresponds to apply Punct` on

(
1 1 1 0 0 0

)
.

2.7 Block–circulant matrices

Definition 9. Let ` be a positive integer. Let M be a matrix. The matrix is said to be
`–block–circulant if it splits into `× ` circulant blocks, i.e. blocks of the form

a0 a1 · · · · · · a`−1

a`−1 a0 · · · · · · a`−2
...

. . .
. . .

...
...

. . .
. . .

...
a1 a2 · · · a`−1 a0

2.8 Quasi–cyclic Goppa codes

There are several manners to construct `–QC Goppa codes. See for instance reference [Ber00b,
Ber00a].

In this proposal, we will consider `–QC binary Goppa codes for some prime integer `
constructed as follows. The exact constraints on ` are given in §3.1 and justified in §4.

• Let ` be a prime dividing 2m − 1. Let ζ` be a primitive `–th root of unity;

• Let n, t be positive integers divisible by ` and set r
def
= t

` ;

• The support x = (x0, . . . , xn−1) is a vector of elements of F2m whose entries are pairwise
distinct. It splits into n/` blocks of length ` of the form (xi`, xi`+1, . . . , x(i+1)`−1) such

that for any j ∈ {1, . . . , `− 1}, xi`+j = ζj`xi`. That is, the support is a disjoint union of
orbits under the action of the cyclic group generated by ζ`. From now on, such blocks
are referred to as ζ–orbits.

9

14 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

• The Goppa polynomial Γ(z) is chosen as Γ(z) = g(z`) for some monic polynomial
g ∈ F2m [z] of degree r = t/` such that g(z`) is irreducible.

Proposition 4. The Goppa code G (x,Γ) is `–QC.

2.9 QC–Goppa codes of interest in the present proposal

The `–QC Goppa codes we will consider are those which satisfy the following condition:

Condition 1. The quasi–cyclic code admits a parity–check of the form

H =
(
In−k |M

)

such that M is `–block–circulant.

For a given quasi–cyclic Goppa code it is unclear that such a property is verified. But we
observed that, after a possible blockwise permutation of the support (so that the resulting
code is still a quasi–cyclic Goppa code of order `) this property is in general satisfied by the
codes presented in §2.8. In Appendix A we give an algorithm to find a blockwise permutation
providing a quasi–cyclic code satisfying Condition 1. This may happen for instance if no
disjoint union of n−k

` blocks is an information set. Among the 5000 tests we ran on various
parameters, this situation never happened.

Remark 2. Of course, for Condition 1 to be satisfied, the dimension of the code should be
a multiple of `. This necessary condition is satisfied if the designed dimension of the Goppa
code n − m deg g(z`) equals the actual dimension (indeed, deg(g(z`)) = ` · deg(g)), which
almost always holds.

Definition 10. From now on, Goppa codes satisfying Condition 1 are referred to as System-
atic quasi–cyclic Goppa codes.

The choice of systematic quasi–cyclic codes instead of general quasi–cyclic codes is twofold.
First, it makes the security reduction to follow (see §2.10) less technical. Second, such matrices
permit to reduce optimally the public key size. Indeed, from such a matrix, (In−k | M), it
is sufficient to publish only the first row of each circulant block in M . Hence, this leads to a
public key size k × n−k

` . See §5 for further details.

Remark 3. Actually, in our reference implementation, we store the first column of each column
of blocks.

2.10 Difficult problems from coding theory

Definition 11 ((Search) `-Quasi–Cyclic Syndrome Decoding (`–QCSD) Problem). For posi-
tive integers n, t, `, a random parity check matrix H of a systematic `–quasi–cyclic code C of
dimension k and a uniformly random vector s ∈ Fn−k, the Search `-Quasi-Cyclic Syndrome
Decoding Problem `–QCSD(n, k, w) asks to find e = (e0, . . . , en−1) ∈ Fn2 of Hamming weight
t, and s> = H · e>.

It would be somewhat more natural to choose the parity-check matrix H to be made up
of independent uniformly random circulant submatrices, rather than with the special form
required by Condition 1. We choose this distribution so as to make the security reduction
to follow less technical. It is readily seen that, for fixed `, when choosing quasi-cyclic codes

10

— Internet: Portfolio 15

with this more general distribution, one obtains with non-negligible probability, a quasi-cyclic
code that satisfies Condition 1. Therefore requiring quasi-cyclic codes to be systematic does
not hurt the generality of the decoding problem for quasi-cyclic codes.

Assumption 2. Although there is no general complexity result for quasi-cyclic codes, decoding
these codes is considered hard. There exist general attacks which use the cyclic structure of
the code [Sen11] but these attacks have only a very limited impact on the practical complexity
of the problem. The conclusion is that in practice, the best attacks are the same as those for
non-circulant codes up to a small factor.

Definition 12 (Decisional Indistinguishability of Quasi–Cyclic Goppa Codes from Public
Key Sampling (DIQCG problem)). Given a random `–quasi–cyclic random code in systematic
form and an `–quasi–cyclic Goppa code, distinguish the two types of code.

Assumption 3. For parameters considered for our cryptosystem this problem is considered
hard, see Section 4 for further details on the best attacks in this case.

3 Presentation of the scheme

3.1 Notation

In what follows and until the end of the present document, we fix the following notation.

• m denotes a positive integer which refers to the extension degree of a field F2m . In our
reference implementation m = 12, 14, 16 or 18.

• ` denotes a prime primitive integer which divides 2m − 1. By primitive we mean that
` is prime and 2 generates the cyclic group Z/`Z× of nonzero elements in Z/`Z. The
rationale behind this requirement will be explained in § 5.1.

• ζ` denotes a primitive `–th root of the unity in F2m .

• n denotes a positive integer n < 2m − 1 which refers to the length of a code. It should
be an integer multiple of `.

• x = (x0, . . . , xn−1) denotes the support of the Goppa code. It has length n and splits
into n

` blocks of length ` such that each block is composed of elements in geometric
progression. That is to say:

(x0, x1, . . . , x`−1) = (x0, ζ`x0, ζ
2
` x0, . . . , ζ

`−1
` x0),

and more generally,

∀a ∈
{

0, . . . ,
n

`
− 1
}
, (xa`, xa`+1, . . . , x(a+1)`−1) = (xa`, ζ`xa`, ζ

2
` xa`, . . . , ζ

`−1
` xa`).

• g(z) ∈ F2m [z] denotes a polynomial and the Goppa polynomial of our QC–Goppa codes
will be g(z`).

• r denotes the degree of g(z) and t = r` denotes the degree of the Goppa polynomial
g(z`). Notice that the design minimum distance of this Goppa code is 2t+ 1, therefore,
t also denotes the error correcting capacity of the code.

• σ` denotes the `-th quasi–cyclic shift (see Definition 4).

11

16 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

3.2 Key generation

Consider an `–QC Goppa code of length n and dimension k with ` dividing n, k and satisfying
Condition 1. Let H be a systematic parity–check matrix for this code:

H = (In−k |M) (1)

where M is an `–blocks–circulant matrix.

Definition 13. Given a matrix H as in (1), we define ψ(H) as the matrix obtained from M
by extracting only the first row of each block. That is, ψ(H) is obtained by stacking rows of
M with indexes 0, `, 2`, . . . , (n− k)− `.

Note that H is entirely determined by ψ(H).

• Public key The matrix ψ(H).

• Secret key The support x and the Goppa polynomial Γ(z) = g(z`).

More precisely, Algorithm 1 describes the full key generation algorithm. This algorithm
calls Algorithm 3, described in Appendix A. Algorithm 3, performs block–Gaussian elimi-
nation on an input matrix H0 and, if succeeds, returns a pair (H, τ) where H denotes a
systematic block–circulant matrix and τ denotes the permutation on blocks applied on H0

in order to get the systematic form H.

Algorithm 1: Full key generation algorithm

Input : Positive integers `, t = `r, n, m such that `|n
Output: The public and secret key

1 while TRUE do
2 g(z) ← Random monic polynomial in F2m [z] of degree r such that g(z`) is

irreducible;
3 u0, . . . , un

`
−1 ← random elements of F2m such that for any pair

i, j ∈ {0, . . . , n` − 1} with i 6= j and any s ∈ {0, . . . , `− 1}, we have ui 6= ζs`uj ;

4 x ← (u0, ζ`u0, ζ
2
` u0, . . . , ζ

`−1
` u0, u1, ζ`u1, . . . , ζ

`−1
` un

`
−1);

5 H0 ← parity–check matrix of G
(
x, g(z`)

)
;

6 if Algorithm 3 returns FALSE (See Appendix A, page 29) then
7 Go to line 2 ;
8 end
9 else

10 H, τ ← output of Algorithm 3;
11 x← τ(x);
12 break ;

13 end

14 end
15 Public key ← (ψ(H), t) (see Definition 13);

16 Secret key ← (x, g(z`)).

12

— Internet: Portfolio 17

3.3 Description of the public key encryption scheme

3.3.1 Context

• Bob has published his public key (ψ(H), t). His secret key is denoted as the pair
(x, g(z`)).

• One uses a hash function H. In the reference implementation, we used SHA3;

Suppose Alice wants to send an encrypted message to Bob using Bob’s public key. The
plaintext is denoted by m ∈ Fs2 where s is a parameter of the scheme.

3.3.2 Encryption

(1) e is drawn at random among the set of words of weight t in Fn2 .

(2) Alice sends c← (m⊕H(e), H · e>) to Bob.

3.3.3 Decryption

(1) Bob received (c1, c2).

(2) Using his secret key, Bob computes e ∈ Fn2 as the word of weight 6 t such that c2 = H ·e>.

(3) Bob computes m← c1 ⊕H(e).

3.4 Description of the KEM

3.4.1 Context

Alice and Bob want to share a common session secret key K. Moreover,

• Bob publishes his public key (ψ(H), t). His secret key is denoted as the pair (x, g(z`)).

• One uses a hash function H. In the reference implementation, we used SHA3.

• To perform a KEM, we need to de–randomize the PKE. This requires the use of a
function F : {0, 1}∗ → {x ∈ Fn2 | wH(x) = t} taking an arbitrary binary string as input
and returning a word of weight t. The construction of this function is detailed further
in § 3.4.4.

• We also introduce a security parameter s which will be the number of bits of security.
That is, s = 128 (resp. 192, resp. 256) for a 128 (resp. 192, resp. 256) bits security
proposal, i.e. for NIST security Levels 1, resp. 3, resp. 5.

3.4.2 Key encapsulation mechanism

(1) Alice generates a random m ∈ Fs2;

(2) e← F(m);

(3) Alice sends c← (m⊕H(e),H · eT ,H(m)) to Bob;

(4) The session key is defined as:
K ← H(m, c).

13

18 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

3.4.3 Decapsulation

(1) Bob received c = (c1, c2, c3);

(2) Using his secret key, Bob can find e′ of weight 6 t such that c2 = H · e′T ;

(3) Bob computes, m′ ← c1 ⊕H(e′);

(4) Bob computes e′′ = F(m′).

(5) If e′′ 6= e′ or H(m′) 6= c3 then abort.

(6) Else, Bob computes the session key:

K ← H(m′, c).

3.4.4 The function F
The function F takes an arbitrary binary string as input and returns a word of length n and
weight t. The algorithm is rather simple. Here again, the function depends on the choice of
a hash function H. In our reference implementation, we chose SHA3.

The construction of the constant weight word, is performed in constant time using an
algorithm close to Knuth’s algorithm which generates a uniformly random permutation of
the set {0, . . . , n− 1}. Here, the randomness is replaced by calls of the hash function H. The
algorithm of evaluation of F is detailed in Algorithm 2.

Algorithm 2: Function F : construction of a word of weight t

Input : A binary vector m, integers n, t
Output: A word of weight t in Fn2

1 u← (0, 1, 2, . . . , n− 2, n− 1);
2 b←m;
3 for i from 0 to t− 1 do
4 j ← H(b) mod (n− i− 1);
5 Swap entries ui and ui+j in u;
6 b← H(b);

7 end
8 e ← vector with 1’s at positions u0, . . . , ut−1 and 0’s elsewhere;
9 return e

Further details about line 4 Actually the step j ← H(b) mod (n − i − 1) should be
detailed. If the hash function H outputs 256 or 512 bit strings, converting this string to a
big integer and then reducing modulo (n − i − 1) would be inefficient. Hence, the approach
consists in

Step 1. truncating H(b) to a string of s bytes, where s is larger than the byte size of n. In
our proposal, n < 214, hence taking s = 3 is reasonable and is the choice of our
reference implementation.

Step 2. convert this s–bytes string to an integer A:

14

— Internet: Portfolio 19

(a) If A > 28s− (28s mod n− i−1) then go to Step 1 (this should be done to assert
a uniformity of the drawn integers in {0, . . . , n− i− 2});

(b) else set j = A mod (n− i− 1)

Remark 4. Because of Sub-step (2a), we cannot make sure the evaluation of F is done in
constant time, which could represent a weakness (in terms of side channel attacks). To
address this issue, first notice that the probability that Sub-step 2a happens is low, and can
be reduced significantly by increasing s. Second, one can get almost constant time by finishing
the evaluation of F by performing a small number of fake evaluations of H to guarantee a
constant number of calls of H with a high probability. This precaution is not implemented in
our reference implementation.

3.5 Semantic security

3.5.1 IND-CPA security of the PKE

Theorem 4. Under the Decisional indistinguishability of QC Goppa from Public Key Sam-
pling (DIQCG problem), and the `–QCSD Problem, the encryption scheme presented above
in indistinguishable against Chosen Plaintext Attack in the Random Oracle Model.

Proof. We are going to proceed in a sequence of games. The simulator first starts from the
real scheme. First we replace the public key matrix by a random element, and then we use
the ROM to solve the `–QCSD.

We denote the ciphertext of the PKE by c = (c1, c2) and recall that c1 = m⊕H(e) and
c2 = H · e>.

We start from the normal game G0: We generate the public key H honestly, and e and
c1 also.

• In game G1, we now replace H by a random block–circulant systematic matrix, the rest
is identical to the previous game. From an adversary point of view, the only difference is
the distribution on H, which is either generated at random, or as a quasi–cyclic Goppa
parity–check matrix. This is exactly the DIQCG problem, hence

AdvG0
A 6 AdvG1

A + AdvDIQCG
A

• In game G2, we now proceed as earlier except we replace H(e) by random. It can be
shown, that by monitoring the call to the ROM, the difference between this game and
the previous one can be reduced to the `–QCSD problem, so that:

AdvG1
A 6 2−λ + 1/qG · Adv`−QCSD

A ,

where qG denotes the number of calls to the random oracle.

• In a final game G3 we replace c1 = m ⊕ Rand by just c1 = Rand, which leads to the
conclusion.

15

20 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

• Setup(1λ): as before, except that s will be the length of the symmetric key being
exchanged, typically s = 128, 192, or 256.

• KeyGen(param): exactly as before.

• Encapsulate(pk): generatea m
$← Fs (this will serve as a seed to derive the shared

key). Derive the randomness θ ← G(m). Generate the ciphertext c ← (u,v) =
E .Encrypt(pk,m, θ), and derive the symmetric key K ← K(m, c). Let d ← H(m),
and send (c,d).

• Decapsulate(sk, c,d): Decrypt m′ ← E .Decrypt(sk, c), compute θ′ ← G(m′), and
(re-)encrypt m′ to get c′ ← E .Encrypt(pk,m′, θ′). If c 6= c′ or d 6= H(m′) then
abort. Otherwise, derive the shared key K ← K(m, c).

aSymbol “
$←” means “uniformly random element of”.

Figure 2: Description of our proposal KEM.

3.5.2 Conversion to an IND-CCA2 KEM/DEM

Let E be an instance of the public key encryption scheme defined in § 3.3. Let G, H, and K
be hash functions, in our implementation, we chose SHA3. The KEM–DEM version of the
system cryptosystem is defined as follows:

According to [HHK17], the KEM-DEM version of our PKE is IND–CCA2.

4 Known attacks and counter–measures

We split this section in two parts : key-recovery attacks and message recovery attacks.

4.1 Key recovery attacks

For classical Goppa codes G (x,Γ), a naive brute force key recovery attack consists in enu-
merating all the possible irreducible polynomials of degree t. In [FOP+16b, FOP+16a] and
then in [Bar17], it has been proved that the security of quasi–cyclic Goppa codes (and more
generally quasi–cyclic alternant codes) reduces to that of the invariant code (see Definition 8).
Moreover, we have the following result.

Theorem 5 ([FOP+16a, Bar17]). Let G
(
x, g(z`)

)
be a QC–Goppa code. Then,

G
(
x, g(z`)

)σ`
= G

(
Punct`(x

`), g(z)
)

where
x`

def
= (x`0, x

`
1, . . . , x

`
n−1)

and the map Punct` is defined in Notation 1 page 8.

This result is crucial for the security analysis. Indeed, since the public key permits to
construct the Goppa code G

(
x, g(z`)

)
, anybody can compute the invariant code, which is a

Goppa code too. Moreover, as soon as the structure of the Goppa code is recovered, lifting
to the quasi–cyclic Goppa code is possible. See [FOP+16a].

16

— Internet: Portfolio 21

4.1.1 Exhaustive search on Goppa Polynomials and supports

A brute force attack could consist in enumerating all the possible polynomials g(z`) of
G
(
x, g(z`)

)
. Then guess the support as a disjoint union of ζ`–orbits, i.e. a disjoint union of

ordered sets of the form (a, ζ`a, ζ
2
` a, . . . , ζ

`−1
` a) (see § 2.8). If we guessed the good support

as a non-ordered set, it is possible to get the good permutation using Sendrier’s Support
Splitting Algorithm (SSA in short, [Sen00]). If it fails, then try with another support defined
as a union of ζ–orbits until the good ordering of the support is obtained thanks to SSA.

Actually, this brute force approach can be done on the invariant code and then a lift
operation permits to recover the public code. Hence we can proceed as follows.

• Perform brute force search among monic irreducible polynomials g(z) of degree r;

• Guess the support Punct`(x
`) = Punct`(x

`
0, x

`
1, . . . , x

`
n−1). Note that the elements of

the support set are `–th power. Hence there exists only 2m−1
` such powers and we need

to guess a good subset of length n
` among them.

• Perform SSA to check whether the support set is the good one and, if it is, get the
permutation and hence the ordered support;

• Deduce from this data the actual Goppa polynomial g(z`) and the good support by
extracting `–th roots, here again, the way to find the blockwise good ordering of the
elements of the support can be done using either SSA or by solving a linear system.

Thus, let us estimate the maximum number of guesses we need to perform. We need to
count the number of monic polynomials g(z) ∈ F2m [z] of degree r such that g(z`) is irreducible.

Set
sr(2

m)
def
= #{g(z) ∈ F2m [z] | deg(g) = r and g(z`) is irreducible}.

Remind that the number mr(2
m) of possible g’s, i.e. of monic irreducible polynomials of

degree r in F2m [z] is given by the well–known formula:

mr(2
m) =

1

r

∑

d|r
µ(d)2

mr
d , (2)

where µ(·) denotes the Möbius function defined as

µ(r)
def
=

∑

16k6r

gcd(k,r)

e2iπ k
r . (3)

Remark 5. Asymptotically mr(2
m) ∼ 2mr

r ·
Lemma 6.

sr(2
m) >

(
1− 1

`

)
mr(2

m).

The proof of Lemma 6 is given in Appendix C, where a more precise formula is given for
sr(2

m). Consequently, the number of public keys is bounded below by the quantity

#public keys >
(

1− 1

`

)
mr(2

m). (4)

17

22 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Remark 6. Actually the number of public keys is much larger since we did not consider the
fact that the support of the code need not be the whole F2m \ {0} and hence to estimate the
actual number of keys, we need to estimate the number of all the pairs (x, g(z`)) where x
denotes the support. Then, study the action of the affine group on this set and consider a
system of representatives. The point is that for a full support (i.e. the set of elements of the
support is F2m \{0}) two distinct Goppa polynomials give two distinct codes and hence there
are at least as many keys as sr(2

m).

4.1.2 Distinguisher on the invariant code

In [FGO+10], it is proved that high rate Goppa codes are distinguishable from random ones
in polynomial time. To assert the security of the system, the public Goppa code and the
invariant code should be indistinguishable from random ones. Hence, the parameters of the
code should be chosen in order to be out of the reach of this distinguisher.

The following statement rephrases the results of [FGO+10] in a simpler manner.

Proposition 7. Consider an irreducible binary Goppa code of length n, extension degree m,
associated to an irreducible polynomial of degree r. Then the Goppa code is distinguishable in
polynomial time from a random code of the same length and dimension as soon as

n > max
26s6r

ms

2
(s(m− 2e− 1) + 2e + 2) ,

where e = dlog2 se+ 1.

4.1.3 Algebraic cryptanalysis

The point of such an attack is to recover the structure of the Goppa code. Namely, the
support x and the Goppa polynomial g(z`).

The algebraic modeling AX,Y ′ proposed in [FOP+16b] consists in k
` (t−1) equations in n

`−2

variables X and n
` − k

` variables Y , that are bi-homogeneous in the X’s and Y ’s variables (a
polynomial f is bi-homogeneous of bi-degree (d1, d2) if f(αX, βY) = αd1βd2f(X,Y) ∀(α, β) ∈
F2). For each 1 6 u 6 t − 1, there are k

` equations of bi-degree (u, 1) in the modeling. And
as the Goppa codes considered are binary Goppa codes, even more equations may be added.
The system McEX,Y ′ in [FOP+16b] contains k

` equations of bi-degree (u, 1) for 1 6 u 6 t and
k
` equations of bi-degree (u, 2) for 1 6 u 6 2t− 1.

Exhaustive search on the Xi’s or Yi’s From the algebraic system we can extract a
bilinear system in the Xi’s and the Yj ’s. A possible attack is to perform an exhaustive search
for one of the Xi’s or Yj ’s, and solve a linear system for the others. The number of unknowns
is at least n

` − k
` − 2 = mt

` − 2 (after specialization of 1 or 2 values for X and Y) and the

cost of the search is asymptotically 2m(mt
`
−2). The bit complexity is m(mt` − 2) which is large

enough.

Solving by Groebner basis algorithms A good indicator for the complexity of Groeb-
ner basis algorithms is the index of regularity of the ideal (denoted by dreg), since in the
homogeneous case it is a bound on the degree of the polynomials in the minimal Groebner
basis of the system. For zero-dimensional ideal, the Hilbert series of the ideal is a polynomial,

18

— Internet: Portfolio 23

and the index of regularity is the degree of this polynomial plus 1. This means that during
the computation of a Groebner basis, we will have to compute polynomials that may possibly
have as many monomials as the number of monomials of degree dreg, which is

(n+dreg
dreg

)
for

polynomials in n variables.
It has been shown in [BFS04, Bar04] that, if the system of generators of the ideal form a

semi–regular sequence of s polynomials of degree d1, . . . , ds in n variables, then the Hilbert

series is given by
[∏s

i=1(1−zdi)
(1−z)n

]+
where

[∑
i>0 aiz

i
]+

is the series
∑

i>0 aiz
i truncated at the

least index i such that ai 6 0.
We show that for the parameters we propose, if the algebraic system from [FOP+16b]

where semi–regular (we know it is not), the index of regularity would be large, and that even
if the index of regularity of the algebraic system would be small, the size of the polynomials
in this degree is beyond the security level.

4.1.4 Algebraic attacks on the invariant code

The cost of such attacks is the most difficult to estimate for many reasons:

• The choice of the algebraic modeling, i.e. the polynomial system we have to solve by
Groebner bases methods is not unique. We will suggest here some modeling which have
been proposed in the literature but cannot assert that they are the only possible model
lings;

• The choice of the monomial ordering has no influence on the theoretical complexity in
the worst case, but may have a significant influence on practical complexities.

• Theoretical results on the complexity of Groebner bases suppose the polynomial system
to be semi–regular which is not true for the algebraic systems to follow.

• Hence, we provide an analysis of the possible work factor but this approach requires a
more thorough study.

4.2 Message recovery attacks

4.2.1 Generic decoding algorithms

Resistance to ISD and their variants. See Christiane Peters’ software [Pet10]. We provide
here an improve version of her software called CaWoF (for Calculate Work Factor) [CT16],
which tests all the most efficient generic decoding algorithms. Namely:

• Prange [Pra62];

• Stern [Ste88];

• Dumer [Dum91];

• May, Meurer, Thomae [MMT11];

• Becker, Joux, May, Meurer [BJMM12].

19

24 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

4.2.2 About the influence of quasi–cyclicity

Decoding one out of many The `–quasi–cyclicity of the code may be used to improve
the efficiency of the decoding using Sendrier’s Decoding One out Of Many (DOOM, [Sen11]).
Such approach permits to improve the efficiency by a factor

√
`. Since in our proposal the

largest proposed ` is 19, the use of DOOM may in the best case provide a less than 5 bits
reduction of the work factor. Note that it is possible that this gain will be undermined by
the practical complexity of a DOOM implementation. In § 5.3, we choose parameters so that
the work factors provided by CaWoF (which does not take DOOM into account) are at least
1 bit above the limit for ` = 3, 2 bits above the limit for ` = 5 and 13, and 3 bits above the
limit for ` = 19. For any of our , we looked 3 bits security for 3–QC codes, 4 for 5, 11, 13–QC
codes and 5 for 17–QC codes

An attack based on folding There is also another way to use the quasi-cyclicity for
performing message recovery attacks. It consists in using the folding. Let ϕ` be the folding
operation (see Definition 6). Assume that we want to decode y = c + e where c belongs to

the quasi-cyclic Goppa code C
def
= G

(
x, g(z`)

)
of a certain length n and e is an error of weight

t. We clearly have
ϕ`(y) = ϕ`(c) + ϕ`(e)

where ϕ`(c) belongs to ϕ`(C) which is the Goppa code G
(
Punct`(x

`), g(z)
)

by Theorem 5.
Each coordinate of ϕ`(e) is a sum of ` coordinates of e. By the piling up lemma (see for
instance [Mat93])

E {|ϕ`(e)|} =
n(1− (1− 2p)`)

2`
, (5)

where p
def
= t

n . We have

n(1− (1− 2p)`)

2`
≈ n(2`p− 2`(`− 1)p2

2`

≈ t− (`− 1)
t2

n
.

Let

t′ def
= bt− (`− 1)

t2

n
c.

In other words, our task is to decode ϕ`(y) for about t′ errors in a Goppa code of length n/` and
degree r = deg g. If t′ happens to be below the Gilbert-Varshamov distance dGV

(
n
` ,

n
` − rm

)

corresponding to the length n
` and dimension n

` − rm, then we expect that there is typically
a single solution to the decoding problem and that it corresponds to the folding of e. Recall
that this distance is defined by:

Definition 14 (Gilbert-Varshamov distance). Let h(x)
def
= −x log2(x)− (1−x) log2(1−x) be

the binary entropy function and h−1 be its inverse ranging over [0, 1
2]. The Gilbert Varshamov

distance dGV(n, k) of a code of length n and dimension k is defined by

dGV(n, k)
def
= n · h−1

(
1− k

n

)
.

20

— Internet: Portfolio 25

We can hope to find ϕ`(e) by decoding ϕ`(C) with generic decoding techniques. It turns
out that we gain in the complexity of decoding when we have to decode the folded code
instead of decoding the original code with generic decoding techniques. Once we have the
folding ϕ`(e) of the error we can use this information to perform decoding of the original code
C by puncturing all the positions in a block which corresponds to a position in the support
of ϕ`(e). We erase at least t′ errors belonging to the support of e in this way. There remains

about t − t′ ≈ (` − 1) t
2

n errors which can be recovered by generic decoding techniques. We
will chose our parameters in order to avoid this case. We namely choose our parameters so
that

dGV(n′, k′) < t′.

The best strategy for an attack in the latter case seems to be

1. hope that the folded error has a certain prescribed weight s;

2. compute all possible errors e′ in Fn′
2 of weight s that have the same syndrome as ϕ`(y);

3. Puncture for each such error the s blocks of C that belong to the support of e′. Decode
the punctured code for at most t− s errors.

The attack is then optimized over the choices of s.

4.3 Exploiting Quantum Computations.

Recall first that the NIST proposes to evaluate the quantum security as follows:

1. A quantum computer can only perform quantum computations of limited depth. They
introduce a parameter, MAXDEPTH, which can range from 240 to 296. This accounts
for the practical difficulty of building a full quantum computer.

2. The amount (or bits) of security is not measured in terms of absolute time but in the
time required to perform a specific task.

Regarding the second point, the NIST presents 6 security categories which correspond to
performing a specific task. For example Task 1, related to Category 1, consists of finding the
128 bit key of a block cipher that uses AES-128. The security is then (informally) defined as
follows:

Definition 15. A cryptographic scheme is secure with respect to Category k iff any attack
on the scheme requires computational resources comparable to or greater than those needed
to solve Task k.

In the sequel we will estimate that our scheme reaches a certain security level according
to the NIST metric and show that the attack takes more quantum resources than a quantum
attack on AES. We will use for this the following proposition.

Proposition 8. Let f be a Boolean function which is equal to 1 on a fraction α of inputs
which can be implemented by a quantum circuit of depth Df and whose gate complexity is Cf .
Using Grover’s algorithm for finding an input x of f for which f(x) = 1 can not take less
quantum resources than a Grover’s attack on AES-N as soon as

Df · Cf
α

> 2NDAES−N · CAES−N

21

26 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

where DAES−N and CAES−N are respectively the depth and the complexity of the quantum
circuit implementing AES-N.

This proposition is proved in Appendix B. The point is that (essentially) the best quantum
attack on our scheme consists in using Grover’s search on either the message attacks or the
key recovery attacks where Grover’s search can be exploited. The message attacks consist
essentially in applying Grover’s algorithm on the information sets computed in Prange’s
algorithm (this is Bernstein’s algorithm [Ber10]). Theoretically there is a slightly better
algorithm consisting in quantizing more sophisticated ISD algorithms [KT17], however the
improvement is tiny and the overhead in terms of circuit complexity make Grover’s algorithm
used on top of the Prange algorithm preferable in our case.

5 Parameters

In this section we propose some parameters for various security levels. We start with informal
discussions which explain in which range we choose our parameters.

5.1 Choice of the quasi–cyclicity order `

The quasi–cyclicity order guarantees the reduction of the key size compared to non quasi–
cyclic Goppa codes. The larger the ` the smaller the public key.

On the other hand, too large `’s may lead to algebraic attacks such as [FOPT10, FOP+16b,
FOP+16a]. In addition we suggested in § 3, that ` should be prime and primitive, which means
that 2 generates (Z/`Z)×, or equivalently that the polynomial 1 + z+ · · ·+ z`−1 is irreducible
in F2[z]. The motivation for this property is to limit the possibilities for the attacker to
construct intermediary codes which could help to build an attack. Therefore

• ` should be prime since if not, for any e|`, then the code G
(
x, g(z`)

)
is also e–quasi–

cyclic and one can construct an intermediary invariant code G
(
x, g(z`)

)σ`e which is

nothing but G
(
xe, g(z

`
e)
)

. Thus, it is possible to construct an intermediary code from

the single knowledge of a generator matrix of the public code and this intermediary
code is a smaller Goppa code with a Goppa polynomial and support strongly related to
the public code.

Of course, we cannot avoid that an attacker can compute the invariant code, but we
guess that having the possibility to build intermediary Goppa codes would be a help for
the attacker, hence we reject this possibility by requiring ` to be prime.

• ` should be primitive Indeed, in [FOP+16a], from a public Goppa code, the authors
consider the folded code (see Definition 7), This folding is nothing but the image of the
code by the map id + σ` + σ`

2 + · · · + σ`
`−1. In the same manner, if the polynomial

1 + z + · · · + z`−1 is reducible over F2, then, for any divisor P (z) of this polynomial,
one can construct an intermediary quasi–cyclic subcode of the public code, which is the
image of G

(
x, g(z`)

)
by the map P (σ`). This code is not a Goppa code in general but

we guess that its structure could be helpful for an attacker. Therefore, we exclude this
possibility by requiring ` to be primitive. Among the odd prime numbers below 20, the
primitive ones are

` ∈ {3, 5, 11, 13, 19}

22

— Internet: Portfolio 27

In particular we exclude 7 and 17.

Remark 7. At several places in the discussion above we suggest that having some data could
“help an attacker”. We emphasize that these arguments are only precautions, we actually do
not know how to use such data for cryptanalysis. In particular, the choice of ` to be primitive
is more a precaution than a necessary condition for the security.

5.2 Choice of the field extension m

To provide a binary Goppa code, we first need to choose a finite extension F2m of F2. Let us
first discuss the choice of m.

Informal discussion on m

By informal, we mean that, for the moment, we do not clarify what we mean by large or
small.

(i) A large m provides codes which are “far from” generalized Reed–Solomon codes. Hence,
when m is large Goppa codes have less structure. Note that q–ary Goppa codes with
m = 2 have been broken by a polynomial-time distinguishing and filtration attack
in [COT17] and that rather efficient algebraic attacks for small m (m = 2 or 3) over
non prime q–ary fields exist [FPdP14]. This encourages to avoid too low values of m.
In addition, m should be large enough to have a large enough code length.

(ii) On the other hand m should not be too large since it has a negative influence on the
rate of the code. That is to say, for a fixed error correcting capacity t an a fixed code
length n, the dimension is n−mt, hence the rate is 1−m t

n .

(iii) Finally, to get `–quasi–cyclic codes, ` should divide 2m − 1 (see § 2.8) and ` should
not be too large to prevent algebraic attacks as [FOPT10, FOP+16b, FOP+16a]. Thus,
2m − 1 should have small factors.

In this proposal we suggest that a good tradeoff between (i) and (ii) would be m ∈ {12, . . . , 18}
To seek for `’s, let us factorize the corresponding 2m − 1’s.

• F212 : 212 − 1 = 32 · 5 · 7 · 13.

• F213 : 213 − 1 is prime.

• F214 : 214 − 1 = 3 · 43 · 127.

• F215 : 215 − 1 = 7 · 31 · 151.

• F216 : 216 − 1 = 3 · 5 · 17 · 257.

• F217 : 217 − 1 is prime.

• F218 : 218 − 1 = 33 · 7 · 19 · 73.

This immediately excludes m = 13 and 17. To prevent algebraic attacks, we prefer avoiding
`’s larger than 20 and, as explained above and since we look only for primitive `’s our proposal
will focus on

23

28 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

• 3, 5 and 13–quasi–cyclic Goppa codes with m = 12 (only for security Level 1, i.e.
AES128)

• 3–quasi–cyclic Goppa codes with m = 14 (for Levels 2 and 3, i.e. respectively AES192
and AES256)

• 5–quasi–cyclic Goppa codes with m = 16 (for Levels 2 and 3)

• 19–quasi–cyclic Goppa codes with m = 18. (for Levels 2 and 3)

5.3 Proposition of parameters

In the following tables we use notation

• m : extension degree of the field of definition of the support and Goppa polynomial
over F2;

• n length of the quasi–cyclic code;

• k dimension of the quasi–cyclic code;

• ` denotes the order of quasi–cyclicity of the code;

• r denotes the degree of g(z);

• t denotes error–correcting capacity, which is nothing but the degree of g(z`);

• wmsg work factor for message recovery errors. It is computed using CaWoF library;

• Keys is a lower bound for the number of possible Goppa polynomials (see (4));

• Max Dreg denotes the maximal degree of regularity that such a system could have
in order that the size of the Macaulay matrix does not exceed 2128 bits under the
assumption that Gaussian elimination’s cost on n× n matrices is Ω(n2).

5.3.1 Parameters for reaching NIST security level 1 (AES128)

m n k ` Size r t = r` wmsg Keys Max
(bytes) (deg g(z`)) Dreg

12 3600 2664 3 103896 26 78 129 1027 8

12 3500 2480 5 63240 17 85 130 684 9

12 3510 2418 13 25389 7 91 132 263 11

5.3.2 Parameters for reaching NIST security level 3 (AES192)

m n k ` Size r t = r` wmsg Keys Max
(bytes) (deg g(z`)) Dreg

14 6000 4236 3 311346 42 126 193 5751 11

16 7000 5080 5 243840 24 120 195 6798 12

18 7410 4674 19 84132 8 152 195 2696 16

24

— Internet: Portfolio 29

5.3.3 Parameters for reaching NIST security level 5 (AES256)

m n k ` Size r t = r` wmsg Keys Max
bytes (deg g(z`)) Dreg

14 9000 7110 3 559913 45 135 257 6039 14

16 9000 6120 5 440640 36 180 260 8129 15

18 10070 6650 19 149625 10 190 263 3412 20

6 Implementation

6.1 Reference implementation

We provide a reference implementation of the public key encryption scheme converted into a
key encapsulation mechanism. That is to say, our implementation performs the encapsulation
and decapsulation mechanism as described in § 3.4.2 and 3.4.3.

We remind that the hash function used in the reference implementation is SHA3.

6.2 Optimized implementation

Is the same as the reference implementation.

7 Performance Analysis

The platform used in the experiments was equipped with an Intel R© XeonTM E3-1240 v5
clocked at 3.50GHz with 32 GB of RAM and 8 MB of cache. The operating system is 64 bits
Linux. The program was compiled with gcc using the -O4 optimization option.

For the performance (and for the KAT in the next section) we selected three sets of
parameters corresponding respectively to the security levels 1, 3, and 5.

• BIG QUAKE 1, corresponding to (m,n, `, t) = (12, 3510, 13, 91).

• BIG QUAKE 3, corresponding to (m,n, `, t) = (18, 7410, 19, 152).

• BIG QUAKE 5, corresponding to (m,n, `, t) = (18, 10070, 19, 190).

7.1 Running time in Milliseconds

BIG QUAKE 1 BIG QUAKE 3 BIG QUAKE 5

Key Generation 268 2 469 4 717
Encapsulation 1.23 3.00 4.46
Decapsulation 1.41 9.11 13.7

7.2 Space Requirements in Bytes

BIG QUAKE 1 BIG QUAKE 3 BIG QUAKE 5

Public Key 25 482 84 132 149 800
Secret Key 14 772 30 860 41 804
Ciphertext 201 406 492

25

30 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

8 Known Answer Tests – KAT

The KAT file are available in the submission package for BIG QUAKE 1, BIG QUAKE 3, and
BIG QUAKE 5:

• KAT/PQCkemKAT BIG QUAKE 1.req

• KAT/PQCkemKAT BIG QUAKE 1.rsp

• KAT/PQCkemKAT BIG QUAKE 3.req

• KAT/PQCkemKAT BIG QUAKE 3.rsp

• KAT/PQCkemKAT BIG QUAKE 5.req

• KAT/PQCkemKAT BIG QUAKE 5.rsp

For each KAT we generated 10 samples.

References

[Bar04] Magali Bardet. Étude des systèmes algébriques surdéterminés. Applications aux
codes correcteurs et à la cryptographie. PhD thesis, Université Paris VI, December
2004. http://tel.archives-ouvertes.fr/tel-00449609/en/.

[Bar17] Élise Barelli. On the security of some compact keys for McEliece scheme. In
WCC Workshop on Coding and Cryptography, September 2017.

[BCGO09] Thierry P. Berger, Pierre-Louis Cayrel, Philippe Gaborit, and Ayoub Otmani.
Reducing key length of the McEliece cryptosystem. In Bart Preneel, editor,
Progress in Cryptology - AFRICACRYPT 2009, volume 5580 of LNCS, pages
77–97, Gammarth, Tunisia, June 21-25 2009.

[BCS13] Daniel J. Bernstein, Tung Chou, and Peter Schwabe. Mcbits: Fast constant-time
code-based cryptography. In Guido Bertoni and Jean-Sébastien Coron, editors,
Cryptographic Hardware and Embedded Systems - CHES 2013, volume 8086 of
LNCS, pages 250–272. Springer, 2013.

[Ber00a] Thierry P. Berger. Goppa and related codes invariant under a prescribed permu-
tation. IEEE Trans. Inform. Theory, 46(7):2628–2633, 2000.

[Ber00b] Thierry P. Berger. On the cyclicity of Goppa codes, parity-check subcodes of
Goppa codes and extended Goppa codes. Finite Fields Appl., 6(3):255–281, 2000.

[Ber10] Daniel J. Bernstein. Grover vs. McEliece. In Nicolas Sendrier, editor, Post-
Quantum Cryptography 2010, volume 6061 of LNCS, pages 73–80. Springer, 2010.

[BFS04] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. On the complexity of
Gröbner basis computation of semi-regular overdetermined algebraic equations.
In Proceedings of the International Conference on Polynomial System Solving,
pages 71–74, 2004.

26

— Internet: Portfolio 31

[BJMM12] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding
random binary linear codes in 2n/20: How 1 + 1 = 0 improves information set
decoding. In Advances in Cryptology - EUROCRYPT 2012, LNCS. Springer,
2012.

[BLM11] Paulo Barreto, Richard Lindner, and Rafael Misoczki. Monoidic codes in cryp-
tography. In Post-Quantum Cryptography 2011, volume 7071 of LNCS, pages
179–199. Springer, 2011.

[BLP08] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Attacking and defending
the McEliece cryptosystem. In Post-Quantum Cryptography 2008, volume 5299
of LNCS, pages 31–46, 2008.

[COT17] Alain Couvreur, Ayoub Otmani, and Jean-Pierre Tillich. Polynomial time at-
tack on wild McEliece over quadratic extensions. IEEE Trans. Inform. Theory,
63(1):404–427, Jan 2017.

[CT16] Rodolfo Canto Torres. CaWoF, C library for computing asymptotic exponents
of generic decoding work factors, 2016. https://gforge.inria.fr/projects/cawof/.

[Dum91] Ilya Dumer. On minimum distance decoding of linear codes. In Proc. 5th Joint
Soviet-Swedish Int. Workshop Inform. Theory, pages 50–52, Moscow, 1991.

[FGO+10] Jean-Charles Faugère, Valérie Gauthier, Ayoub Otmani, Ludovic Perret, and
Jean-Pierre Tillich. A distinguisher for high rate McEliece cryptosystems. IACR
Cryptology ePrint Archive, Report2010/331, 2010. http://eprint.iacr.org/.

[FOP+16a] Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret, Frédéric de Portzamparc,
and Jean-Pierre Tillich. Folding alternant and Goppa Codes with non-trivial
automorphism groups. IEEE Trans. Inform. Theory, 62(1):184–198, 2016.

[FOP+16b] Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret, Frédéric de Portzamparc,
and Jean-Pierre Tillich. Structural cryptanalysis of McEliece schemes with com-
pact keys. Des. Codes Cryptogr., 79(1):87–112, 2016.

[FOPT10] Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret, and Jean-Pierre Tillich.
Algebraic cryptanalysis of McEliece variants with compact keys. In Advances in
Cryptology - EUROCRYPT 2010, volume 6110 of LNCS, pages 279–298, 2010.

[FPdP14] Jean-Charles Faugère, Ludovic Perret, and Frédéric de Portzamparc. Algebraic
attack against variants of McEliece with Goppa polynomial of a special form.
In Advances in Cryptology - ASIACRYPT 2014, volume 8873 of LNCS, pages
21–41, Kaoshiung, Taiwan, R.O.C., December 2014. Springer.

[Gab05] Philippe Gaborit. Shorter keys for code based cryptography. In Proceedings of the
2005 International Workshop on Coding and Cryptography (WCC 2005), pages
81–91, Bergen, Norway, March 2005.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the
Fujisaki-Okamoto transformation. In Theory of Cryptography Conference, pages
341–371. Springer, 2017.

27

32 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

[KT17] Ghazal Kachigar and Jean-Pierre Tillich. Quantum information set decoding
algorithms. preprint, arXiv:1703.00263 [cs.CR], February 2017.

[Mat93] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Advances in
Cryptology - EUROCRYPT’93, volume 765 of LNCS, pages 386–397, Lofthus,
Norway, May 1993. Springer.

[MB09] Rafael Misoczki and Paulo Barreto. Compact McEliece keys from Goppa codes.
In Selected Areas in Cryptography, Calgary, Canada, August 13-14 2009.

[McE78] Robert J. McEliece. A Public-Key System Based on Algebraic Coding Theory,
pages 114–116. Jet Propulsion Lab, 1978. DSN Progress Report 44.

[MMT11] Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random linear
codes in O(20.054n). In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in
Cryptology - ASIACRYPT 2011, volume 7073 of LNCS, pages 107–124. Springer,
2011.

[MS86] Florence J. MacWilliams and Neil J. A. Sloane. The Theory of Error-Correcting
Codes. North–Holland, Amsterdam, fifth edition, 1986.

[OTD10] Ayoub Otmani, Jean-Pierre Tillich, and Léonard Dallot. Cryptanalysis of two
McEliece cryptosystems based on quasi-cyclic codes. Special Issues of Mathemat-
ics in Computer Science, 3(2):129–140, January 2010.

[Pet10] Christiane Peters. Information-set decoding for linear codes over Fq. In Post-
Quantum Cryptography 2010, volume 6061 of LNCS, pages 81–94. Springer, 2010.

[Pra62] Eugene Prange. The use of information sets in decoding cyclic codes. IRE
Transactions on Information Theory, 8(5):5–9, 1962.

[Sen00] Nicolas Sendrier. Finding the permutation between equivalent linear codes: The
support splitting algorithm. IEEE Trans. Inform. Theory, 46(4):1193–1203, 2000.

[Sen10] Nicolas Sendrier. On the use of structured codes in code based cryptography. In
L. Storme S. Nikova, B. Preneel, editor, Coding Theory and Cryptography III,
pages 59–68. The Royal Flemish Academy of Belgium for Science and the Arts,
2010.

[Sen11] Nicolas Sendrier. Decoding one out of many. In Post-Quantum Cryptogra-
phy 2011, volume 7071 of LNCS, pages 51–67, 2011.

[SKHN76] Yasuo Sugiyama, Masao Kasahara, Shigeichi Hirasawa, and Toshihiko Namekawa.
Further results on Goppa codes and their applications to constructing efficient
binary codes. IEEE Trans. Inform. Theory, 22:518–526, 1976.

[Ste88] Jacques Stern. A method for finding codewords of small weight. In G. D. Cohen
and J. Wolfmann, editors, Coding Theory and Applications, volume 388 of LNCS,
pages 106–113. Springer, 1988.

[Zal99] Christof Zalka. Grover’s quantum searching algorithm is optimal. Phys. Rev. A,
60:2746–2751, October 1999.

28

— Internet: Portfolio 33

Appendix

A How to get systematic blockwise circulant parity check ma-
trix?

Note that Condition 1 page 10 is not necessarily satisfied. However, it is in general possible to
deduce from a general quasi–cyclic Goppa code another QC Goppa code satisfying this condi-
tion by applying a permutation preserving the quasi–cyclicity, i.e. a block–wise permutation.
Hence, we introduce a second condition

Condition 2. The quasi–cyclic code has an information set which is a disjoint union of
blocks.

Clearly, a quasi–cyclic code satisfying Condition 2 can provide after a blockwise permu-
tation a quasi–cyclic code satisfying Condition 1.

Algorithm 3, permits the computation of such a block–wise permutation if it exists. It
returns FALSE, if such a permutation is not found which happens for instance if Condition 2
is not satisfied. Applying this algorithm on quasi–cyclic Goppa codes as defined in § 2.8, then
after 5000 experiments on quasi–cyclic Goppa codes of various parameters, the algorithm
never returned FALSE.

As an input of the algorithm, we need a parity–check matrix H0 which is blockwise cir-
culant. More precisely, the rows of H0 are of the form c0, σ`(c0), . . . , σ`

`−1(c0), c1, σ`(c1), . . . ,
σ`
`−1(c1), . . . , cs, σ`(cs), . . . , σ`

`−1(cs). The matrix need not be full rank.

29

34 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Algorithm 3: Checking Condition 1

Input : A block–wise circulant parity–check matrix H0 ∈ F(n−k)×n
2 of an `–QC

Goppa code of length n and dimension k with `|n, k
Output: Returns FALSE if no block permutation is found. Else, returns TRUE

together with

• a blockwise permutation τ to get a systematic code;

• a systematic blockwise circulant parity–check matrix H of the permuted code.

1 Note. The Matrix H0 is split into `× ` square blocks. They are denoted by Bij for

0 6 i < n−k
` and 0 6 j < n

` . Similarly, the blocks of ` rows are denoted by Li and the
blocks of columns by Cj ;

2 τ ← Id (Identity permutation on {0, . . . , n− 1});
3 H ←H0;

4 for i from 0 to n−k
` − 1 do

5 if There exists t, i 6 t < n−k
` such that Bti is invertible then

6 B ← Bti;
7 Swap block–rows Li and Lt;
8 Li ← B−1Li;
9 Eliminate blocks below and above the (i, i)–th one by Gaussian elimination;

10 end

11 else if There exists t, i 6 t < n−k
` and j, i < j < n such that Btj is invertible then

12 Swap columns Ci and Cj in H;
13 τ ← τij ◦ τ (τij denotes the transposition of i, j);
14 Swap rows Li and Lt in H;
15 Li ← B−1Li;
16 Eliminate blocks below and above the (i, i)–th one by Gaussian elimination in

H;

17 end
18 else
19 return FALSE;
20 end

21 end
22 return TRUE, H, τ ;

B Proof of Proposition 8

Let us first recall the proposition we want to prove

Proposition 8. Let f be a Boolean function which is equal to 1 on a fraction α of inputs
which can be implemented by a quantum circuit of depth Df and whose gate complexity is Cf .
Using Grover’s algorithm for finding an input x of f for which f(x) = 1 can not take less
quantum resources than a Grover’s attack on AES-N as soon as

Df · Cf
α

> 2NDAES−N · CAES−N

30

— Internet: Portfolio 35

where DAES−N and CAES−N are respectively the depth and the complexity of the quantum
circuit implementing AES-N.

Proof. Following Zalka[Zal99], the best way is to perform Grover’s algorithm sequentially with
the maximum allowed number of iterations in order not to go beyond MAXDEPTH. Grover’s
algorithm consists of iterations of the following procedure:

• Apply U : |0〉|0〉 →∑
x∈{0,1}n

1
2n/2 |x〉|f(x)〉.

• Apply a phase flip on the second register to get
∑

x∈{0,1}n
1

2n/2 (−1)f(x)|x〉|f(x)〉.

• Apply U †.

If we perform I iterations of the above for I 6 1√
α

then the winning probability is upper

bounded by αI2. In our setting, we can perform I = MAXDEPTH
Df

sequentially before measuring,

and each iteration costs time Cf . At each iteration, we succeed with probability αI2 and we
need to repeat this procedure 1

αI2
times to get a result with constant probability. From there,

we conclude that the total complexity Q is:

Q =
1

αI2
· I · Cf =

Df · Cf
αMAXDEPTH

. (6)

A similar reasoning performed on using Grover’s search on AES-N leads to a quantum com-
plexity

QAES−N =
2NDAES−N · CAES−N

MAXDEPTH
. (7)

The proposition follows by comparing (6) with (7).

C Proof of Lemma 6

Remind that mr(2
m) denotes the number of irreducible polynomials of degree r in F2m [z] and

sr(2
m) denotes the number of irreducible polynomials of degree r such that g(z`) is irreducible.
Clearly for g(z`) to be irreducible g(z) should be irreducible too. Conversely, if g(z) is

irreducible, and g(z`) reducible, then the factorization of g(z`) is of the form

g(z`) =
`−1∏

i=0

h(ζiz) (8)

for some irreducible polynomial h. Remind that ζ denotes a primitive `–th root of unity in
F2m . Indeed, the finite subgroup of order ` of the affine group spanned by the map z 7→ ζz
acts on polynomials as f(z) 7→ f(ζz). Under this action, g(z`) is fixed, hence the polynomials
of its irreducible decomposition form an orbit under this action. Moreover, since ` is prime,
the orbit has size `.

Thus, the polynomials g(z) such that g(z`) is reducible has the form (8). The number of
such polynomials is bounded below by mr(2

m)/` which leads to

sr(2
m) >

(
1− 1

`

)
mr(2

m).

31

36 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Remark 8. Actually one could prove that sr(2
m) is defined by the following recursive formula:

sr(2
m) =

2m − 1 if r = 1
mr(2

m)(1− 1
`) if ` - r

mr(2
m)− 1

` (mr(2
m)− sr/`(2r)) else.

32

— Internet: Portfolio 37

BIKE:

Bit Flipping Key Encapsulation

Nicolas Aragon, University of Limoges, France

Paulo S. L. M. Barreto, University of Washington Tacoma, USA

Slim Bettaieb, Worldline, France

Loïc Bidoux, Worldline, France

Olivier Blazy, University of Limoges, France

Jean-Christophe Deneuville, INSA-CVL Bourges and University of Limoges, France

Philippe Gaborit, University of Limoges, France

Shay Gueron, University of Haifa, and Amazon Web Services, Israel

Tim Güneysu, Ruhr-Universität Bochum, and DFKI, Germany,

Carlos Aguilar Melchor, University of Toulouse, France

Rafael Misoczki, Intel Corporation, USA

Edoardo Persichetti, Florida Atlantic University, USA

Nicolas Sendrier, INRIA, France

Jean-Pierre Tillich, INRIA, France

Gilles Zémor, IMB, University of Bordeaux, France

38 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Submitters: The team listed above is the principal submitter. There are no
auxiliary submitters.

Inventors/Developers: Same as the principal submitter. Relevant prior work is
credited where appropriate.

Implementation Owners: Submitters, Amazon Web Services, Intel
Corporation.

Email Address (preferred): rafael.misoczki@intel.com

Postal Address and Telephone (if absolutely necessary):
Rafael Misoczki, Intel Corporation, Jones Farm 2 Building, 2111 NE 25th
Avenue, Hillsboro, OR 97124, +1 (503) 264 0392.

Signature: x. See also printed version of �Statement by Each Submitter".

1

— Internet: Portfolio 39

Contents

1 Introduction 4
1.1 Notation and Preliminaries . 4
1.2 Quasi-Cyclic Codes . 5

1.2.1 De�nition . 5
1.2.2 Representation of QC Codes 5

1.3 QC-MDPC Codes . 6
1.3.1 De�nition . 6
1.3.2 Decoding - The Bit Flipping Algorithm 6

1.4 Key Encapsulation Mechanisms . 10

2 Algorithm Speci�cation (2.B.1) 10
2.1 BIKE-1 . 11

2.1.1 KeyGen . 11
2.1.2 Encaps . 11
2.1.3 Decaps . 12

2.2 BIKE-2 . 12
2.2.1 KeyGen . 12
2.2.2 Encaps . 12
2.2.3 Decaps . 13

2.3 BIKE-3 . 13
2.3.1 KeyGen . 13
2.3.2 Encaps . 13
2.3.3 Decaps . 14

2.4 Suggested Parameters . 14
2.5 Decoding . 15

2.5.1 One-Round Decoding . 15
2.6 Auxiliary Functions . 17

2.6.1 Pseudorandom Random Generators 18
2.6.2 E�cient Hashing . 19

3 Performance Analysis (2.B.2) 19
3.1 Performance of BIKE-1 . 20

3.1.1 Memory Cost . 20
3.1.2 Communication Bandwidth 20
3.1.3 Latency . 21

3.2 Performance of BIKE-2 . 21
3.2.1 Memory Cost . 21
3.2.2 Communication Bandwidth 21
3.2.3 Latency . 22

2

40 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

3.3 Performance of BIKE-3 . 22
3.3.1 Memory Cost . 22
3.3.2 Communication Bandwidth 22
3.3.3 Latency . 23

3.4 Optimizations and Performance Gains 23
3.4.1 BIKE-2 Batch Key Generation 23

3.5 Additional Implementation . 24

4 Known Answer Values � KAT (2.B.3) 26
4.1 KAT for BIKE-1 . 26
4.2 KAT for BIKE-2 . 26
4.3 KAT for BIKE-3 . 27

5 Known Attacks (2.B.5) 28
5.1 Hard Problems and Security Reduction 28

5.1.1 Hardness for QC codes. 28
5.2 Information Set Decoding . 29

5.2.1 Exploiting the Quasi-Cyclic Structure. 30
5.2.2 Exploiting Quantum Computations. 30

5.3 Defeating the GJS Reaction Attack 31
5.4 Choice of Parameters . 31

6 Formal Security (2.B.4) 32
6.1 IND-CPA Security . 32
6.2 Public Keys and Subcodes . 35

7 Advantages and Limitations (2.B.6) 35

8 Acknowledgments 37

A Proof of Theorem 1 42
A.1 Basic tools . 42
A.2 Estimation of the probability that a parity-check equation of weight

w gives an incorrect information 44
A.2.1 Main result . 44
A.2.2 Proof of Lemma 4 . 45

A.3 Estimation of the probability that a bit is incorrectly estimated by
the �rst step of the bit �ipping algorithm 47

A.4 Proof of Theorem 1 . 48

B Proof of Proposition 1 50

3

— Internet: Portfolio 41

1 Introduction

This document presents BIKE, a suite of algorithms for key encapsulation based on
quasi-cyclic moderate density parity-check (QC-MDPC) codes that can be decoded
using bit �ipping decoding techniques. In particular, this document highlights the
number of security, performance and simplicity advantages that make BIKE a
compelling candidate for post-quantum key encapsulation standardization.

1.1 Notation and Preliminaries

Table 1 presents the used notation and is followed by preliminary concepts.

Notation Description

F2: Finite �eld of 2 elements.

R: The cyclic polynomial ring F2[X]/〈Xr − 1〉.

|v|: The Hamming weight of a binary polynomial v.

u
$←U : Variable u is sampled uniformly at random from set U .

hj : The j-th column of a matrix H, as a row vector.

?: The component-wise product of vectors.

Table 1: Notation

De�nition 1 (Linear codes). A binary (n, k)-linear code C of length n dimension
k and co-dimension r = (n− k) is a k-dimensional vector subspace of Fn2 .

De�nition 2 (Generator and Parity-Check Matrices). A matrix G ∈ Fk×n2 is called
a generator matrix of a binary (n, k)-linear code C i�

C = {mG | m ∈ Fk2}.

A matrix H ∈ F(n−k)×n
2 is called a parity-check matrix of C i�

C = {c ∈ Fn2 | HcT = 0}.

A codeword c ∈ C of a vector m ∈ F(n−r)
2 is computed as c = mG. A syndrome

s ∈ Fr2 of a vector e ∈ Fn2 is computed as sT = HeT .

4

42 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

1.2 Quasi-Cyclic Codes

A binary circulant matrix is a square matrix where each row is the rotation one
element to the right of the preceding row. It is completely de�ned by its �rst row.
A block-circulant matrix is formed of circulant square blocks of identical size. The
size of the circulant blocks is called the order. The index of a block-circulant matrix
is the number of circulant blocks in a row.

1.2.1 De�nition

De�nition 3 (Quasi-Cyclic Codes). A binary quasi-cyclic (QC) code of index n0
and order r is a linear code which admits as generator matrix a block-circulant
matrix of order r and index n0. A (n0, k0)-QC code is a quasi-cyclic code of index
n0, length n0r and dimension k0r.

For instance:

G = � �
The rows of G span a (2, 1)-QC code

G = � � �
The rows of G span a (3, 1)-QC code

1.2.2 Representation of QC Codes

Representation of Circulant Matrices. There exists a natural ring iso-
morphism, which we denote ϕ, between the binary r×r circulant matrices and the
quotient polynomial ring R = F2[X]/(Xn− 1). The circulant matrix A whose �rst
row is (a0, . . . , ar−1) is mapped to the polynomial ϕ(A) = a0+a1X+· · ·+ar−1Xr−1.
This will allow us to view all matrix operations as polynomial operations.

Transposition. For any a = a0 +a1X+a2X
2 + · · ·+ar−1Xr−1 in R, we de�ne

aT = a0 + ar−1X + · · ·+ a1X
r−1. This will ensure ϕ(AT) = ϕ(A)T .

Vector/Matrix Product. We may extend the mapping ϕ to any binary vec-
tor of Fr2 . For all v = (v0, v1, . . . , vr−1), we set ϕ(v) = v0 + v1X + · · ·+ vr−1Xr−1.
To stay consistent with the transposition, the image of the column vector vT

must be ϕ(vT) = ϕ(v)T = v0 + vr−1X + · · · + v1X
r−1. It is easily checked that

ϕ(vA) = ϕ(v)ϕ(A) and ϕ(AvT) = ϕ(A)ϕ(v)T .

5

— Internet: Portfolio 43

Representation of QC Codes as Codes over a Polynomial Ring.
The generator matrix of (n0, k0)-QC code can be represented as an k0×n0 matrix
over R. Similarly any parity check matrix can be viewed as an (n0 − k0) × n0
matrix over R. Respectively

G =

g0,0 · · · g0,n0−1
...

...
gk0−1,0 · · · gk0−1,n0−1

 , H =

h0,0 · · · h0,n0−1
...

...
hn0−k0−1,0 · · · hn0−k0−1,n0−1

with all gi,j and hi,j in R. In all respects, a binary (n0, k0)-QC code can be viewed
as an [n0, k0] code over the ring R = F2[X]/(Xr − 1).

1.3 QC-MDPC Codes

A binary MDPC (Moderate Density Parity Check) code is a binary linear code
which admits a somewhat sparse parity check matrix, with a typical density of
order O(1/

√
n). The existence of such a matrix allows the use of iterative decoders

similar to those used for LDPC (Low Density Parity Check) codes, widely deployed
for error correction in telecommunication.

1.3.1 De�nition

De�nition 4 (QC-MDPC codes). An (n0, k0, r, w)-QC-MDPC code is an (n0, k0)
quasi-cyclic code of length n = n0r, dimension k = k0r, order r (and thus index
n0) admitting a parity-check matrix with constant row weight w = O(

√
n).

Remark 1. Asymptotically, a QC-MDPC code could e�ciently correct up to t =
O(
√
n log n) errors. This is a corollary of Theorem 1 given in paragraph �Asymp-

totic Analysis for MDPC Codes� that follows. In this work, the parity-check row
weight w and the error weight t will be chosen so that wt = O(n). This is precisely
the regime where the probability of error is expected to decay exponentially in the
codelength n (see Theorem 1).

1.3.2 Decoding - The Bit Flipping Algorithm

The decoding of MPDC code can be achieved by various iterative decoders. Among
those, the bit �ipping algorithm is particularly interesting because of its simplicity.
In Algorithm 1 as it is given here the instruction to determine the threshold τ is
unspeci�ed. We will always consider regular codes, that is all columns of h have
the same weight d and we denote T = τd. There are several rules for computing
the threshold T :

6

44 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Algorithm 1 Bit Flipping Algorithm

Require: H ∈ F(n−k)×n
2 , s ∈ Fn−k2

Ensure: eHT = s
1: e← 0
2: s′ ← s
3: while s′ 6= 0 do
4: τ ← threshold ∈ [0, 1], found according to some prede�ned rule
5: for j = 0, . . . , n− 1 do
6: if |hj ? s′| ≥ τ |hj | then
7: ej ← ej + 1 mod 2

8: s′ ← s− eHT

9: return e

hj denotes the j-th column of H, as a row vector, ′?′ denotes the component-
wise product of vectors, and |hj ? s| is the number of unchecked parity equations
involving j.

� the maximal value of |hj ? s| minus some δ (typically δ = 5), as in [31],

� precomputed values depending on the iteration depth, as in [12],

� variable, depending on the weight of the syndrome s′, as in [11].

The algorithm takes as input a parity check matrix H and a word s and, if it
stops, returns an error pattern e whose syndrome is s. If H is sparse enough and
there exists an error e of small enough weight such that s = eHT , then, with high
probability, the algorithm stops and returns e.

Asymptotic Analysis for MDPC Codes For a �xed code rate k/n, let us
denote w the weight of the rows of H and t the number of errors we are able to
decode. Both w and t are functions of n. For LDPC codes, w is a constant and t
will be a constant proportion of n, that is wt = Ω(n). For MDPC codes, we have
w = Ω(

√
n) and the amount of correctable errors will turn out to be a little bit

higher than t = Ω(
√
n).

To understand this point, let us �rst notice that experimental evidence seems to
indicate that the decoding error probability is dominated by the probability that
the �rst round of the algorithm is unable to reduce signi�cantly the number of
initial errors. What we call here �round� of the decoding algorithm is an execution
of for loop 5 in Algorithm 1. It also seems that at the �rst round of the decoding
algorithm the individual bits of the syndrome bits si can be approximated by

7

— Internet: Portfolio 45

independent random variables. This independence assumption can also be made
for the vectors hj ? s = hj ? s

′ at the �rst round. In other words, we make the
following assumptions.

Assumption 1. Let Perr be the probability that the bit �ipping algorithm fails to
decode. Let e1 be the value of error-vector e after executing for loop 5 once in
Algorithm 1 and let e0 be the true error vector. Let ∆e = e0 + e1 (addition is
performed in F2) be the error vector that would remain if we applied the correction
e1 to the true error vector e0.

� There exists a constant α in (0, 1) such that

Perr ≤ P(|∆e| ≥ αt).

� The syndrome bits si are independent random variables.

� For j = 0, . . . , n− 1, the hj ? s are independent random variables.

By making these assumptions we can prove that

Theorem 1. Under assumption 1, the probability Perr that the bit �ipping algo-
rithm fails to decode with �xed threshold τ = 1

2 is upper-bounded by

Perr ≤
1√
απt

e
αtw
8

ln(1−ε2)+αt
8

ln(n)+O(t),

where ε
def
= e−

2wt
n .

This theorem is proved in Section A of the appendix. This theorem shows that
the probability of error decays exponentially in the codelength when wt = O (n)
and that the number of correctable errors is a little bit larger than O (

√
n) when

w = O (
√
n): it can be as large as some constant β

√
n lnn as the upper-bound in

this theorem is easily shown to converge to 0 for a small enough constant β.

Decoding with a Noisy Syndrome Noisy syndrome decoding is a variation
of syndrome decoding in which, givenH and s, we look for e ∈ Fn2 such that s−eHT

and e are both of small weight. The bit �ipping algorithm can be adapted to noisy
syndromes. Two things must be modi�ed. First the stopping condition: we do
not require the quantity s− eHT to be null, only to have a small weight. Second,
since we need to quantify the weight in this stopping condition, we need to specify
a target weight u. For input (H, s, u) a pair e is returned such that s = e′ + eHT

for some e′ of weight at most u. If u = 0 we have the usual bit �ipping algorithm.

8

46 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Algorithm 2 Extended Bit Flipping Algorithm

Require: H ∈ F(n−k)×n
2 , s ∈ Fn−k2 , integer u ≥ 0

Ensure:
∣∣s− eHT

∣∣ ≤ u
1: e← 0
2: s′ ← s
3: while |s′| > u do
4: τ ← threshold ∈ [0, 1], found according to some prede�ned rule //

whatever that means
5: for j = 0, . . . , n− 1 do
6: if |hj ? s′| ≥ τ |hj | then
7: ej ← ej + 1 mod 2

8: s′ ← s− eHT

9: return e

Again if H is sparse enough and there exists a solution the algorithm will stop
with high probability. Note that if the algorithm stops, it returns a solution within
the prescribed weight, but this solution might to be unique. In the case of MDPC
codes, the column weight and the error weight are both of order

√
r and the solution

is unique with high probability.

Noisy Syndrome vs. Normal Bit Flipping Interestingly, for MDPC
codes, noisy syndromes a�ect only marginally the performance of the bit �ipping
algorithm. In fact, if e is the solution of s = e′+eHT , then it is also the solution of
s = (e, 1)H ′T where H ′ is obtained by appending e′ as n+1-th column. For MDPC
codes, the error vector e′ has a density which is similar to that of H and thus H ′

is sparse and its last column is not remarkably more or less sparse. Thus applying
the bit �ipping algorithm to (H ′, s) is going to produce e, except that we do not
allow the last position to be tested in the loop and control is modi�ed to stop the
loop when the syndrome s′ is equal to the last column of H ′. Since we never test
the last position we don't need to know the value of the last column of H ′ except
for the stopping condition which can be replaced by a test on the weight. Thus
we emulate (almost) the noisy syndrome bit �ipping by running the bit �ipping
algorithm on a code of length n + 1 instead of n, to correct |e| + 1 errors instead
of |e|.

9

— Internet: Portfolio 47

QC-MDPC Decoding for Decryption Quasi-cyclicity does not change
the decoding algorithm. The above algorithm will be used for (2, 1)-QC MDPC
codes. It allows us to de�ne the procedure speci�ed as follows. For any triple
(s, h0, h1) ∈ R3 and any integer u

Decode(s, h0, h1, u) returns (e0, e1) ∈ R2 with |e0h0 + e1h1 + s| ≤ u.

The fourth argument u is an integer. If u = 0 the algorithm stops when e0h0 +
e1h1 = s, that is the noiseless syndrome decoding, else it stops when e0h0 +e1h1 =
s + e from some e of weight at most u, that is the noisy syndrome decoding. In
addition we will bound the running time (as a function of the block size r) and
stop with a failure when this bound is exceeded.

1.4 Key Encapsulation Mechanisms

A key encapsulation mechanism (KEM) is composed by three algorithms: Gen
which outputs a public encapsulation key pk and a private decapsulation key sk,
Encaps which takes as input an encapsulation key pk and outputs a ciphertext
c and a symmetric key K, and Decaps which takes as input a decapsulation key
sk and a cryptogram c and outputs a symmetric key K or a decapsulation failure
symbol ⊥. For more details on KEM de�nitions, we refer the reader to [14].

2 Algorithm Speci�cation (2.B.1)

BIKE relies purely on ephemeral keys, meaning that a new key pair is generated at
each key exchange. In this way, the GJS attack [21], which depends on observing
a large number of decoding failures for a same private key, is not applicable.

In the following we will present three variants of BIKE, which we will simply
label BIKE-1, BIKE-2 and BIKE-3. All of the variants follow either the McEliece
or the Niederreiter framework, but each one has some important di�erences, which
we will discuss individually.

For a security level λ, let r be a prime such that (Xr − 1)/(X − 1) ∈ F2[X] is
irreducible, dv be an odd integer and t be an integer such that decoding t errors
with a uniformly chosen binary linear error-correcting code of length n = 2r and
dimension r, as well as recovering a base of column weight dv given an arbitrary
base of a code of the same length and dimension, both have a computational cost
in Ω(exp(λ)). See Section 5 for a detailed discussion on parameters selection.

10

48 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

We denote by K : {0, 1}n → {0, 1}`K the hash function used by encapsulation
and decapsulation, where `K is the desired symmetric key length (typically 256
bits).

2.1 BIKE-1

In this variant, we privilege a fast key generation by using a variation of McEliece.
A preliminary version of this approach appears in [4].

First, in contrast to QC-MDPC McEliece [31] (and any QC McEliece variant),
we do not compute the inversion of one of the private cyclic blocks and then
multiply it by the whole private matrix to get systematic form. Instead, we hide
the private code structure by simply multiplying its sparse private matrix by any
random, dense cyclic block. The price to pay is the doubled size for the public key
and the data since the public key will not feature an identity block anymore.

Secondly, we interpret McEliece encryption as having the message conveyed in
the error vector, rather than the codeword. This technique is not new, following
the lines of Micciancio's work in [30] and having already been used in a code-based
scheme by Cayrel et al. in [9].

2.1.1 KeyGen

- Input: λ, the target quantum security level.

- Output: the sparse private key (h0, h1) and the dense public key (f0, f1).

0. Given λ, set the parameters r, w as described above.

1. Generate h0, h1
$←R both of (odd) weight |h0| = |h1| = w/2.

2. Generate g
$←R of odd weight (so |g| ≈ r/2).

3. Compute (f0, f1)← (gh1, gh0).

2.1.2 Encaps

- Input: the dense public key (f0, f1).

- Output: the encapsulated key K and the cryptogram c.

1. Sample (e0, e1) ∈ R2 such that |e0|+ |e1| = t.

2. Generate m
$←R.

3. Compute c = (c0, c1)← (mf0 + e0,mf1 + e1).

4. Compute K ← K(e0, e1).

11

— Internet: Portfolio 49

2.1.3 Decaps

- Input: the sparse private key (h0, h1) and the cryptogram c.

- Output: the decapsulated key K or a failure symbol ⊥.

1. Compute the syndrome s← c0h0 + c1h1.

2. Try to decode s (noiseless) to recover an error vector (e′0, e
′
1).

3. If |(e′0, e′1)| 6= t or decoding fails, output ⊥ and halt.

4. Compute K ← K(e′0, e
′
1).

2.2 BIKE-2

In this variant, we follow Niederreiter's framework with a systematic parity check
matrix. The main advantage is that this only requires a single block of length r for
all the objects involved in the scheme, and thus yields a very compact formulation.
On the other hand, this means that it is necessary to perform a polynomial inver-
sion. In this regard, it is worth mentioning that an inversion-based key generation
can be signi�cantly slower than encryption (e.g., up to 21x as reported in [28]). A
possible solution is to use a batch key generation as described in Section 3.4.

2.2.1 KeyGen

- Input: λ, the target quantum security level.

- Output: the sparse private key (h0, h1) and the dense public key h.

0. Given λ, set the parameters r, w as described above.

1. Generate h0, h1
$←R both of (odd) weight |h0| = |h1| = w/2.

2. Compute h← h1h
−1
0 .

2.2.2 Encaps

- Input: the dense public key h.

- Output: the encapsulated key K and the cryptogram c.

1. Sample (e0, e1) ∈ R2 such that |e0|+ |e1| = t.

2. Compute c← e0 + e1h.

3. Compute K ← K(e0, e1).

12

50 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

2.2.3 Decaps

- Input: the sparse private key (h0, h1) and the cryptogram c.

- Output: the decapsulated key K or a failure symbol ⊥.

1. Compute the syndrome s← ch0.

2. Try to decode s (noiseless) to recover an error vector (e′0, e
′
1).

3. If |(e′0, e′1)| 6= t or decoding fails, output ⊥ and halt.

4. Compute K ← K(e′0, e
′
1).

2.3 BIKE-3

This variant follows the work of Ouroboros [15]. Looking at the algorithms descrip-
tion, the variant resembles BIKE-1, featuring fast, inversion-less key generation and
two blocks for public key and data. The main di�erence is that the decapsulation
invokes the decoding algorithm on a �noisy" syndrome. This also means that BIKE-
3 is fundamentally distinct from BIKE-1 and BIKE-2, mainly in terms of security
and security-related aspects like choice of parameters. We will discuss this in the
appropriate section.

2.3.1 KeyGen

- Input: λ, the target quantum security level.

- Output: the sparse private key (h0, h1) and the dense public key (f0, f1).

0. Given λ, set the parameters r, w as described above.

1. Generate h0, h1
$←R both of (odd) weight |h0| = |h1| = w/2.

2. Generate g
$←R of odd weight (so |g| ≈ r/2).

3. Compute (f0, f1)← (h1 + gh0, g).

2.3.2 Encaps

- Input: the dense public key (f0, f1).

- Output: the encapsulated key K and the cryptogram c.

1. Sample (e, e0, e1) ∈ R3 with |e| = t/2 and |e0|+ |e1| = t.

2. Compute c = (c0, c1)← (e+ e1f0, e0 + e1f1).

3. Compute K ← K(e0, e1).

13

— Internet: Portfolio 51

2.3.3 Decaps

- Input: the sparse private key (h0, h1) and the cryptogram c.

- Output: the decapsulated key K or a failure symbol ⊥.

1. Compute the syndrome s← c0 + c1h0.

2. Try to decode s (with noise at most t/2) to recover error vector (e′0, e
′
1).

3. If |(e′0, e′1)| 6= t or decoding fails, output ⊥ and halt.

4. Compute K ← K(e′0, e
′
1).

For ease of comparison, we provide a summary of the three schemes in the
Table below.

BIKE-1 BIKE-2 BIKE-3

SK (h0, h1) with |h0| = |h1| = w/2

PK (f0, f1)← (gh1, gh0) (f0, f1)← (1, h1h
−1
0) (f0, f1)← (h1 + gh0, g)

Enc (c0, c1)← (mf0 + e0,mf1 + e1) c← e0 + e1f1 (c0, c1)← (e+ e1f0, e0 + e1f1)

K ← K(e0, e1)

Dec s← c0h0 + c1h1 ; u← 0 s← ch0 ; u← 0 s← c0 + c1h0 ; u← t/2

(e′0, e
′
1)← Decode(s, h0, h1, u)

K ← K(e′0, e
′
1)

Table 2: Algorithm Comparison

We remark that e can be represented with only dlog2
(
n
t

)
e bits and such a com-

pact representation can be used if memory is the preferred metric of optimization
(the hash function K would need to be changed as well to receive dlog2

(
n
t

)
e bits

instead of n).

2.4 Suggested Parameters

The parameters suggested in this section refer to the security levels indicated by
NIST's call for papers, which relate to the hardness of a key search attack on a
block cipher, like AES. More precisely, we indicate parameters for Levels 1, 3 and
5, corresponding to the security of AES-128, AES-192 and AES-256 respectively.

In addition, the block size r is chosen so that the MDPC decoder described
in Section 2.5 has a failure rate not exceeding 10−7 (validated through exhaustive
simulation). Table 3 summarizes these three parameter suggestions.

14

52 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

BIKE-1 and BIKE-2

Security n r w t

Level 1 20,326 10,163 142 134

Level 3 39,706 19,853 206 199

Level 5 65,498 32,749 274 264

BIKE-3

n r w t

22,054 11,027 134 154

43,366 21,683 198 226

72,262 36,131 266 300

Table 3: Suggested Parameters.

2.5 Decoding

In all variants of BIKE, we will consider the decoding as a black box running in
bounded time and which either returns a valid error pattern or fails. It takes as

arguments a (sparse) parity check matrix H ∈ F(n−k)×n
2 , a syndrome s ∈ Fn−k2 ,

and an integer u ≥ 0. Any returned value e is such that the Hamming distance
between eHT and s is smaller than u.

For given BIKE parameters r, w, t and variant, the key features are going to be
the decoding time and the DFR (Decoding Failure Rate). Let R = F2[X]/(Xr−1),
the decoder input (H, s, u) is such that:

� the matrix H is block-circulant of index 2, that is a H = (hT0 hT1) ∈ R1×2

such that |h0| = |h1| = w/2

� the integer u is either 0 (noiseless syndrome decoding, BIKE-1 and BIKE-2)
or t/2 (noisy syndrome decoding, BIKE-3).

� the syndrome s is equal to e′ + e0h0 + e1h1 for some triple (e′, e0, e1) ∈ R3

such that |e′| = u and |e0|+ |e1| = t.

For each parameter set and each BIKE variant, the decoder input is entirely de�ned
by h0, h1, e

′, e0, e1. The DFR is de�ned as the probability for the decoder to fail
when the input (h0, h1, e

′, e0, e1) is distributed uniformly such that |h0| = |h1| =
w/2, |e′| = u, and |e0|+ |e1| = t.

2.5.1 One-Round Decoding

We will use the decoder de�ned in Algorithm 3. As it is de�ned, this algorithm
returns a valid error pattern when it stops but it may not stop. In practice, A
maximum running time is set, when this maximum is reached the algorithm stops
with a failure. For given BIKE parameters r, w, and t, we have n = 2r and k = r.
In addition, we must (1) set values for S and δ and (2) provide a rule for computing
the threshold (instruction 1).

15

— Internet: Portfolio 53

Algorithm 3 One-Round Bit Flipping Algorithm

Require: H ∈ F(n−k)×n
2 , s ∈ Fn−k2 , integer u ≥ 0

Ensure:
∣∣s− eHT

∣∣ ≤ u
1: T ← threshold(|s|)
2: for j = 0, . . . , n− 1 do
3: `← min(ctr(H, s, j), T)
4: J` ← J` ∪ {j} // all J` empty initially

5: e← JT
(∗∗)

6: s′ ← s− eHT

7: while |s′| > S do (∗∗∗)

8: for ` = 0, . . . , δ do (∗∗∗)

9: e′ ← check(H, s′, JT−`, d/2)
10: (e, s′)← (e+ e′, s′ − e′HT) // update error and syndrome

11: e′ ← check(H, s′, e, d/2) (∗∗)

12: (e, s′)← (e+ e′, s′ − e′HT) // update error and syndrome
13: while |s′| > u do
14: j ← guess_error_pos(H, s′, d/2)
15: (ej , s

′)← (ej + 1, s′ + hj)
(∗)

16: return e

check(H, s, J, T)
e← 0
for j ∈ J do

if ctr(H, s, j) ≥ T then
ej ← 1

return e

guess_error_pos(H, s, T)
loop // until success

i
$← s (∗∗)

for j ∈ eqi do (∗),(∗∗)

if ctr(H, s, j) ≥ T then
return j

ctr(H, s, j)
return |hj ∩ s| (∗),(∗∗)

threshold(S)
return function of r, w, t, and S

(∗) hj the j-th column of H (as a row vector), eqi the i-th row of H
(∗∗) we identify binary vectors with the set of their non zero positions
(∗∗∗) the algorithm uses two parameters S and δ which depend of r, w, and t

16

54 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Threshold Selection Rule. This rule derives from [10]. We use the nota-
tion of the algorithm, s = eHT is the input syndrome and e the corresponding
(unknown) error. We denote d = w/2 the column weight of H. Let

π1 =
|s|+X

td
and π0 =

w |s| −X
(n− t)d where X =

∑

` odd

(`− 1)
r
(
w
`

)(
n−w
t−`
)

(
n
t

) .

The counter value |hj ∩ d| follows a distribution very close to a binomial distribu-
tion1 B(d, π1) and B(d, π0) respectively if ej = 1 or ej = 0. From that it follows
that the best threshold is the smallest integer T such that

t

(
d

T

)
πT1 (1− π1)d−T ≥ (n− t)

(
d

T

)
πT0 (1− π0)d−T ,

that is (note that π1 ≥ π0)

T =

⌈
log n−t

t + d log 1−π0
1−π1

log π1
π0

+ log 1−π0
1−π1

⌉
. (1)

This value depends only of n = 2r, w = 2d, t = |e| the error weight, and |s|
the syndrome weight. Details can be found in [10]. For any set of parameters
thresholds can be precomputed.

In practice for a given set of parameters the formula (1) is very accurately
approximated, in the relevant range for the syndrome weight, by an a�ne function:

� for BIKE-1 and BIKE-2

� security level 1: T = d13.530 + 0.0069722 |s|e,
� security level 3: T = d15.932 + 0.0052936 |s|e,
� security level 5: T = d17.489 + 0.0043536 |s|e,

� for BIKE-3

� security level 1: T = d13.209 + 0.0060515 |s|e,
� security level 3: T = d15.561 + 0.0046692 |s|e,
� security level 5: T = d17.061 + 0.0038459 |s|e.

2.6 Auxiliary Functions

Possible realizations of the auxiliary functions required by BIKE are described
next. Other techniques can be used as long as they meet the target security level.

1B(n, p) the number of success out of n Bernouilli trials of probability p

17

— Internet: Portfolio 55

2.6.1 Pseudorandom Random Generators

Three types of pseudorandom bits stream generation are considered: no constraints
on the output weight (Alg. 4), odd weight (Alg. 5), and speci�c weight w (Alg. 6).
The common building block for them is AES-CTR-PRF based on AES-256, in CTR
mode (following NIST SP800-90A guidelines [3]). For typical BIKE parameters the
number of calls to AES with a given key is way below the restrictions on using AES
in CTR mode. We remark that such AES-CTR-PRF generator is very e�cient on
modern processors equipped with dedicated AES instructions (e.g., AES-NI).

Algorithm 4 GenPseudoRand(seed, len)

Require: seed (32 bytes)
Ensure: z̄ (len pseudo-random bits z embedded in array of bytes).
1: s = AES-CTR-INIT(seed, 0, 232 − 1)
2: z = truncatelen (AES-CTR-PRF (s, len))
3: return z̄

Algorithm 5 GenPseudoRandOddWeight(seed, len)

Require: seed (32 bytes), len
Ensure: z̄ (len pseudorandom bits z of odd weight, in a byte array).
1: z = GenPseudoRand(seed, len)
2: if weight(z) is even then z[0] = z[0] ⊕1
3: return z̄

Algorithm 6 WAES-CTR-PRF(s, wt, len)

Require: s (AES-CTR-PRF state), wt (32 bits), len
Ensure: A list (wlist) of wt bit-positions in [0, . . . , len− 1], updated s.
1: wlist= φ; valid_ctr = 0
2: while valid_ctr < wt do
3: (pos, s) = AES-CTR-PRF(s, 4)
4: if ((pos < len) AND (pos 6∈ wlist)) then
5: wlist = wlist ∪ {pos}; valid_ctr = valid_ctr + 1

6: return wlist, s

18

56 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

2.6.2 E�cient Hashing

In this section, we describe a parallelized hash technique (see [17, 18, 20]) that can
be used to accelerate the hashing process. We stress that a simple hash (e.g., SHA2
or SHA3 hash family) call can be used instead if (for interoperability reasons, for
instance) a standard hash function is preferred. Let hash be a hash function with
digest length of ld bytes that uses a compression function compress which consumes
a block of hbs bytes. The ParallelizedHash, with s slices, and pre-padding length
srem, is described in Alg. 7. In our accompanying implementations, we instantiated
hash with SHA-384.

Algorithm 7 ParallelizedHash

Require: an array of la bytes array[la− 1 : 0], such that la ≥ s > 0
Ensure: digest (ld bytes)
1: procedure ComputeSliceLen(la)
2: tmp := floor

(
la
s

)
− slicerem

3: α := floor
(
tmp

hbs

)

4: return α× hbs + slicerem

5: procedure ParallelizedHash(array, la)
6: ls := ComputeSliceLen(la)
7: lrem := la - (ls× s)
8: for i := 0 to (s -1) do
9: slice[i] = array[(i+ 1)× ls− 1 : i× ls]
10: X[i] = hash(slice[i])

11: Y = array[la− 1: ls× s]
12: YX= Y ‖ X[s− 1] ‖ X[s− 2] . . . ‖ X[0]
13: return hash(YX)

3 Performance Analysis (2.B.2)

In this section, we discuss the performance of BIKE with respect to both latency
and communication bandwidth. The performance numbers presented in sections
3.1, 3.2 and 3.3 refer to our reference code implementation, while section 3.4 refers
to optimizations and their corresponding latency gains.

The platform used in the experiments was equipped with an Intel® CoreTM

i5-6260U CPU running at 1.80GHz. This platform has 32 GB RAM, 32K L1d and
L1i cache, 256K L2 cache, and 4,096K L3 cache. Intel® Turbo Boost and Intel®

19

— Internet: Portfolio 57

Hyper-Threading technologies were all disabled. For each benchmark, the process
was executed 25 times to warm-up the caches, followed by 100 iterations that were
clocked (using the RDTSC instruction) and averaged. To minimize the e�ect of
background tasks running on the system, each such experiment was repeated 10
times, and averaged. Our code was compiled using gcc/g++ 5.4.0 (build 20160609)
with OpenSSL library (v1.0.2g, 1 Mar 2016) and NTL library (v6.2.1-1).

Regarding memory requirements, we remark that BIKE private keys are com-
posed by (h0, h1) ∈ R with |h0| = |h1| = w/2. Each element can either be
represented by (r) bits or, in a more compact way, by the w/2 non-zero positions,
yielding a (w2 · dlog2(r)e)-bits representation.

3.1 Performance of BIKE-1

3.1.1 Memory Cost

Table 4 summarizes the memory required for each quantity.

Quantity Size Level 1 Level 3 Level 5

Private key w · dlog2(r)e 2, 130 2, 296 4, 384

Public key n 20, 326 43, 786 65, 498

Ciphertext n 20, 326 43, 786 65, 498

Table 4: Private Key, Public Key and Ciphertext Size in Bits.

3.1.2 Communication Bandwidth

Table 5 shows the bandwidth cost per message.

Message Flow Message Size Level 1 Level 3 Level 5

Init. → Resp. (f0, f1) n 20, 326 43, 786 65, 498

Resp. → Init. (c0, c1) n 20, 326 43, 786 65, 498

Table 5: Communication Bandwidth in Bits.

20

58 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

3.1.3 Latency

Operation Level 1 Level 3 Level 5

Key Generation 730, 025 1, 709, 921 2, 986, 647

Encapsulation 689, 193 1, 850, 425 3, 023, 816

Decapsulation 2, 901, 203 7, 666, 855 17, 483, 906

Table 6: Latency Performance in Number of Cycles.

3.2 Performance of BIKE-2

3.2.1 Memory Cost

Table 7 summarizes the memory required for each quantity.

Quantity Size Level 1 Level 3 Level 5

Private key w · dlog2(r)e 2, 130 3, 296 4, 384

Public key r 10, 163 21, 893 32, 749

Ciphertext r 10, 163 21, 893 32, 749

Table 7: Private Key, Public Key and Ciphertext Size in Bits.

3.2.2 Communication Bandwidth

Table 8 shows the bandwidth cost per message.

Message Flow Message Size Level 1 Level 3 Level 5

Init. → Resp. f1 r 10, 163 21, 893 32, 749

Resp. → Init. c r 10, 163 21, 893 32, 749

Table 8: Communication Bandwidth in Bits.

21

— Internet: Portfolio 59

3.2.3 Latency

Operation Level 1 Level 3 Level 5

Key Generation 6, 383, 408 22, 205, 901 58, 806, 046

Encapsulation 281, 755 710, 970 1, 201, 161

Decapsulation 2, 674, 115 7, 114, 241 16, 385, 956

Table 9: Latency Performance in Number of Cycles.

3.3 Performance of BIKE-3

3.3.1 Memory Cost

Table 10 summarizes the memory required for each quantity.

Quantity Size Level 1 Level 3 Level 5

Private key w · dlog2(r)e 2, 010 3, 168 4, 522

Public key n 22, 054 43, 366 72, 262

Ciphertext n 22, 054 43, 366 72, 262

Table 10: Private Key, Public Key and Ciphertext Size in Bits.

3.3.2 Communication Bandwidth

Table 11 shows the bandwidth cost per message.

Message Flow Message Size Level 1 Level 3 Level 5

Init. → Resp. (f0, f1) n 22,054 43,366 72,262

Resp. → Init. (c0, c1) n 22,054 43,366 72,262

Table 11: Communication Bandwidth in Bits.

22

60 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

3.3.3 Latency

Operation Level 1 Level 3 Level 5

Key Generation 433, 258 1, 100, 372 2, 300, 332

Encapsulation 575, 237 1, 460, 866 3, 257, 675

Decapsulation 3, 437, 956 7, 732, 167 18, 047, 493

Table 12: Latency Performance in Number of Cycles.

3.4 Optimizations and Performance Gains

Optimizations for BIKE and corresponding performance gains are discussed next.

3.4.1 BIKE-2 Batch Key Generation

BIKE-2 key generation needs to compute a (costly) polynomial inversion, as de-
scribed in Section 2.2. To reduce the impact of this costly operation and still
bene�t from the lower communication bandwidth o�ered by BIKE-2, we propose a
batch version of BIKE-2 key generation. The main bene�t of this approach is that
only one polynomial inversion is computed for every N key generations, assuming
a prede�ned N ∈ N, instead of one inversion per key generation.

This technique is based on Montgomery's trick [32] and assumes that multi-
plication is fairly less expensive than inversion. As a toy example, suppose that
one needs to invert two polynomials x, y ∈ R. Instead of computing the inverse of
each one separately, it is possible to compute them with one inversion and three
multiplications: set tmp = x · y, inv = tmp−1 and then recover x−1 = y · inv and
y−1 = x · inv. This can be easily generalized to N > 2 polynomials: in this case,
2N multiplications are needed and inverses need to be recovered one at a time
and in order. Because of this, our implementation requires the maintenance of a
global variable 0 ≤ keyindex < N that must be accessible only to the legitimate
party willing to generate BIKE-2 keys and increased after each key generation.
Algorithm 8 describes this optimization. Most of the work is done in the �rst
key generation (keyindex = 0). In this way, the amortized cost of BIKE-2 key
generation is reduced signi�cantly as illustrated in Table 13.

23

— Internet: Portfolio 61

Algorithm 8 BIKE-2 Batch Key Generation

Require: keyindex, N ∈ N, code parameters (n, k, w)
Ensure: (h0,0, . . . , h0,N−1, h1) ∈ RN+1, |h0,i|0≤i<N = |h1| = w

1: Sample h1
$←R such that |h1| = w

2: if keyindex = 0 then
3: Sample h0,i

$←R such that |h0,i| = w for 0 < i < N
4: prod0,0 = h0,0
5: prod0,i = prod0,i−1 · h0,i, for 1 ≤ i < N

6: prod1,N−1 = prod−10,N−1
7: prod1,i = prod1,i+1 · h0,i+1, for N − 2 ≥ i > 0
8: inv = prod1,1 · h0,1
9: else
10: inv = prod1,keyindex · prod0,keyindex−1
11: h← h1 · inv
12: keyindex← keyindex + 1

13: return (h0,keyindex, h1, h)

Operation Reference Batch Gain (%)

Level 1 6, 383, 408 1, 647, 843 74.18%

Level 3 22, 205, 901 4, 590, 452 79.32%

Level 5 58, 806, 046 9, 296, 144 84.19%

Table 13: Reference Versus Batch Key Generation (in cycles, for N = 100).

We stress that an implementer interested in the bene�ts o�ered by BIKE-2
batch key generation will need to meet the additional security requirements of
protecting from adversaries and securely updating the variables keyindex, prod0
and prod1. It is also important to stress that the keys generated through this batch
process are not related to each other. Finally, we remark that the use (or not) of
the batch optimization does not impact on the encapsulation and decapsulation
processes described in Section 2.2.

3.5 Additional Implementation

To illustrate the potential performance that BIKE code may achieve when running
on modern platforms, we report some results of an additional implementation.

24

62 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

These preliminary BIKE-1 and BIKE-2 results can be expected to be further im-
proved.

The performance is reported in processor cycles (lower is better), re�ecting the
performance per a single core. The results were obtained with the same measure-
ment methodology declared in Section 3. The results are reported in Tables 14,
15, and 16 for BIKE-1, and in Tables 17, 18, and 19 for BIKE-2.

The additional implementation code. The core functionality was written
in x86 assembly, and wrapped by assisting C code. The implementations use
the PCLMULQDQ, AES−NI and the AVX2 and AVX512 architecture extensions.
The code was compiled with gcc (version 5.4.0) in 64-bit mode, using the "O3"
Optimization level, and run on a Linux (Ubuntu 16.04.3 LTS) OS. Details on the
implementation and optimized components are provided in [16], and the underlying
primitives are available in [19].

The benchmarking platform. The experiments were carried out on a plat-
form equipped with the latest 8th Generation Intel® CoreTM processor ("Kaby
Lake") - Intel® Xeon® Platinum 8124M CPU at 3.00 GHz Core® i5− 750. The
platform has 70 GB RAM, 32K L1d and L1i cache, 1, 024K L2 cache, and 25, 344K
L3 cache. It was con�gured to disable the Intel® Turbo Boost Technology, and
the Enhanced Intel Speedstep® Technology.

� Constant time implementation

KeyGen Encaps Decaps KeyGen Encaps Decaps

AVX2 0.09 0.11 1.13 0.20 0.15 5.30

AVX512 0.09 0.11 1.02 0.19 0.13 4.86

Table 14: Performance (in millions of cycles) of BIKE-1 Level 1.

� Constant time implementation

KeyGen Encaps Decaps KeyGen Encaps Decaps

AVX2 11.99 0.27 2.70 12.45 0.39 10.74

AVX512 11.99 0.25 2.14 12.34 0.34 8.93

Table 19: Performance (in millions of cycles) of BIKE-2 Level 5.

25

— Internet: Portfolio 63

� Constant time implementation

KeyGen Encaps Decaps KeyGen Encaps Decaps

AVX2 0.25 0.28 3.57 0.45 0.36 16.74

AVX512 0.25 0.27 2.99 0.45 0.33 15.26

Table 15: Performance (in millions of cycles) of BIKE-1 Level 3.

� Constant time implementation

KeyGen Encaps Decaps KeyGen Encaps Decaps

AVX2 0.25 0.29 2.75 0.67 0.42 9.84

AVX512 0.25 0.27 2.24 0.69 0.36 8.27

Table 16: Performance (in millions of cycles) of BIKE-1 Level 5.

4 Known Answer Values � KAT (2.B.3)

4.1 KAT for BIKE-1

The KAT �les of BIKE-1 are available in:

� req �le: KAT/PQCkemKAT_BIKE1-Level1_2542.req

� rsp �le: KAT/PQCkemKAT_BIKE1-Level1_2542.rsp

� req �le: KAT/PQCkemKAT_BIKE1-Level3_4964.req

� rsp �le: KAT/PQCkemKAT_BIKE1-Level3_4964.rsp

� req �le: KAT/PQCkemKAT_BIKE1-Level5_8188.req

� rsp �le: KAT/PQCkemKAT_BIKE1-Level5_8188.rsp

4.2 KAT for BIKE-2

The KAT �les of BIKE-2 are available in:

� req �le: KAT/PQCkemKAT_BIKE2-Level1_2542.req

26

64 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

� Constant time implementation

KeyGen Encaps Decaps KeyGen Encaps Decaps

AVX2 4.38 0.09 1.12 4.46 0.12 5.55

AVX512 4.38 0.08 0.86 4.45 0.11 5.12

Table 17: Performance (in millions of cycles) of BIKE-2 Level 1.

� Constant time implementation

KeyGen Encaps Decaps KeyGen Encaps Decaps

AVX2 7.77 0.17 2.88 8.04 0.27 17.36

AVX512 7.79 0.18 3.48 8.05 0.23 15.63

Table 18: Performance (in millions of cycles) of BIKE-2 Level 3.

� rsp �le: KAT/PQCkemKAT_BIKE2-Level1_2542.rsp

� req �le: KAT/PQCkemKAT_BIKE2-Level3_4964.req

� rsp �le: KAT/PQCkemKAT_BIKE2-Level3_4964.rsp

� req �le: KAT/PQCkemKAT_BIKE2-Level5_8188.req

� rsp �le: KAT/PQCkemKAT_BIKE2-Level5_8188.rsp

4.3 KAT for BIKE-3

The KAT �les of BIKE-3 are available in:

� req �le: KAT/PQCkemKAT_BIKE3-Level1_2758.req

� rsp �le: KAT/PQCkemKAT_BIKE3-Level1_2758.rsp

� req �le: KAT/PQCkemKAT_BIKE3-Level3_5422.req

� rsp �le: KAT/PQCkemKAT_BIKE3-Level3_5422.rsp

� req �le: KAT/PQCkemKAT_BIKE3-Level5_9034.req

� rsp �le: KAT/PQCkemKAT_BIKE3-Level5_9034.rsp

27

— Internet: Portfolio 65

5 Known Attacks (2.B.5)

This section discusses the practical security aspects of our proposal.

5.1 Hard Problems and Security Reduction

In the generic (i.e. non quasi-cyclic) case, the two following problems were proven
NP-complete in [6].

Problem 1 (Syndrome Decoding � SD).

Instance: H ∈ F(n−k)×n
2 , s ∈ Fn−k2 , an integer t > 0.

Property: There exists e ∈ Fn2 such that |e| ≤ t and eHT = s.

Problem 2 (Codeword Finding � CF).

Instance: H ∈ F(n−k)×n
2 , an integer t > 0.

Property: There exists c ∈ Fn2 such that |c| = t and cHT = 0.

In both problems the matrix H is the parity check matrix of a binary linear
[n, k] code. Problem 1 corresponds to the decoding of an error of weight t and
Problem 2 to the existence of a codeword of weight t. Both are also conjectured to
be hard on average. This is argued in [1], together with results which indicate that
the above problems remain hard even when the weight is very small, i.e. t = nε,
for any ε > 0. Note that all known solvers for one of the two problems also solve
the other and have a cost exponential in t.

5.1.1 Hardness for QC codes.

Coding problems (SD and CF) in a QC-code are NP-complete, but the result does
not hold for when the index is �xed. In particular, for (2, 1)-QC codes or (3, 1)-QC
codes, which are of interest to us, we do not know whether or not SD and CF are
NP-complete.

Nevertheless, they are believed to be hard on average (when r grows) and the
best solvers in the quasi-cyclic case have the same cost as in the generic case up
to a small factor which never exceeds the order r of quasi-cyclicity. The problems
below are written in the QC setting, moreover we assume that the parity check
matrix H is in systematic form, that is the �rst (n0 − k0) × (n0 − k0) block of H
is the identity matrix. For instance, for (2, 1)-QC and (3, 1)-QC codes codes, the
parity check matrix (over R) respectively have the form

(
1 h

)
with h ∈ R, and

 1 0 h0

0 1 h1

 with h0, h1 ∈ R.

28

66 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

In our case, we are interested only by those two types of QC codes and to the three
related hard problems below:

Problem 3 ((2, 1)-QC Syndrome Decoding � (2, 1)-QCSD).
Instance: s, h in R, an integer t > 0.
Property: There exists e0, e1 in R such that |e0|+ |e1| ≤ t and e0 + e1h = s.

Problem 4 ((2, 1)-QC Codeword Finding � (2, 1)-QCCF).
Instance: h in R, an integer t > 0.
Property: There exists c0, c1 in R such that |c0|+ |c1| = t and c0 + c1h = 0.

Problem 5 ((3, 1)-QC Syndrome Decoding � (3, 1)-QCSD).
Instance: s0, s1, h0, h1 in R, an integer t > 0.
Property: There exists e0, e1, e2 in R such that |e0|+ |e1|+ |e2| ≤ t, e0 + e2h0 = s0
and e1 + e2h1 = s1.

As they are presented, those problems have the appearance of sparse polyno-
mials problem, but in fact they are equivalent to generic quasi-cyclic decoding and
codeword �nding problems.

In the current state of the art, the best known techniques for solving those
problems are variants of Prange's Information Set Decoding (ISD) [33]. We remark
that, though the best attacks consist in solving one of the search problems, the
security reduction of our scheme requires the decision version of Problem 2.

5.2 Information Set Decoding

The best asymptotic variant of ISD is due to May and Ozerov [29], but it has a
polynomial overhead which is di�cult to estimate precisely. In practice, the BJMM
variant [5] is probably the best for relevant cryptographic parameters. The work
factor for classical (i.e. non quantum) computing of any variant A of ISD for
decoding t errors (or �nding a word of weight t) in a binary code of length n and
dimension k can be written

WFA(n, k, t) = 2ct(1+o(1))

where c depends on the algorithm, on the code rate R = k/n and on the error rate
t/N . It has been proven in [35] that, asymptotically, for sublinear weight t = o(n)
(which is the case here as w ≈ t ≈ √n), we have c = log2

1
1−R for all variants of

ISD.

In practice, when t is small, using 2ct with c = log2
1

1−R gives a remarkably
good estimate for the complexity. For instance, non asymptotic estimates derived

29

— Internet: Portfolio 67

from [22] gives WFBJMM(65542, 32771, 264) = 2263.3 �column operations� which is
rather close to 2264. This closeness is expected asymptotically, but is circumstantial
for �xed parameters. It only holds because various factors compensate, but it holds
for most MDPC parameters of interest.

5.2.1 Exploiting the Quasi-Cyclic Structure.

Both codeword �nding and decoding are a bit easier (by a polynomial factor) when
the target code is quasi-cyclic. If there is a word of weight w in a QC code then
its r quasi-cyclic shifts are in the code. In practice, this gives a factor r speedup
compared to a random code. Similarly, using Decoding One Out of Many (DOOM)
[34] it is possible to produce r equivalent instances of the decoding problem. Solving
those r instances together saves a factor

√
r in the workload.

5.2.2 Exploiting Quantum Computations.

Recall �rst that the NIST proposes to evaluate the quantum security as follows:

1. A quantum computer can only perform quantum computations of limited
depth. They introduce a parameter, MAXDEPTH, which can range from 240

to 296. This accounts for the practical di�culty of building a full quantum
computer.

2. The amount (or bits) of security is not measured in terms of absolute time
but in the time required to perform a speci�c task.

Regarding the second point, the NIST presents 6 security categories which
correspond to performing a speci�c task. For example Task 1, related to Category
1, consists of �nding the 128 bit key of a block cipher that uses AES-128. The
security is then (informally) de�ned as follows:

De�nition 5. A cryptographic scheme is secure with respect to Category k i�. any
attack on the scheme requires computational resources comparable to or greater than
those needed to solve Task k.

In what follows we will estimate that our scheme reaches a certain security
level according to the NIST metric and show that the attack takes more quan-
tum resources than a quantum attack on AES. We will use for this the following
proposition.

Proposition 1. Let f be a Boolean function which is equal to 1 on a fraction α of
inputs which can be implemented by a quantum circuit of depth Df and whose gate
complexity is Cf . Using Grover's algorithm for �nding an input x of f for which

30

68 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

f(x) = 1 can not take less quantum resources than a Grover's attack on AES-N as
soon as

Df · Cf
α

≥ 2NDAES−N · CAES−N
where DAES−N and CAES−N are respectively the depth and the complexity of the
quantum circuit implementing AES-N.

This proposition is proved in Section B of the appendix. The point is that
(essentially) the best quantum attack on our scheme consists in using Grover's
search on the information sets computed in Prange's algorithm (this is Bernstein's
algorithm [7]). Theoretically there is a slightly better algorithm consisting in quan-
tizing more sophisticated ISD algorithms [23], however the improvement is tiny and
the overhead in terms of circuit complexity make Grover's algorithm used on top
of the Prange algorithm preferable in our case.

5.3 Defeating the GJS Reaction Attack

BIKE uses an ephemeral KEM key pair, i.e. a KEM key generation is performed
for each key exchange. As a result, the GJS reaction attack is inherently defeated:
a GJS adversary would have (at most) a single opportunity to observe decryption,
thus not being able to create statistics about di�erent error patterns. We note that,
for e�ciency purposes, an initiator may want to precompute KEM key pairs before
engaging in key exchange sessions. We remark that policies to securely store the
pregenerated KEM key pair must be in place, in order to avoid that an adversary
access a KEM key pair to be used in a future communication.

5.4 Choice of Parameters

We denote WF(n, k, t) the workfactor of the best ISD variant for decoding t errors
in a binary code of length n and dimension k. In the following we will consider
only codes of transmission rate 0.5, that is length n = 2r and dimension r. In a
classical setting, the best solver for Problem 3 has a cost WF(2r, r, t)/

√
r, the best

solver for Problem 4 has a cost WF(2r, r, w)/r, and the best solver for Problem 5

has a cost WF(3r, r, 3t/2)/
√
r. As remarked above, with WF(n, k, `) ≈ 2` log2

n
n−k

we obtain a crude but surprisingly accurate, parameter selection rule. We target
security levels corresponding to AES λ with λ ∈ {128, 192, 256}. To reach λ bits
of classical security, we choose w, t and r such that

� for BIKE-1 and BIKE-2, Problem 3 with block size r and weight t and
Problem 4 with block size r and weight w must be hard enough, that is

λ ≈ t− 1

2
log2 r ≈ w − log2 r. (2)

31

— Internet: Portfolio 69

� for BIKE-3, Problem 5 with block size r and weight 3t/2 and Problem 3 with
block size r and weight w must be hard enough, that is

λ ≈ 3t

2
log2

3

2
− 1

2
log2 r ≈ w −

1

2
log2 r. (3)

Those equation have to be solved in addition with the constraint that r must be
large enough to decode t errors in (2, 1, r, w)-QC-MDPC code with a negligible
failure rate. Finally, we choose r such that 2 is primitive modulo r. First, this will
force r to be prime, thwarting the so-called squaring attack [25]. Also, it implies
that (Xr − 1) only has two irreducible factors (one of them being X − 1). This is
an insurance against an adversary trying to exploit the structure of F2[X]/〈Xr−1〉
when (Xr−1) has small factors, other than (X−1). This produces the parameters
proposed in the document.

The quantum speedup is at best quadratic for the best solvers of the problems
on which our system, from the arguments of �5.2.2, it follows our set of parameters
correspond the security levels 1, 3, and 5 described in the NIST call for quantum
safe primitives.

6 Formal Security (2.B.4)

6.1 IND-CPA Security

We start with the following de�nition, where we denote by K the domain of the
exchanged symmetric keys and by λ the security level of the scheme.

De�nition 6. A key-encapsulation mechanism is IND-CPA (passively) secure if
the outputs of the two following games are computationally indistinguishable.

Game Greal Game Gfake

(sk, pk)← Gen(λ) (sk, pk)← Gen(λ)

(c,K)← Encaps(pk) (c,K)← Encaps(pk)

K∗ $←− K
Output (pp, pk, c,K) Output (pp, pk, c,K∗)

Rather than analyzing all three variants of BIKE separately, we state a single
theorem, and highlight the di�erences in the proof.

32

70 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Theorem 2. BIKE is IND-CPA secure in the Random Oracle Model under the
(2, 1)-QCCF, (2, 1)-QCSD and (3, 1)-QCSD assumptions.

Proof. To begin, note that we model the hash function K as a random oracle. The
goal of our proof is to prove that an adversary distinguishing one game from another
can be exploited to break one or more of the problems above in polynomial time
(see Section 5.1 for de�nitions). Let A be a probabilistic polynomial time adversary
against the IND-CPA of our scheme and consider the following games where we
consider that A receives the encapsulation at the end of each game.

Game G1: This corresponds to an honest run of the protocol, and is the same as
Game Greal. In particular, the simulator has access to all keys and random-
ness.

Game G2: In this game, the simulator picks uniformly at random the public key,
speci�cally (f0, f1) for BIKE-1 and BIKE-3, and h for BIKE-2. The rest of
the game then proceeds honestly.

An adversary distinguishing between these two games is therefore able to
distinguish between a well-formed public key and a randomly-generated one.
Note that the public key in G1 corresponds to a valid (2, 1)-QCCF instance
for BIKE-1 and BIKE-2, and to a (2, 1)-QCSD instance for BIKE-3, while it
is random in G2. Thus we have respectively

AdvG1−G2(A) ≤ Adv(2,1)-QCCF(A′)

and

AdvG1−G2(A) ≤ Adv(2,1)-QCSD(A′)

where A′ is a polynomial time adversary for the (2, 1)-QCCF/ (2, 1)-QCSD
problem.

Game G3: Now, the simulator also picks uniformly at random the ciphertext:
again, this is (c0, c1) for BIKE-1 and BIKE-3, and c for BIKE-2. The encap-
sulated key K is still generated honestly.

If an adversary is able to distinguish game G2 from game G3, then it can
solve one of the QCSD problems.
In fact, for BIKE-2, the ciphertext is exactly a syndrome that follows the
(2, 1)-QCSD distribution in game G2 and the uniform distribution in G3.
The same can be easily shown for BIKE-1. Thus for both variants we have

33

— Internet: Portfolio 71

AdvG2−G3(A) ≤ Adv(2,1)-QCSD(A′′)

where A′′ is a polynomial time adversary for the (2, 1)-QCSD problem.

As we will see, a similar situation occurs for BIKE-3. In fact, the adversary
has access to:

c0
c1

 =

1 0 f0

0 1 f1

 (e, e0, e1)

>

Here (c0, c1) follows the (3, 1)-QCSD distribution in game G2 and the uni-
form distribution over (Fn2)2 in G3. Hence

AdvG2−G3(A) ≤ Adv(3,1)-QCSD(A′′)

where A′′ is a polynomial time adversary for the (3, 1)-QCSD problem.

Game G4: Finally, we replace the value of K with a uniformly random value K∗.
Since K is modeled as a random oracle, its output is pseudorandom, and an
adversary only has negligible advantage ε, so for all three variants

AdvG3−G4(A) ≤ ε.

Thus in the end we have

AdvIND-CPA(A) ≤ Adv(2,1)-QCCF(A′) + Adv(2,1)-QCSD(A′′) + ε. (4)

or

AdvIND-CPA(A) ≤ Adv(2,1)-QCSD(A′) + Adv(3,1)-QCSD(A′′) + ε. (5)

respectively for BIKE-1/BIKE-2 and BIKE-3.

34

72 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

6.2 Public Keys and Subcodes

In this section, we prove that one can e�ciently sample an invertible element from
F2[X]/〈Xr−1〉 by taking any polynomial h

$←F2[X]/〈Xr−1〉 such that |h| is odd.
If this element was not invertible, the public code produced in BIKE-1 and BIKE-3
would be a subcode of the private one.

Lemma 1. Let h ∈ F2[X] have even weight. Then h is not invertible modulo
Xr − 1.

Proof. We show that (X−1) | h by induction on |h|. For |h| = 0 trivially (X−1) | h.
Assume that (X − 1) | h whenever |h| = 2k for some k > 0. Now consider any
h ∈ F2[X] with weight |h| = 2(k + 1), and take two distinct terms Xi, Xj of h
such that i < j. De�ne h′ = h−Xi −Xj , so that |h′| = 2k. Then (X − 1) | h′ by
induction, i.e. h′ = (X − 1)h′′ for some h′′ ∈ F2[X]. Hence h = h′ + Xi + Xj =
(X − 1)h′′ + Xi(Xj−i + 1) = (X − 1)h′′ + Xi(X − 1)(Xj−i−1 + · · · + 1) = (X −
1)(h′′ +Xi(Xj−i−1 + · · ·+ 1)), and therefore (X − 1) | h.

Theorem 3. Let r a prime such that (Xr−1)/(X−1) ∈ F2[X] is irreducible. Then
any h ∈ F2[X] with deg(h) < r is invertible modulo Xr − 1 i� h 6= Xr−1 + · · ·+ 1
and |h| is odd.

Proof. Take a term Xi of h. Then
∣∣h+Xi

∣∣ = |h| − 1 is even, and by Lemma 1
(X − 1) | (h+Xi). Hence h mod (X − 1) = Xi mod (X − 1) = 1, meaning that h
is invertible modulo X − 1.

Now, since (Xr − 1)/(X − 1) = Xr−1 + · · ·+ 1 is irreducible, if deg(h) < r− 1
then gcd(h,Xr−1+ · · ·+1) = 1, and if deg(h) = r−1, then gcd(h,Xr−1+ · · ·+1) =
gcd(h+Xr−1 + · · ·+ 1, Xr−1 + · · ·+ 1) = 1, since deg(h+Xr−1 + · · ·+ 1) < r− 1.
Hence h is invertible modulo Xr−1 + · · ·+ 1.

Therefore, the combination of the inverses of h modulo X − 1 and modulo
Xr−1 + · · ·+ 1 via the Chinese remainder theorem is well de�ned, and by construc-
tion it is the inverse of h modulo (X − 1)(Xr−1 + · · ·+ 1) = Xr − 1.

Corollary 1. One can e�ciently sample an invertible element from F2[X]/〈Xr−1〉
by taking any polynomial h $←F2[X]/〈Xr − 1〉 such that |h| is odd.

7 Advantages and Limitations (2.B.6)

This document presents BIKE, a suite of IND-CPA secure key encapsulation mech-
anisms (KEM) composed by BIKE-1, BIKE-2 and BIKE-3. Each variant has its
own pros and cons.

35

— Internet: Portfolio 73

In common, all BIKE variants are based on quasi-cyclic moderate density
parity-check (QC-MDPC codes), which can be e�ciently decoded through bit �ip-
ping decoding techniques. This kind of decoder is extremely simple: it estimates
what are the positions most likely in error, �ip them and observes whether the re-
sult is better (smaller syndrome weight) than before or not. This process converges
very quickly; in particular, Section 2.5 presents a 1-iteration bit �ipping decoder.

Another characteristic in common to all BIKE variants is the fact that they rely
on ephemeral keys. This leads to two things: at �rst, it inherently defeats the GJS
reaction attack mentioned in section 5, which is an attack that needs to observe
a large number of decodings for a same private key (something impossible when
ephemeral keys are used). The other aspect of this choice is that key generation
must be e�cient since it is executed at every key encapsulation. Previous works
based on QC-MDPC codes compute a polynomial inversion operation in order to
obtain a QC-MDPC public key in systematic form. The polynomial inversion is
an expensive operation. BIKE-1 completely avoids the polynomial inversion by
not relying on public keys in systematic form. Instead, it hides the private sparse
structure by multiplying it by a dense polynomial of odd weight sampled uniformly
at random. This leads to an increased public key size but results in a very e�cient
key generation process (it becomes the fastest process among key generation, en-
capsulation and decapsulation operations). BIKE-2 uses public keys in systematic
form, but thanks to our batch key generation technique discussed in Section 3.4,
the amortized cost can decrease up to 84%, becoming less expensive than the bit
�ipping decoder. Besides the bit �ipping algorithm and the eventual polynomial
inversion (restricted to BIKE-2), all other operations in the BIKE suite consist of
simple products of binary vectors, an operation that can be easily optimized for all
sorts of hardware and software applications.

Regarding communication bandwidth, in BIKE-1 and BIKE-3 all public keys,
private keys and cryptograms are n bits long, corresponding to the bandwidth
of the messages exchanged by the parties. BIKE-2 o�ers smaller public keys and
ciphertexts, r bits only, corresponding to the bandwidth of the messages exchanged
by the parties as well. Two messages are exchanged per key encapsulation of same
size (either n or r bits). In practice, these numbers range from 1.24 KB per message
in BIKE-2 security level 1, up to 8.82 KB per message in BIKE-3 security level 5.
These numbers seem fairly reasonable when compared to the the average size of a
page in the Internet (currently near 2MB [2]), just as an example.

Regarding security, all BIKE variants rely their security on very well-known
coding-theory problems: quasi-cyclic syndrome decoding and quasi-cyclic code-
word �nding problems. The best strategies to solve these problems are based on

36

74 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Information Set Decoding (ISD) techniques, a research �eld that has a very long
history (Prange's seminal work dates back 1962) and which has seem very little
improvement along the years. Moreover, we show that in the quantum setting,
Grover's algorithm used on top of the seminal Prange ISD algorithm is still the
most preferable choice in our case.

One point of attention in BIKE is the fact that, nowadays, the bit �ipping
decoding techniques do not attain a negligible decoding failure rate. This makes it
challenge to achieve higher security notions such as IND-CCA. This may also limits
the usage of BIKE in certain applications such as, for instance, Hybrid Encryption,
where both KEM and DEM need to satisfy IND-CCA security to guarantee chosen-
ciphertext security for the hybrid encryption scheme. We stress however that it
seems possible (although not simple) to prove that certain decoding techniques can
in fact attain negligible decoding failure rates for QC-MDPC codes.

Regarding intellectual property, to the best of our knowledge, BIKE-1 and
BIKE-2 are not covered by any patent. BIKE-3 is covered by a patent whose
owners are willing to grant a non-exclusive license for the purpose of implementing
the standard without compensation and under reasonable terms and conditions that
are demonstrably free of any unfair discrimination, as denoted in the accompanying
signed statements. We emphasize that BIKE-1 and BIKE-2 are not covered by
the aforementioned patent, and that the BIKE team is willing to drop BIKE-3 if
this ever becomes a disadvantage when comparing our suite with other proposals.

Overall, taking all these considerations into account, we believe that BIKE is
a promising candidate for post-quantum key exchange standardization.

8 Acknowledgments

Shay Gueron, Tim Güneysu, Nicolas Sendrier and Jean-Pierre Tillich were sup-
ported in part by the Commission of the European Communities through the Hori-
zon 2020 program under project number 645622 (PQCRYPTO). Shay Gueron was
also partially supported by the Israel Science Foundation (grant No. 1018/16).
Paulo S. L. M. Barreto was partially supported by Intel and FAPESP through
the project �E�cient Post-Quantum Cryptography for Building Advanced Secu-
rity Applications� (grant No. 2015/50520-6). The logo presented in the cover page
was designed by Szilard Nagy. The reference code was developed by Nir Druker,
Shay Gueron, Rafael Misoczki, Tim Güneysu, Tobias Oder and Slim Bettaieb.

37

— Internet: Portfolio 75

References

[1] Michael Alekhnovich. More on average case vs approximation complexity. In
FOCS 2003, pages 298�307. IEEE, 2003.

[2] HTTP Archive. Http archive report, 2017. http://httparchive.org/
trends.php.

[3] Elaine B Barker and John Michael Kelsey. Recommendation for random num-
ber generation using deterministic random bit generators (revised). US Depart-
ment of Commerce, Technology Administration, National Institute of Stan-
dards and Technology, Computer Security Division, Information Technology
Laboratory, 2012.

[4] Paulo S. L. M. Barreto, Shay Gueron, Tim Guneysu, Rafael Misoczki, Edoardo
Persichetti, Nicolas Sendrier, and Jean-Pierre Tillich. CAKE: Code-based Al-
gorithm for Key Encapsulation. Cryptology ePrint Archive, Report 2017/757,
2017. https://eprint.iacr.org/2017/757.pdf. To appear in the 16th IMA
International Conference on Cryptography and Coding.

[5] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding
random binary linear codes in 2n/20: How 1+1=0 improves information set
decoding. In D. Pointcheval and T. Johansson, editors, Advances in Cryptology
- EUROCRYPT 2012, volume 7237 of LNCS, pages 520�536. Springer, 2012.

[6] Elwyn Berlekamp, Robert J. McEliece, and Henk van Tilborg. On the inherent
intractability of certain coding problems (corresp.). Information Theory, IEEE
Transactions on, 24(3):384 � 386, may 1978.

[7] Daniel J Bernstein. Grover vs. McEliece. In International Workshop on Post-
Quantum Cryptography, pages 73�80. Springer, 2010.

[8] Céline Blondeau, Benoît Gérard, and Jean-Pierre Tillich. Accurate estimates
of the data complexity and success probability for various cryptanalyses. Des.
Codes Cryptogr., 59(1-3):3�34, 2011.

[9] Pierre-Louis Cayrel, Gerhard Ho�mann, and Edoardo Persichetti. E�cient
implementation of a cca2-secure variant of McEliece using generalized Srivas-
tava codes. In Proceedings of PKC 2012, LNCS 7293, Springer-Verlag, pages
138�155, 2012.

[10] Julia Chaulet. Étude de cryptosystèmes à clé publique basés sur les codes
MDPC quasi-cycliques. Thèse de doctorat, University Pierre et Marie Curie,
March 2017.

38

76 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

[11] Julia Chaulet and Nicolas Sendrier. Worst case QC-MDPC decoder for
McEliece cryptosystem. In Information Theory (ISIT), 2016 IEEE Inter-
national Symposium on, pages 1366�1370. IEEE, 2016.

[12] Tung Chou. Qcbits: Constant-time small-key code-based cryptography. In
Benedikt Gierlichs and Axel Y. Poschmann, editors, CHES 2016, volume 9813
of LNCS, pages 280�300. Springer, 2016.

[13] Thomas M. Cover and Joy A. Thomas. Information Theory. Wiley Series in
Telecommunications. Wiley, 1991.

[14] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key
encryption schemes secure against adaptive chosen ciphertext attack. SIAM
J. Comput., 33(1):167�226, January 2004.

[15] Jean-Christophe Deneuville, Philippe Gaborit, and Gilles Zémor. Ouroboros:
A simple, secure and e�cient key exchange protocol based on coding theory.
In Tanja Lange and Tsuyoshi Takagi, editors, PQCrypto 2017, volume 10346
of LNCS, pages 18�34. Springer, 2017.

[16] Nir Drucker and Shay Gueron. A toolbox for software optimization of qc-
mdpc code-based cryptosystems. Cryptology ePrint Archive, December 2017.
http://eprint.iacr.org/.

[17] Shay Gueron. A j-lanes tree hashing mode and j-lanes SHA-256. Journal of
Information Security, 4(01):7, 2013.

[18] Shay Gueron. Parallelized hashing via j-lanes and j-pointers tree modes, with
applications to SHA-256. Journal of Information Security, 5(03):91, 2014.

[19] Shay Gueron. A-toolbox-for-software-optimization-of-qc-mdpc-code-based-
cryptosystems, 2017. https://github.com/Shay-Gueron/A-toolbox-for-
software-optimization-of-QC-MDPC-code-based-cryptosystems.

[20] Shay Gueron and Vlad Krasnov. Simultaneous hashing of multiple messages.
Journal of Information Security, 3(04):319, 2012.

[21] Qian Guo, Thomas Johansson, and Paul Stankovski. A Key Recovery Attack
on MDPC with CCA Security Using Decoding Errors, pages 789�815. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2016.

[22] Yann Hamdaoui and Nicolas Sendrier. A non asymptotic analysis of infor-
mation set decoding. Cryptology ePrint Archive, Report 2013/162, 2013.
http://eprint.iacr.org/2013/162.

39

— Internet: Portfolio 77

[23] Ghazal Kachigar and Jean-Pierre Tillich. Quantum information set decoding
algorithms. In Tanja Lange and Tsuyoshi Takagi, editors, PQCrypto 2017,
volume 10346 of LNCS, pages 69�89. Springer, 2017.

[24] Gil Kalai and Nathan Linial. On the distance distribution of codes. IEEE
Trans. Inform. Theory, 41(5):1467�1472, September 1995.

[25] Carl Löndahl, Thomas Johansson, Masoumeh Koochak Shooshtari, Mahmoud
Ahmadian-Attari, and Mohammad Reza Aref. Squaring attacks on McEliece
public-key cryptosystems using quasi-cyclic codes of even dimension. Designs,
Codes and Cryptography, 80(2):359�377, 2016.

[26] Florence J. MacWilliams and Neil J. A. Sloane. The Theory of Error-
Correcting Codes. North�Holland, Amsterdam, �fth edition, 1986.

[27] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Advances in
Cryptology - EUROCRYPT'93, volume 765 of LNCS, pages 386�397, Lofthus,
Norway, May 1993. Springer.

[28] Ingo Von Maurich, Tobias Oder, and Tim Güneysu. Implementing qc-mdpc
mceliece encryption. ACM Trans. Embed. Comput. Syst., 14(3):44:1�44:27,
April 2015.

[29] Alexander May and Ilya Ozerov. On computing nearest neighbors with ap-
plications to decoding of binary linear codes. In Elisabeth Oswald and Marc
Fischlin, editors, Advances in Cryptology � EUROCRYPT 2015, Part I, vol-
ume 9056 of LNCS, pages 203�228. Springer, 2015.

[30] Daniele Micciancio. Improving lattice based cryptosystems using the hermite
normal form. Cryptography and lattices, pages 126�145, 2001.

[31] R. Misoczki, J.-P. Tillich, N. Sendrier, and P. L.S.M. Barreto. MDPC-
McEliece: New McEliece variants from moderate density parity-check codes.
In IEEE International Symposium on Information Theory � ISIT'2013, pages
2069�2073, Istambul, Turkey, 2013. IEEE.

[32] Peter L Montgomery. Speeding the pollard and elliptic curve methods of
factorization. Mathematics of computation, 48(177):243�264, 1987.

[33] Eugene Prange. The use of information sets in decoding cyclic codes. IRE
Transactions, IT-8:S5�S9, 1962.

[34] Nicolas Sendrier. Decoding one out of many. In B.-Y. Yang, editor, PQCrypto
2011, volume 7071 of LNCS, pages 51�67. Springer, 2011.

40

78 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

[35] Rodolfo Canto Torres and Nicolas Sendrier. Analysis of information set de-
coding for a sub-linear error weight. In Tsuyoshi Takagi, editor, PQCrypto
2016, volume 9606 of LNCS, pages 144�161. Springer, 2016.

[36] Christof Zalka. Grover's quantum searching algorithm is optimal. Phys. Rev.
A, 60:2746�2751, October 1999.

41

— Internet: Portfolio 79

A Proof of Theorem 1

Let us recall the theorem we want to prove.

Theorem 1. Under assumption 1, the probability Perr that the bit �ipping algo-
rithm fails to decode with �xed threshold τ = 1

2 is upper-bounded by

Perr ≤
1√
απt

e
αtw
8

ln(1−ε2)+αt
8

ln(n)+O(t),

where ε
def
= e−

2wt
n .

We will denote in the whole section by h(x) the entropy (in nats) of a Bernoulli

random variable of parameter x, that is h(x)
def
= −x lnx− (1− x) ln(1− x).

A.1 Basic tools

A particular quantity will play a fundamental role here, the Kullback-Leibler di-
vergence (see for instance [13])

De�nition 7. Kullback-Leibler divergence
Consider two discrete probability distributions p and q de�ned over a same discrete
space X . The Kullback-Leibler divergence between p and q is de�ned by

D(p||q) =
∑

x∈X
p(x) ln

p(x)

q(x)
.

We overload this notation by de�ning for two Bernoulli distributions B(p) and B(q)
of respective parameters p and q

D(p||q) def
= D(B(p)||B(q)) = p ln

(
p

q

)
+ (1− p) ln

(
1− p
1− q

)
.

We use the convention (based on continuity arguments) that 0 ln 0
p = 0 and p ln p

0 =
∞.

We will need the following approximations/results of the Kullback-Leibler di-
vergence

Lemma 2. For any δ ∈ (−1/2, 1/2) we have

D

(
1

2

∣∣∣∣
∣∣∣∣
1

2
+ δ

)
= −1

2
ln(1− 4δ2). (6)

42

80 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

For constant α ∈ (0, 1) and δ going to 0 by staying positive, we have

D(α||δ) = −h(α)− α ln δ +O(δ). (7)

For 0 < y < x and x going to 0 we have

D(x||y) = x ln
x

y
+ x− y +O

(
x2
)
. (8)

Proof. Let us �rst prove (6).

D

(
1

2

∣∣∣∣
∣∣∣∣
1

2
+ δ

)
=

1

2
ln

1/2

1/2 + δ
+

1

2
ln

1/2

1/2− δ

P = −1

2
ln(1 + 2δ)− 1

2
ln(1− 2δ)

= −1

2
ln(1− 4δ2).

To prove (7) we observe that

D(α||δ) = α ln
(α
δ

)
+ (1− α) ln

(
1− α
1− δ

)

= −h(α)− α ln δ − (1− α) ln(1− δ)
= −h(α)− α ln δ +O(δ).

For the last estimate we proceed as follows

D(x||y) = x ln
x

y
+ (1− x) ln

1− x
1− y

= x ln
x

y
− (1− x)

(
−x+ y +O

(
x2
))

= x ln
x

y
+ x− y +O

(
x2
)
.

The Kullback-Leibler appears in the computation of large deviation exponents.
In our case, we will use the following estimate which is well known and which can
be found for instance in [8]

Lemma 3. Let p be a real number in (0, 1) and X1, . . . Xn be n independent
Bernoulli random variables of parameter p. Then, as n tends to in�nity:

P(X1 + . . . Xn ≥ τn) =
(1− p)√τ

(τ − p)
√

2πn(1− τ)
e−nD(τ ||p)(1 + o(1)) for p < τ < 1,(9)

P(X1 + . . . Xn ≤ τn) =
p
√

1− τ
(p− τ)

√
2πnτ

e−nD(τ ||p)(1 + o(1)) for 0 < τ < p. (10)

43

— Internet: Portfolio 81

A.2 Estimation of the probability that a parity-check

equation of weight w gives an incorrect information

A.2.1 Main result

We start our computation by computing the probability that a parity-check equa-
tion gives an incorrect information about a bit. We say here that a parity-check
equation h (viewed as a binary word) gives an incorrect information about an error
bit ei that is involved in h if 〈h, e〉 6= ei, where e is the error. This is obtained
through the following lemma.

Lemma 4. Consider a word h ∈ Fn2 of weight w and an error e ∈ Fn2 of weight
t chosen uniformly at random. Assume that both w and t are of order

√
n: w =

Θ(
√
n) and t = Θ(

√
n). We have

Pe(〈h, e〉 = 1) =
1

2
− 1

2
e−

2wt
n

(
1 +O

(
1√
n

))
.

Remark 2. Note that this probability is in this case of the same order as the
probability taken over errors e whose coordinates are drawn independently from a
Bernoulli distribution of parameter t/n. In such a case, from the piling-up lemma
[27] we have

Pe(〈h, e〉 = 1) =
1−

(
1− 2t

n

)w

2

=
1

2
− 1

2
ew ln(1−2t/n)

=
1

2
− 1

2
e−

2wt
n

(
1 +O

(
1√
n

))
.

Let us bring now the following fundamental quantities for b ∈ {0, 1}

pb
def
= P(〈h, e〉 = 1|e1 = b) (11)

where without loss of generality we assume that h1 = 1 and e is an error of weight
t and length n chosen uniformly at random.

The proof of this lemma will be done in the following subsection. From this
lemma it follows directly that

Corollary 2. Assume that w = Θ(
√
n) and t = Θ(

√
n). Then

pb =
1

2
− (−1)bε

(
1

2
+O

(
1√
n

))
, (12)

where ε
def
= e−

2wt
n .

44

82 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

A.2.2 Proof of Lemma 4

The proof involves properties of the Krawtchouk polynomials. We recall that the
(binary) Krawtchouk polynomial of degree i and order n (which is an integer),
Pni (X) is de�ned for i ∈ {0, · · · , n} by:

Pni (X)
def
=

(−1)i

2i

i∑

j=0

(−1)j
(
X

j

)(
n−X
i− j

)
where

(
X

j

)
def
=

1

j!
X(X−1) · · · (X−j+1).

(13)
Notice that it follows on the spot from the de�nition of a Krawtchouk polynomial
that

Pnk (0) =
(−1)k

(
n
k

)

2k
. (14)

Let us de�ne the bias δ by

δ
def
= 1− 2Pe(〈h, e〉 = 1).

In other words Pe(〈h, e〉 = 1) = 1
2(1 − δ). These Krawtchouk polynomials are

readily related to δ. We �rst observe that

Pe(〈h, e〉 = 1) =

∑w
j=1
j odd

(
t
j

)(
n−t
w−j
)

(
n
w

) .

Moreover by observing that
∑w

j=0

(
t
j

)(
n−t
w−j
)

=
(
n
w

)
we can recast the following

evaluation of a Krawtchouk polynomial as

(−2)w(
n
w

) Pnw(t) =

∑w
j=0(−1)j

(
t
j

)(
n−t
w−j
)

(
n
w

)

=

∑w
j=0
j even

(
t
j

)(
n−t
w−j
)
−∑w

j=1
j odd

(
t
j

)(
n−t
w−j
)

(
n
w

)

=

(
n
w

)
− 2

∑w
j=1
j odd

(
t
j

)(
n−t
w−j
)

(
n
w

)

= 1− 2Pe(〈h, e〉 = 1)

= δ. (15)

To simplify notation we will drop the superscript n in the Krawtchouk polynomial
notation. It will be chosen as the length of the MDPC code when will use it in our
case. An important lemma that we will need is the following one.

45

— Internet: Portfolio 83

Lemma 5. For all x in {1, . . . , t}, we have

Pw(x)

Pw(x− 1)
=

(
1 +O

(
1

n

))
n− 2w +

√
(n− 2w)2 − 4w(n− w)

2(n− w)
.

Proof. This follows essentially from arguments taken in the proof of [26][Lemma
36, �7, Ch. 17]. The result we use appears however more explicitly in [24][Sec. IV]

where it is proved that if x is in an interval of the form
[
0, (1− α)

(
n/2−

√
w(n− w)

)]

for some constant α ∈ [0, 1) independent of x, n and w, then

Pw(x+ 1)

Pw(x)
=

(
1 +O

(
1

n

))
n− 2w +

√
(n− 2w)2 − 4w(n− w)

2(n− w)
.

For our choice of t this condition is met for x and the lemma follows immediately.

We are ready now to prove Lemma 4.

Proof of Lemma 4. We start the proof by using (15) which says that

δ =
(−2)w(

n
w

) Pnw(t).

We then observe that

(−2)w(
n
w

) Pnw(t) =
(−2)w(

n
w

) Pnw(t)

Pnw(t− 1)

Pnw(t− 1)

Pnw(t− 2)
. . .

Pnw(1)

Pnw(0)
Pnw(0)

=
(−2)w(

n
w

)
((

1 +O

(
1

n

))
n− 2w +

√
(n− 2w)2 − 4w(n− w)

2(n− w)

)t
Pnw(0) (by Lemma 5)

=

(
1 +O

(
1

n

))t(n− 2w +
√

(n− 2w)2 − 4w(n− w)

2(n− w)

)t
(by (14))

= e
t ln

(
1−2ω+

√
(1−2ω)2−4ω(1−ω)
2(1−ω)

)(
1 +O

(
t

n

))
where ω

def
=
w

n

= e
t ln

(
1−2ω+1−4ω+O(ω2)

2(1−ω)

)
(

1 +O

(
t

n

))

= e
t ln

(
1−3ω+O(ω2)

1−ω

)
(

1 +O

(
t

n

))

= e
−2tω+O

(
tw2

n2

)(
1 +O

(
t

n

))

= e−
2wt
n

(
1 +O

(
1√
n

))
,

46

84 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

where we used at the last equation that t = θ(
√
n) and w = θ(

√
n).

A.3 Estimation of the probability that a bit is incor-

rectly estimated by the �rst step of the bit �ipping

algorithm

We are here in the model where every bit is involved in w/2 parity-check equations
and each parity-check equation is of weight w. We assume that the bit-�ipping
algorithm consists in computing for each bit i the syndrome bits corresponding
to the parity-checks involving i and taking the majority vote of these syndrome
bits. We model each vote of a parity-check by a Bernoulli variable equal to 1 if the
information coming from this random variable says that the bit should be �ipped.
The parameter of this Bernoulli random variable depends on whether or not i is
incorrect. When i is correct, then the Bernoulli random variable is of parameter
p0. When i is incorrect, then the Bernoulli random variable is of parameter p1. We
bring in the quantities

q0
def
= P(�ip the bit|bit was correct) (16)

q1
def
= P(stay with the same value|bit was incorrect) (17)

Lemma 6. For b ∈ {0, 1}, we have

qb = O

(
(1− ε2)w/4√

πwε

)
.

Proof. For b ∈ {0, 1}, we let Xb
1, X

b
2, . . . , X

b
w/2 be independent random variables

of parameter pb. We obviously have

q0 ≤ P(

w/2∑

i=1

X0
i ≥ w/4)

q1 ≤ P(

w/2∑

i=1

X1
i ≤ w/4).

47

— Internet: Portfolio 85

By using Lemma 3 we obtain for q0

q0 ≤
(1− p0)

√
1
2

(12 − p0)
√

2πw2 (1− 1
2)
e−w/2D(1

2 ||p0)

≤ (1− p0)√
πwε

e−w/2D(1
2 || 12− 1

2
ε(1+O(1/w))) (18)

≤ (1− p0)√
πwε

e
w(ln(1−ε2)+O(1

w))
4 (19)

≤ O

(
(1− ε2)w/4√

πwε

)
(20)

Whereas for q1 we also obtain

q1 ≤
p1

√
1
2

(p1 − 1
2)
√

2πw2
1
2

e−w/2D(1
2 ||p1) (21)

≤ O

(
(1− ε2)w/4√

πwε

)
(22)

A.4 Proof of Theorem 1

We are ready now to prove Theorem 1. We use here the notation of Assumption
1. Recall that e0 denotes the true error vector. e1 is the value of vector e after one
round of iterative decoding in Algorithm 1. We let ∆e

def
= e0+e1. CallX0

1 , . . . , X
0
n−t

the values after one round of iterative decoding of the n−t bits which were without
error initially (that is the bits i such that e0i = 0) . Similarly let X1

1 , . . . , X
1
t be

the values after one round of iterative decoding of the t bits which were initially in
error (i.e. for which e0i = 1). We let

S0
def
= X0

1 + · · ·+X0
n−t

S1
def
= X1

1 + · · ·+X1
t

S0 is the number of errors that were introduced after one round of iterative decoding
coming from �ipping the n− t bits that were initially correct, that is the number
of i's for which e0i = 0 and e1i = 1. Similarly S1 is the number of errors that are
left after one round of iterative decoding coming from not �ipping the t bits that
were initially incorrect, that is the number of i's for which e0i = 1 and e1i = 0.

48

86 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Let S be the weight of ∆e. By assumption 1 we have

Perr ≤ P(|∆e| ≥ αt) = P(S ≥ αt),

for some α in (0, 1). We have

P(S ≥ αt) ≤ P(S0 ≥ αt/2 ∪ S1 ≥ αt/2)

≤ P(S0 ≥ αt/2) + P(S1 ≥ αt/2)

By Assumption 1, S0 is the sum of n − t Bernoulli variables of parameter q0. By
applying Lemma 3 we obtain

P(S0 ≥ αt/2) ≤
(1− q0)

√
αt

2(n−t)

(αt
2(n−t) − q0)

√
2π(n− t)(1− αt

2(n−t))
e
−(n−t)D

(
αt

2(n−t)

∣∣∣
∣∣∣q0
)

≤ 1√
απt

e
−(n−t)D

(
αt

2(n−t)

∣∣∣
∣∣∣q0
)

(23)

We observe now that

D

(
αt

2(n− t)

∣∣∣∣
∣∣∣∣q0
)
≥ D

(
αt

2(n− t)

∣∣∣∣∣

∣∣∣∣∣O
(

(1− ε2)w/4√
πwε

))
(24)

where we used the upper-bound on q0 coming from Lemma 6 and the fact that
D(x||y) ≥ D(x||y′) for 0 < y < y′ < x < 1. By using this and Lemma 2, we deduce

D

(
αt

2(n− t)

∣∣∣∣
∣∣∣∣q0
)
≥ αt

2(n− t) ln

(
αt

2(n− t)

)
− αt

2(n− t) ln

(
O

(
(1− ε2)w/4

ε
√
w

))
+O

(
αt

2(n− t)

)

≥ αt

2(n− t) ln

(
t
√
w

n

)
− αtw

8(n− t) ln
(
1− ε2

)
+O

(
t

n

)

≥ − αt

8(n− t) lnn− αtw

8(n− t) ln
(
1− ε2

)
+O

(
t

n

)
.

By plugging in this expression in (23) we obtain

P(S0 ≥ αt/2) ≤ 1√
απt

e
αtw
8

ln(1−ε2)+αt
8

ln(n)+O(t)

On the other hand we have

P(S1 ≥ αt/2) ≤ (1− q1)
√

α
2

(α2 − q1)
√

2πt(1− α
2)
e−tD(α2 ||q1)

≤ 1√
απt

e−tD(α2 ||q1) (25)

49

— Internet: Portfolio 87

Similarly to what we did above, by using the upper-bound on q1 of Lemma 6 and
D(x||y) ≥ D(x||y′) for 0 < y < y′ < x < 1, we deduce that

D
(α

2

∣∣∣
∣∣∣q1
)
≥ D

(
α

2

∣∣∣∣∣

∣∣∣∣∣O
(

(1− ε2)w/4
ε
√
w

))

By using together with Lemma 2 we obtain

D
(α

2

∣∣∣
∣∣∣q1
)
≥ −h(α/2)− α

2
ln

(
O

(
(1− ε2)w/4

ε
√
w

))
+O

(
(1− 4ε2)w/4

ε
√
w

)

≥ −αw
8

ln
(
1− ε2

)
+
α

8
lnn+O (1) .

By using this lower-bound in (25), we deduce

P(S1 ≥ αt/2) ≤ 1√
απt

e
αtw
8

ln(1−ε2)+αt
8

ln(n)+O(t).

B Proof of Proposition 1

Let us recall �rst the proposition

Proposition 1. Let f be a Boolean function which is equal to 1 on a fraction α of
inputs which can be implemented by a quantum circuit of depth Df and whose gate
complexity is Cf . Using Grover's algorithm for �nding an input x of f for which
f(x) = 1 can not take less quantum resources than a Grover's attack on AES-N as
soon as

Df · Cf
α

≥ 2NDAES−N · CAES−N
where DAES−N and CAES−N are respectively the depth and the complexity of the
quantum circuit implementing AES-N.

Proof. Following Zalka[36], the best way is to perform Grover's algorithm sequen-
tially with the maximum allowed number of iterations in order not to go beyond
MAXDEPTH. Grover's algorithm consists of iterations of the following procedure:

� Apply U : |0〉|0〉 →∑
x∈{0,1}n

1
2n/2
|x〉|f(x)〉.

� Apply a phase �ip on the second register to get
∑

x∈{0,1}n
1

2n/2
(−1)f(x)|x〉|f(x)〉.

� Apply U †.

50

88 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

If we perform I iterations of the above for I ≤ 1√
α
then the winning probability is

upper bounded by αI2. In our setting, we can perform I = MAXDEPTH
Df

sequentially

before measuring, and each iteration costs time Cf . At each iteration, we succeed
with probability αI2 and we need to repeat this procedure 1

αI2
times to get a result

with constant probability. From there, we conclude that the total complexity Q is:

Q =
1

αI2
· I · Cf =

Df · Cf
αMAXDEPTH

. (26)

A similar reasoning performed on using Grover's search on AES-N leads to a quan-
tum complexity

QAES−N =
2NDAES−N · CAES−N

MAXDEPTH
. (27)

The proposition follows by comparing (26) with (27).

51

— Internet: Portfolio 89

Classic McEliece:
conservative code-based cryptography

29 November 2017

Principal submitter

This submission is from the following team, listed in alphabetical order:

• Daniel J. Bernstein, University of Illinois at Chicago
• Tung Chou, Osaka University
• Tanja Lange, Technische Universiteit Eindhoven
• Ingo von Maurich, self
• Rafael Misoczki, Intel Corporation
• Ruben Niederhagen, Fraunhofer SIT
• Edoardo Persichetti, Florida Atlantic University
• Christiane Peters, self
• Peter Schwabe, Radboud University
• Nicolas Sendrier, Inria
• Jakub Szefer, Yale University
• Wen Wang, Yale University

E-mail address (preferred): authorcontact-mceliece@box.cr.yp.to

Telephone (if absolutely necessary): +1-312-996-3422

Postal address (if absolutely necessary): Daniel J. Bernstein, Department of Computer Sci-
ence, University of Illinois at Chicago, 851 S. Morgan (M/C 152), Room 1120 SEO, Chicago,
IL 60607–7053.

Auxiliary submitters: There are no auxiliary submitters. The principal submitter is the
team listed above.

Inventors/developers: The inventors/developers of this submission are the same as the
principal submitter. Relevant prior work is credited below where appropriate.

Owner: Same as submitter.

Signature: ×. See also printed version of “Statement by Each Submitter”.

Document generated with the help of pqskeleton version 20171123. This submission is also
known as “Boring Binary Goppa codes”; for the meaning of “boring” see https://cr.yp.to/
talks/2015.10.05/slides-djb-20151005-a4.pdf and https://tinyurl.com/ydg55pta.

1

90 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Contents

1 Introduction 4

2 General algorithm specification (part of 2.B.1) 5

2.1 Notation . 5

2.2 Parameters . 5

2.3 Key generation . 6

2.4 Encoding subroutine . 6

2.5 Decoding subroutine . 7

2.6 Encapsulation . 8

2.7 Decapsulation . 8

2.8 Representation of objects as byte strings . 9

3 List of parameter sets (part of 2.B.1) 11

3.1 Parameter set kem/mceliece6960119 . 11

3.2 Parameter set kem/mceliece8192128 . 11

4 Design rationale (part of 2.B.1) 11

4.1 One-wayness . 11

4.2 Better efficiency for the same one-wayness 14

4.3 Indistinguishability against chosen-ciphertext attacks 15

5 Detailed performance analysis (2.B.2) 16

5.1 Overview of implementations . 16

5.2 Description of platforms . 17

5.3 Time . 17

5.4 Sizes of inputs and outputs . 17

5.5 Area . 18

5.6 How parameters affect performance . 18

6 Expected strength (2.B.4) in general 18

2

— Internet: Portfolio 91

6.1 Provable-security overview . 18

6.2 Abstract conversion . 19

6.3 Non-quantum reduction . 21

6.4 Quantum reduction . 22

6.5 Relating the abstract conversion to the specification 24

7 Expected strength (2.B.4) for each parameter set 25

7.1 Parameter set kem/mceliece6960119 . 25

7.2 Parameter set kem/mceliece8192128 . 25

8 Analysis of known attacks (2.B.5) 25

8.1 Information-set decoding, asymptotically . 25

8.2 Information-set decoding, concretely . 26

8.3 Key recovery . 27

8.4 Chosen-ciphertext attacks . 27

9 Advantages and limitations (2.B.6) 28

References 28

A Statements 34

A.1 Statement by Each Submitter . 35

A.2 Statement by Patent (and Patent Application) Owner(s) 37

A.3 Statement by Reference/Optimized Implementations’ Owner(s) 38

3

92 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

1 Introduction

The first code-based public-key cryptosystem was introduced in 1978 by McEliece [39]. The
public key specifies a random binary Goppa code. A ciphertext is a codeword plus ran-
dom errors. The private key allows efficient decoding: extracting the codeword from the
ciphertext, identifying and removing the errors.

The McEliece system was designed to be one-way (OW-CPA), meaning that an attacker
cannot efficiently find the codeword from a ciphertext and public key, when the codeword
is chosen randomly. The security level of the McEliece system has remained remarkably
stable, despite dozens of attack papers over 40 years. The original McEliece parameters were
designed for only 264 security, but the system easily scales up to “overkill” parameters that
provide ample security margin against advances in computer technology, including quantum
computers.

The McEliece system has prompted a tremendous amount of followup work. Some of this
work improves efficiency while clearly preserving security:1 this includes a “dual” PKE
proposed by Niederreiter [42], software speedups such as [7], and hardware speedups such as
[58].

Furthermore, it is now well known how to efficiently convert an OW-CPA PKE into a KEM
that is IND-CCA2 secure against all ROM attacks. This conversion is tight, preserving the
security level, under two assumptions that are satisfied by the McEliece PKE: first, the PKE
is deterministic (i.e., decryption recovers all randomness that was used); second, the PKE
has no decryption failures for valid ciphertexts. Even better, very recent work [48] suggests
the possibility of achieving similar tightness for the broader class of QROM attacks. The
risk that a hash-function-specific attack could be faster than a ROM or QROM attack is
addressed by the standard practice of selecting a well-studied, high-security, “unstructured”
hash function.

This submission Classic McEliece (CM) brings all of this together. It presents a KEM de-
signed for IND-CCA2 security at a very high security level, even against quantum comput-
ers. The KEM is built conservatively from a PKE designed for OW-CPA security, namely
Niederreiter’s dual version of McEliece’s PKE using binary Goppa codes. Every level of
the construction is designed so that future cryptographic auditors can be confident in the
long-term security of post-quantum public-key encryption.

1Other work includes McEliece variants whose security has not been studied as thoroughly. For example,
many proposals replace binary Goppa codes with other families of codes, and lattice-based cryptography
replaces “codeword plus random errors” with “lattice point plus random errors”. Code-based cryptography
and lattice-based cryptography are two of the main types of candidates identified in NIST’s call for Post-
Quantum Cryptography Standardization. This submission focuses on the classic McEliece system precisely
because of how thoroughly it has been studied.

4

— Internet: Portfolio 93

2 General algorithm specification (part of 2.B.1)

2.1 Notation

The list below introduces the notation used in this section. It is meant as a reference guide
only; for complete definitions of the terms listed, refer to the appropriate text. Some other
symbols are also used occasionally; they are introduced in the text where appropriate.

n The code length (part of the CM parameters)

k The code dimension (part of the CM parameters)

t The guaranteed error-correction capability (part of the CM parameters)

q The size of the field used (part of the CM parameters)

m log2 q (part of the CM parameters)

H A cryptographic hash function (part of the CM parameters)

` Length of a hash digest (part of the CM parameters)

g A polynomial in Fq[x] (part of the private key)

αi An element of the finite field Fq (part of the private key)

Γ (g, α1, . . . , αn) (part of the private key)

s A bit string of length n (part of the private key)

(s, Γ) A CM private key

T A CM public key

e A bit string of length n and Hamming weight t

C A ciphertext encapsulating a session key

C0 A bit string of length n − k (part of the ciphertext)

C1 A bit string of length ` (part of the ciphertext)

Elements of Fn
2 , such as codewords and error vectors, are always viewed as column vectors.

This convention avoids all transpositions. Beware that this differs from a common convention
in coding theory, namely to write codewords as row vectors but to transpose the codewords
for applying parity checks.

2.2 Parameters

The CM parameters are implicit inputs to the CM algorithms defined below. A CM param-
eter set specifies the following:

• A positive integer m. This also defines a parameter q = 2m .

• A positive integer n with n ≤ q.

5

94 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

• A positive integer t ≥ 2 with mt < n. This also defines a parameter k = n − mt.

• A monic irreducible polynomial f(z) ∈ F2[z] of degree m. This defines a representation
F2[z]/f(z) of the field Fq.

• A positive integer `, and a cryptographic hash function H that outputs ` bits.

2.3 Key generation

Given a set of CM parameters, a user generates a CM key pair as follows:

1. Generate a uniform random monic irreducible polynomial g(x) ∈ Fq[x] of degree t.

2. Select a uniform random sequence (α1, α2, . . . , αn) of n distinct elements of Fq.

= αi−13. Compute the t × n matrix H̃ = {hi,j } over Fq, where hi,j /g(αj) for i = 1, . . . , t j

and j = 1, . . . , n.

4. Form an mt × n matrix Ĥ over F2 by replacing each entry c0 + c1z + · · · + cm−1zm−1

˜of H with a column of t bits c0, c1, . . . , cm−1.

ˆ ˆ5. Apply Gaussian elimination to H to reduce H to systematic form (In−k | T), where
In−k is an (n − k) × (n − k) identity matrix. If Gaussian elimination does not produce

ˆIn−k (i.e., H cannot be transformed to systematic form), go back to Step 1.

6. Generate a uniform random n-bit string s.

7. Put Γ = (g, α1, α2, . . . , αn) and output (s, Γ) as private key and T as public key.

The second part of the private key, Γ = (g, α1, α2, . . . , αn), describes a binary Goppa code of
length n and dimension k = n − mt. The public key T is a binary (n − k) × k matrix such
that H = (In−k | T) is a parity-check matrix for the same Goppa code.

2.4 Encoding subroutine

The encoding subroutine takes two inputs: a weight-t column vector e ∈ Fn
2 ; and a public

key T , i.e., an (n − k) × k matrix over F2. The subroutine returns a vector C0 ∈ Fn
2
−k defined

as follows:

1. Define H = (In−k | T).

2. Compute and return C0 = He ∈ Fn
2
−k .

6

— Internet: Portfolio 95

2.5 Decoding subroutine

The decoding subroutine decodes C0 ∈ Fn
2
−k to a word e of Hamming weight wt(e) = t with

C0 = He if such a word exists; otherwise it returns failure.

∈ Fn−kFormally, this subroutine takes two inputs: a vector C0 2 ; and a private key (s, Γ).
The subroutine has two possible return values, defined in terms of the public key T that
corresponds to (s, Γ):

• If C0 was returned by the encoding subroutine on input e and T , then the decoding
subroutine returns e. In other words, if there exists a weight-t vector e ∈ Fn

2 such that
C0 = He with H = (In−k | T), then the decoding subroutine returns e.

• If C0 does not have the form He for any weight-t vector e ∈ Fn
2 , then the decoding

subroutine returns ⊥ (failure).

The subroutine works as follows:

1. Extend C0 to v = (C0, 0, . . . , 0) ∈ Fn
2 by appending k zeros.

2. Find the unique codeword c in the Goppa code defined by Γ that is at distance ≤t
from v. If there is no such codeword, return ⊥.

3. Set e = v + c.

4. If wt(e) = t and C0 = He, return e. Otherwise return ⊥.

There are several standard algorithms for Step 2 of this subroutine. For references and
speedups see generally [7] and [17].

To see why the subroutine works, note first that the “syndrome” Hv is C0, because the first
n − k positions of v are multiplied by the identity matrix and the remaining positions are
zero. If C0 has the form He where e has weight t then Hv = He, so c = v + e is a codeword.
This codeword has distance exactly t from v, and it is the unique codeword at distance ≤t
from v since the minimum distance of Γ is at least 2t + 1. Hence Step 2 finds c, Step 3 finds
e, and Step 4 returns e. Conversely, if the subroutine returns e in Step 4 then e has been
verified to have weight t and to have C0 = He, so if C0 does not have this form then the
subroutine must return ⊥.
The logic here relies on Step 2 always finding a codeword at distance t if one exists. It does
not rely on Step 2 failing in the cases that a codeword does not exist: the subroutine remains
correct if, instead of returning ⊥, Step 2 chooses some vector c ∈ Fn

2 and continues on to
Step 3.

Implementors are cautioned that it is important to avoid leaking secret information through
side channels, and that the distinction between success and failure in this subroutine is
secret in the context of the Classic McEliece KEM. In particular, immediately stopping the

7

96 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

computation when Step 2 returns ⊥ would reveal this distinction through timing, so it is
recommended for implementors to have Step 2 always choose some c ∈ Fn

2 .

As a further implementation note: In order to test C0 = He, the decoding subroutine
does not need to recompute H from Γ as in key generation. Instead it can use any parity-
check matrix H 0 for the same code. The computation uses v = (C0, 0, . . . , 0) and compares
H 0v to H 0e. The results are equal if and only if v + e = c is a codeword, which implies
He = H(v + c) = Hv + Hc = Hv = C0. There are various standard choices of H 0 related

ˆto H that are easily recovered from Γ, and that can be applied to vectors without using
quadratic space.

Remark. Note that the triple of algorithms (Key Generation, Encoding, Decoding) is essen-
tially Niederreiter’s “dual” version [42] of the McEliece cryptosystem (plus a private string
s not used in decoding; s is used in decapsulation below). We use the binary Goppa code
family, as in McEliece’s original proposal [39], rather than variants such as the GRS family
considered by Niederreiter. See Section 4 for further history.

2.6 Encapsulation

The sender generates a session key K and its ciphertext C as follows:

1. Generate a uniform random vector e ∈ Fn
2 of weight t.

2. Use the encoding subroutine on e and public key T to compute C0.

3. Compute C1 = H(2, e); see Section 2.8 for H input encodings. Put C = (C0, C1).

4. Compute K = H(1, e, C); see Section 2.8 for H input encodings.

5. Output session key K and ciphertext C.

2.7 Decapsulation

The receiver decapsulates the session key K from ciphertext C as follows:

1. Split the ciphertext C as (C0, C1) with C0 ∈ Fn
2
−k and C1 ∈ F`

2.

2. Set b ← 1.

3. Use the decoding subroutine on C0 and private key Γ to compute e. If the subroutine
returns ⊥, set e ← s and b ← 0.

4. Compute C1
0 = H(2, e); see Section 2.8 for H input encodings.

5. If C1
0 =6 C1, set e ← s and b ← 0.

8

— Internet: Portfolio 97

6. Compute K = H(b, e, C); see Section 2.8 for H input encodings.

7. Output session key K.

If C is a legitimate ciphertext then C = (C0, C1) with C0 = He for some e ∈ Fn
2 of weight

t and C1 = H(2, e). The decoding algorithm will return e as the unique weight-t vector
and the C1

0 = C1 check will pass, thus b = 1 and K matches the session key computed in
encapsulation.

As an implementation note, the output of decapsulation is unchanged if “e ← s” in Step 3
is changed to assign something else to e. Implementors may prefer, e.g., to set e to a fixed
n-bit string, or a random n-bit string other than s. However, the definition of decapsulation
does depend on e being set to s in Step 5.

Implementors are again cautioned that it is important to avoid leaking secret information
through side channels. In particular, the distinction between failures in Step 3, failures
in Step 5, and successes is secret information, and branching would leak this information
through timing. It is recommended for implementors to always go through the same sequence
of computations, using arithmetic to simulate tests and conditional assignments.

2.8 Representation of objects as byte strings

Vectors over F2. If r is a multiple of 8 then an r-bit vector v = (v0, v1, . . . , vr−1) ∈ Fr
2 is

represented as the following sequence of r/8 bytes:

(v0 +2v1 +4v2 +· · ·+128v7, v8+2v9 +4v10+· · ·+128v15, . . . , vr−8+2vr−7 +4vr−6+· · ·+128vr−1).

If r is not a multiple of 8 then an r-bit vector v = (v0, v1, . . . , vr−1) ∈ Fr
2 is zero-padded to

length between r + 1 and r + 7, whichever is a multiple of 8, and then represented as above.

Session keys. A session key K is an element of F`
2. It is represented as a d`/8e-byte string.

Ciphertexts. A ciphertext C has two components: C0 ∈ F2
n−k and C1 ∈ F2

` . The cipher-
text is represented as the concatenation of the dmt/8e-byte string representing C0 and the
d`/8e-byte string representing C1.

Hash inputs. There are three types of hash inputs: (2, v); (1, v, C); and (0, v, C). Here
v ∈ Fn

2 , and C is a ciphertext.

The initial 0, 1, or 2 is represented as a byte. The vector v is represented as the next dn/8e
bytes. The ciphertext, if present, is represented as the next dmt/8e + d`/8e bytes.

9

98 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Public keys. The public key T , which is essentially a mt × (n − mt) matrix, is represented
in a row-major fashion. Each row of T is represented as a dk/8e-byte string, and the public
key is represented as the mtdk/8e-byte concatenation of these strings.

P∼ m−1 iField elements. Each element of Fq = F2[z]/f(z) has the form i=0 ciz where ci ∈ F2.
The representation of the field element is the representation of the vector (c0, c1, . . . , cm−1) ∈
Fm
2 .

Private keys. A private key has the form (s, g, α1, α2, . . . , αn). This is represented as the
concatenation of three parts:

• The dn/8e-byte string representing s ∈ Fn
2 .

• The tdm/8e-byte string representing g = g0 + g1x + · · · + gt−1xt−1 + xt, namely the
concatenation of the representations of the field elements g0, g1, . . . , gt−1.

• The representation defined below of the sequence (α1, . . . , αn).

The obvious representation of (α1, . . . , αn) would be as a sequence of n field elements. We
specify a different representation that simplifies fast constant-time decoding algorithms:
(α1, . . . , αn) are converted into a (2m − 1)2m−1-bit vector of “control bits” defined below,
and then this vector is represented as d(2m − 1)2m−4e bytes as above.
Recall that a “Beneš network” is a series of 2m − 1 stages of swaps applied to an array of
q = 2m objects (a0, a1, . . . , aq−1). The first stage conditionally swaps a0 and a1, conditionally
swaps a2 and a3, conditionally swaps a4 and a5, etc., as specified by a sequence of q/2 control
bits (1 meaning swap, 0 meaning leave in place). The second stage conditionally swaps a0

and a2, conditionally swaps a1 and a3, conditionally swaps a4 and a6, etc., as specified by the
next q/2 control bits. This continues through the mth stage, which conditionally swaps a0

and aq/2, conditionally swaps a1 and aq/2+1, etc. The (m+1)st stage is just like the (m−1)st
stage (with new control bits), the (m + 2)nd stage is just like the (m − 2)nd stage, and so
on through the (2m − 1)st stage.

Finally, (α1, . . . , αn) are represented as the control bits for a Beneš network that, when
12 11 12 + z11 10 12 + z10applied to all q field elements (0, z , z , z , z , z , . . .) in reverse lexicographic

order, produces an array that begins (α1, α2, . . . , αn) and continues with the remaining field
elements in some order. An algorithm by Lev, Pippenger, and Valiant [35] computes these
control bits at reasonably high speed given the target array.

10

— Internet: Portfolio 99

3 List of parameter sets (part of 2.B.1)

3.1 Parameter set kem/mceliece6960119

13 +zKEM with m = 13, n = 6960, t = 119, ` = 256. Field polynomial f(z) = z 4 +z3 +z +1.
Hash function: SHAKE256 with 32-byte output.

3.2 Parameter set kem/mceliece8192128

13 +zKEM with m = 13, n = 8192, t = 128, ` = 256. Field polynomial f(z) = z 4 +z3 +z +1.
Hash function: SHAKE256 with 32-byte output.

4 Design rationale (part of 2.B.1)

4.1 One-wayness

There is a long history of trapdoor systems (in modern terminology: PKEs) that are designed
to be one-way (in modern terminology: OW-CPA). One-wayness means that it is difficult
to invert the map from input to ciphertext, given the public key, when the input is chosen
uniformly at random.

The McEliece system is one of the oldest proposals, almost as old as RSA. RSA has suffered
dramatic security losses, while the McEliece system has maintained a spectacular security
track record unmatched by any other proposals for post-quantum encryption. This is the
reason that we have chosen to submit the McEliece system.

Here is more detail to explain what we mean by “spectacular security track record”.

With the key-size optimizations discussed below, the McEliece system uses a key size of
(c0 + o(1))b2(lg b)2 bits to achieve 2b security against all inversion attacks that were known
in 1978, when the system was introduced. Here lg means logarithm base 2, o(1) means
something that converges to 0 as b →∞, and c0 ≈ 0.7418860694.

The best attack at that time was from 1962 Prange [47]. After 1978 there were 25 publications
studying the one-wayness of the system and introducing increasingly sophisticated non-
quantum attack algorithms:

1. 1981 Clark–Cain [18], crediting Omura.

2. 1988 Lee–Brickell [33].

3. 1988 Leon [34].

4. 1989 Krouk [32].

11

100 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

5. 1989 Stern [52].

6. 1989 Dumer [24].

7. 1990 Coffey–Goodman [19].

8. 1990 van Tilburg [55].

9. 1991 Dumer [25].

10. 1991 Coffey–Goodman–Farrell [20].

11. 1993 Chabanne–Courteau [15].

12. 1993 Chabaud [16].

13. 1994 van Tilburg [56].

14. 1994 Canteaut–Chabanne [11].

15. 1998 Canteaut–Chabaud [12].

16. 1998 Canteaut–Sendrier [13].

17. 2008 Bernstein–Lange–Peters [8].

18. 2009 Bernstein–Lange–Peters–van Tilborg [10].

19. 2009 Finiasz–Sendrier [27].

20. 2011 Bernstein–Lange–Peters [9].

21. 2011 May–Meurer–Thomae [37].

22. 2012 Becker–Joux–May–Meurer [3].

23. 2013 Hamdaoui–Sendrier [29].

24. 2015 May–Ozerov [38].

25. 2016 Canto Torres–Sendrier [54].

What is the cumulative impact of all this work? Answer: With the same key-size optimiza-
tions, the McEliece system uses a key size of (c0 + o(1))b2(lg b)2 bits to achieve 2b security
against all non-quantum attacks known today, where c0 is exactly the same constant. All of
the improvements have disappeared into the o(1).

This does not mean that the required key size is precisely the same—that dozens of attack
papers over 40 years have not accomplished anything. What it means is that the required
change in key size is below 1% once b is large enough; below 0.1% once b is large enough;
etc. This is a remarkably stable security story.

12

— Internet: Portfolio 101

What about quantum attacks? Grover’s algorithm is applicable, reducing the attack cost
to asymptotically its square root; see generally [5]. In other words, the key now needs
(4c0 + o(1))b2(lg b)2 bits. As before, further papers on the topic have merely improved the
o(1).

All of the papers mentioned above are focusing on the most effective attack strategy known,
namely “information-set decoding”. This strategy does not exploit any particular structure of
a generator matrix G: it recovers a low-weight error vector e given a uniform random matrix
G and Gm + e for some m. Experiments are consistent with the theory that McEliece’s
matrices G behave like uniform random matrices in this context.

There are also many papers studying attacks that instead recover McEliece’s private key from
the public key G. Recovering the private key also breaks one-wayness, since the attacker can
then use the receiver’s decryption algorithm. These attacks can be much faster than a brute-
force search through private keys: for example, Sendrier’s “support splitting” algorithm [49]
quickly finds α1, . . . , αn given g provided that n = 2q. More generally, whether or not n = 2q,
support splitting finds α1, . . . , αn given g and given the set {α1, . . . , αn}. (This can be viewed
as a reason to keep n somewhat smaller than 2q, since then there are many possibilities for
the set, along with many possibilities for g; one of our suggested parameter sets provides
this extra defense.) However, despite this and other interesting speedups, the state-of-the-art
key-recovery attacks are vastly slower than information-set decoding.

Various authors have proposed replacing the binary Goppa codes in McEliece’s system with
other families of codes: see, e.g., [2, 4, 40, 42, 44, 41]. Often these replacements are advertised
as allowing smaller public keys. Unfortunately, many of these proposals have turned out to
allow unacceptably fast recovery of the private key (or of something equivalent to the private
key, something that allows fast inversion of the supposedly one-way function). Some small-
key proposals are unbroken, but in this submission we focus on binary Goppa codes as the
traditional, conservative, well-studied choice.

Authors of attacks on other codes often study whether binary Goppa codes are affected
by their attacks. These studies consistently show that McEliece’s system is far beyond all
known attacks. For example, 2013 Faugère–Gauthier-Umaña–Otmani–Perret–Tillich [26]
showed that “high-rate” binary Goppa codes can be distinguished from random codes. The
worst-case possibility is that this distinguisher somehow allows an inversion attack faster
than attacks for random codes. However, the distinguisher stops working

• at 8 errors for n = 1024 (where McEliece’s original parameters used 50 errors),

• at 20 errors for n = 8192 (where our suggested parameters use more than 100 errors),

etc. As another example, the attack in [21] reaches degree m = 2 where McEliece’s original
parameters used degree m = 10 and where our suggested parameters use degree m = 13.

13

102 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

4.2 Better efficiency for the same one-wayness

The main focus of this submission is security, but we also take reasonable steps to improve ef-
ficiency when this clearly does not compromise security. In particular, we make the following
two modifications suggested by Niederreiter [42].

First modification. The goal of the public key in McEliece’s system is to communicate
an [n, k] linear code C over F2: a k-dimensional linear subspace of Fn

2 . This means commu-
nicating the ability to generate uniform random elements of C. McEliece accomplished this
by choosing the public key to be a uniform random generator matrix G for C: specifically,
multiplying any generator matrix for C by a uniform random invertible matrix.

Niederreiter accomplished this by instead choosing the public key to be the unique
systematic-form generator matrix for C if one exists. This means a generator matrix of � �
the form

T
where T is some (n − k) × k matrix and Ik is the k × k identity matrix.

Ik

Approximately 29% of choices of C have this form, so key generation becomes about 3.4×
slower on average, but now the public key occupies only k(n − k) bits instead of kn bits.
Note that sending a systematic-form generator matrix also implies sending a parity-check
matrix H for C, namely (In−k | T).

Any attack against the limited set of codes allowed by Niederreiter implies an attack with
probability 29% against the full set of codes allowed by McEliece; this is a security difference
of at most 2 bits. Furthermore, any attack against Niederreiter’s public key can be used to
attack any generator matrix for the same code, and in particular McEliece’s public key, since
anyone given any generator matrix can quickly compute Niederreiter’s public key by linear
algebra.

Second modification. McEliece’s ciphertext has the form Ga + e. Here G is a random
n×k generator matrix for a code C as above; a is a column vector of length k; e is a weight-w
column vector of length n; and the ciphertext is a column vector of length n. McEliece’s
inversion problem is to compute a uniform random input (a, e) given G and the ciphertext
Ga + e.

Niederreiter’s ciphertext instead has the form He. Here H is the unique systematic-form
(n − k) × n parity-check matrix for C, and e is a weight-w column vector of length n, so
the ciphertext is a column vector of length just n − k, shorter than McEliece’s ciphertext.
Niederreiter’s inversion problem is to compute a uniform random input e given H and the
ciphertext He.

Niederreiter’s inversion problem is equivalent to McEliece’s inversion problem for the same
code. In particular, any attack recovering a random e from Niederreiter’s He and H can
be used with negligible overhead to recover a random (a, e) from McEliece’s Ga + e and G.
Specifically, compute H from G, multiply H by Ga + e to obtain HGa + He = He, apply
the attack to recover e from He, subtract e from Ga + e to obtain Ga, and recover a by
linear algebra.

14

— Internet: Portfolio 103

4.3 Indistinguishability against chosen-ciphertext attacks

Assume that McEliece’s system is one-way. Niederreiter’s system is then also one-way: the
attacker cannot efficiently compute a uniform random weight-w vector e given Niederreiter’s
public key H and the ciphertext He.

What the user actually needs is more than one-wayness. The user is normally sending a
plaintext with structure, perhaps a plaintext that can simply be guessed. Furthermore, the
attacker can try modifying ciphertexts to see how the receiver reacts. McEliece’s original
PKE was not designed to resist, and does not resist, such attacks. In modern terminology,
the user needs IND-CCA2 security.

There is a long literature studying the IND-CCA2 security of various PKE constructions,
and in particular constructions built from an initial PKE assumed to have OW-CPA secu-
rity. An increasingly popular simplification here is to encrypt the user’s plaintext with an
authenticated cipher such as AES-GCM. The public-key problem is then simply to send
an unpredictable session key to use as the cipher key. Formally, our design goal here is
to build a KEM with IND-CCA2 security; “KEM-DEM” composition [22] then produces a
PKE with IND-CCA2 security, assuming a secure DEM. More complicated PKE construc-
tions can pack some plaintext bytes into the ciphertext but are more difficult to audit and
would be contrary to our goal of producing high confidence in security.

For our KEM construction we follow the best practices established in the literature:

• We use a uniform random input e. We compute the session key as a hash of e.

• Our ciphertext is the original ciphertext plus a “confirmation”: another cryptographic
hash of e.

• After using the private key to compute e from a ciphertext, we recompute the ciphertext
(including the confirmation) and check that it matches.

• If decryption fails (i.e., if computing e fails or the recomputed ciphertext does not
match), we do not return a KEM failure: instead we return a pseudorandom function
of the ciphertext, specifically a cryptographic hash of a separate private key and the
ciphertext.

We use a standard, thoroughly studied cryptographic hash function. We ensure that the
three hashes mentioned above are obtained by applying this function to input spaces that
are visibly disjoint. We choose the input details to simplify implementations that run in
constant time, in particular not leaking whether decryption failed.

There are intuitive arguments for these practices, and to some extent there are also proofs.
Specifically, a KEM construction 15 years ago from Dent [23, Section 6] features a tight proof
of security against ROM attacks, assuming OW-CPA security of the underlying PKE; and a
very recent KEM construction by Saito, Xagawa, and Yamakawa [48, Theorem 5.2] features a
tight proof of security against the broader class of QROM attacks, under somewhat stronger

15

104 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

assumptions. Dent’s theorem relies on the first three items in the list above, and the XYZ
theorem from [48] relies on the first, third, and fourth items. Both theorems also rely on
two PKE features that are provided by the PKE we use: the ciphertext is a deterministic
function of the input e, and there are no decryption failures for legitimate ciphertexts. The
theorems as stated do not apply directly to our KEM construction, but our preliminary
analysis indicates that the proof ideas do apply; see Section 6. The deterministic PKE, the
fact that decryption always works for legitimate ciphertexts, and the overall simplicity of
the KEM construction should make it possible to formally verify complete proofs, building
further confidence.

5 Detailed performance analysis (2.B.2)

5.1 Overview of implementations

We are supplying, as part of this submission, reference implementations for both of our
parameter sets, mceliece6960119 and mceliece8192128. Reference implementations are
designed for clarity, not performance, so measuring their performance is not meaningful.

We are also supplying, as part of this submission, two additional software implementations
for the larger parameter set, mceliece8192128. The sse implementation is (partially) vec-
torized using Intel’s 128-bit (SSE4.1) vector instructions, and in particular provides much
faster decapsulation performance than the ref implementation. The avx implementation is
(partially) further vectorized using Intel’s 256-bit vector instructions.

The sse and avx implementations are interoperable with the ref implementation, and pro-
duce identical test vectors. All three implementations are also designed to avoid all data flow
from secrets to timing,2 stopping timing attacks such as [53]. Formally verified protection
against timing attacks can be provided by a combination of architecture documentation as
recommended in [6] and [30], and timing-aware compilation as in [1].

We report measurements of the performance of mceliece8192128/avx as our speed esti-
mate for mceliece8192128 on the NIST PQC Reference Platform. To meet NIST’s formal
requirements, we also declare these numbers to be our current speed estimate for the smaller
mceliece6960119 parameter set. This is not an unreasonable estimate: the field size is the
same, and other sizes are similar.

We also report preliminary measurements of key generation and decoding in hardware from
an FPGA running a reference hardware design [58], for both parameter sets. The computa-
tions in McEliece’s cryptosystem are particularly well suited for hardware implementations.
The key generator is online at http://caslab.csl.yale.edu/code/keygen/.

2Each attempted key generation succeeds with probability about 29%, as mentioned earlier, so the total
time for key generation varies. However, the final successful key generation takes constant time, and it uses
separate random numbers from the unsuccessful key-generation attempts. In other words, the information
about secrets that is leaked through timing is information about secrets that are not used.

16

— Internet: Portfolio 105

5.2 Description of platforms

The software measurements were collected using supercop-20171020 running on a com-
puter named hiphop. The CPU on hiphop is an Intel Xeon E3-1220 v3 (Haswell) run-
ning at 3.10GHz. This CPU does not support hyperthreading. It does support Turbo
Boost but /sys/devices/system/cpu/intel_pstate/no_turbo was set to 1, disabling
Turbo Boost. hiphop has 32GB of RAM and runs Ubuntu 16.04. Benchmarks used
./do-part, which ran on one core of the CPU. The compiler list was reduced to just
gcc -march=native -mtune=native -O3 -fomit-frame-pointer -fwrapv.

NIST says that the “NIST PQC Reference Platform” is “an Intel x64 running Windows
or Linux and supporting the GCC compiler.” hiphop is an Intel x64 running Linux and
supporting the GCC compiler. Beware, however, that different Intel CPUs have different
cycle counts.

The hardware design was synthesized for and measured on a medium-sized Altera Stratix V
FPGA (5SGXEA7N).

5.3 Time

mceliece8192128 software: Encapsulation took slightly under 300000 cycles. Specifically,
the median of 31 timings in the first run was 296036 cycles; the median of 31 timings in the
second run was 295392 cycles; and the median of 31 timings in the third run was 295932
cycles.

Decapsulation took slightly over 450000 cycles. Specifically, the three medians were 458556
cycles, 458476 cycles, and 458340 cycles.

Key generation took billions of cycles, with medians of 4010278828 cycles, 6008245724 cycles
(about 2 seconds), and 4005886024 cycles. Each key-generation attempt took about 2 billion
cycles.

mceliece8192128 hardware: Each key-generation attempt takes 1173750 cycles, which is
5.08ms with the FPGA running at 231MHz. Decoding takes 17140 cycles, which is 0.074ms
with the FPGA running at 231MHz.

mceliece6960119 hardware: Each key-generation attempt takes 966400 cycles, which is
3.85ms with the FPGA running at 248MHz. Decoding takes 17055 cycles, which is 0.060ms
with the FPGA running at 248MHz.

5.4 Sizes of inputs and outputs

mceliece8192128 uses 1357824-byte public keys, 14080-byte private keys, 240-byte cipher-
texts, and 32-byte session keys.

mceliece6960119 uses 1047319-byte public keys, 13908-byte private keys, 226-byte cipher-

17

106 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

texts, and 32-byte session keys.

5.5 Area

On the medium-sized Altera Stratix V FPGA described above, the mceliece8192128 hard-
ware design takes 227,750 registers (flip-flops), 129,059 ALMs (55% of available logic re-
sources), 1,126 RAM blocks (44% of available on-chip RAM), and 4 DSP blocks (1.6% of
available DSPs). The mceliece6960119 hardware design takes 223,232 registers (flip-flops),
121,806 ALMs (52% of logic resources), 961 RAM blocks (38% of available on-chip RAM),
and 6 DSP blocks (2.3% of available DSPs). Note that this includes only key generation and
decoding; full decapsulation and encapsulation will use more space, for example for hashing.

5.6 How parameters affect performance

The ciphertext size is n − k bits. Normally the rate R = k/n is chosen around 0.8 (see
Section 8), so the ciphertext size is around 0.2n bits, i.e., n/40 bytes, plus 32 bytes for
confirmation.

The public-key size is k(n − k) bits. For R ≈ 0.8 this is around 0.16n2 bits, i.e., n2/50 bytes.

Generating the public key uses n3+o(1) operations with standard Gaussian elimination. There
1+o(1)are asymptotically faster matrix algorithms. Private-key operations use just n opera-

tions with standard algorithms.

6 Expected strength (2.B.4) in general

This submission is designed and expected to provide IND-CCA2 security.

See Section 7 for the quantitative security of our two suggested parameter sets, and Section 8
for analysis of known attacks. The rest of this section analyzes the KEM from a provable-
security perspective.

6.1 Provable-security overview

In general, a security theorem for a cryptographic system C states that an attack A of type
T against C implies an attack A0 against an underlying problem P . Here are four important
ways to measure the quality of a security theorem:

• The security of the underlying problem P . The theorem is useless if P is easy to
break, and the value of the theorem is questionable if the security of P has not been
thoroughly studied.

18

— Internet: Portfolio 107

• The “tightness” of the theorem: i.e., the closeness of the efficiency of A0 to the efficiency
of A. If A0 is much less efficient than A then the theorem does not rule out the
possibility that C is much easier to break than P .

• The type T of attacks covered by the theorem. The theorem does not rule out attacks
of other types.

• The level of verification of the proof.

Our original plan was to present a KEM with a theorem of the folowing type:

• P is exactly the thoroughly studied inversion (OW-CPA) problem for McEliece’s orig-
inal 1978 system.

• The theorem is extremely tight.

• The theorem covers all IND-CCA2 “ROM” (Random-Oracle Model) attacks. Roughly,
an attack of this type is an IND-CCA2 attack that works against any hash function
H, given access to an oracle that computes H on any input.

• The proof was already published by Dent [23, Theorem 8] fourteen years ago. The
proof is not very complicated, and should be within the range of current techniques
for computer verification of proofs.

However, a very recent paper by Saito, Xagawa and Yamakawa [48] indicates that it
is possible—without sacrificing tightness—to expand the attack type T from all IND-
CCA2 ROM attacks to all IND-CCA2 “QROM” (Quantum Random-Oracle Model) attacks.
Roughly, an attack of this type is an IND-CCA2 attack that works against any hash function
H, given access to an oracle that computes H on a quantum superposition of inputs.

An obstacle here is that Dent’s theorem and the Saito–Xagawa–Yamakawa theorem are
stated for different KEMs. Another obstacle is that, while Dent’s theorem is stated with OW-
CPA as the sole assumption, the Saito–Xagawa–Yamakawa theorem is stated with additional
assumptions.

To obtain the best of both worlds, we have designed a KEM that combines Dent’s frame-
work with the Saito–Xagawa–Yamakawa framework, with the goal of allowing both proof
techniques to apply. This has created a temporary sacrifice in the level of verification, but
we expect that complete proofs will be written and checked by the community in under a
year.

6.2 Abstract conversion

Abstractly, we are building a correct KEM given a correct deterministic PKE. We want the
KEM to achieve IND-CCA2 security, and we want this to be proven to the extent possible,
assuming that the PKE achieves OW-CPA security.

19

108 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

The PKE functionality is as follows. There is a set of public keys, a set of private keys,
a set of plaintexts, and a set of ciphertexts. There is a key-generation algorithm KeyGen
that produces a public key and a private key. There is a deterministic encryption algorithm
Encrypt that, given a plaintext and a public key, produces a ciphertext. There is a decryption
algorithm Decrypt that, given a ciphertext and a private key, produces a plaintext or a failure
symbol ⊥ (which is not a plaintext). We require that Decrypt(Encrypt(p, K), k) = p for every
(K, k) output by KeyGen() and every plaintext p.

We emphasize that Encrypt is not permitted to randomize its output: in other words, any
randomness used to produce a ciphertext must be in the plaintext recovered by decryption.
We also emphasize that Decrypt is not permitted to fail on valid ciphertexts; even a tiny
failure probability is not permitted. These requirements are satisfied by the PKE in this
submission, and the literature indicates that these requirements are helpful for security
proofs.

In this level of generality, our KEM is defined in two modular layers as follows, using three
hash functions H0, H1, H2. These hash functions can be modeled in proofs as independent
random oracles. If the hash output spaces are the same then this is equivalent to defining
Hi(x) = H(i, x) for a single random oracle H, since the input spaces are disjoint.

First layer. Write X for the original correct deterministic PKE. We define a modified
PKE X2 = ConfirmPlaintext(X, H2) as follows. This modified PKE is also a correct
deterministic PKE.

The modified key-generation algorithm KeyGen2 is the same as the original key-generation
algorithm KeyGen. The set of public keys is the same, and the set of private keys is the
same.

The modified encryption algorithm Encrypt2 is defined by Encrypt2(p, K) =
(Encrypt(p, K), H2(p)). The set of plaintexts is the same, and the modified set of
ciphertexts consists of pairs of original ciphertexts and hash values.

Finally, the modified decryption algorithm Decrypt2 is defined by Decrypt2((C, h), k) =
Decrypt(C, k).

Note that Decrypt2 does not check hash values: changing (C, h) to a different (C, h0) produces
the same output from Decrypt2. There was also no requirement for the original PKE X to
recognize invalid ciphertexts.

Second layer. We define a KEM RandomizeSessionKeys(X2, H1, H0) as follows, given
a correct deterministic PKE X2 with algorithms KeyGen2, Encrypt2, Decrypt2. This KEM is
a correct KEM.

Key generation:

1. Compute (K, k) ← KeyGen2().

20

— Internet: Portfolio 109

2. Choose a uniform random plaintext s.

3. Output K as the public key, and (k, K, s) as the private key.

Encapsulation, given a public key K:

1. Choose a uniform random plaintext p.

2. Compute C ← Encrypt2(p, K).

3. Output C as the ciphertext, and H1(p, C) as the session key.

Decapsulation, given a ciphertext C and a private key (k, K, s):

1. Compute p0 ← Decrypt2(C, k).

2. If p0 = ⊥, set p0 ← s and b ← 0. Otherwise set b ← 1.

3. Compute C 0 ← Encrypt2(p
0, K).

4. If C 6 0 ← s and b ← 0.= C 0, set p

5. Output Hb(p
0, C) as the session key.

In other words:

• If there exists a plaintext p such that C = Encrypt2(p, K), then decapsulation outputs
H1(p, C). Indeed, p0 = Decrypt2(C, k) = p by correctness, so C 0 = Encrypt2(p, K) = C
and b = 1 throughout, so the output is H1(p, C).

• If there does not exist a plaintext p such that C = Encrypt2(p, K), then decapsulation
outputs H0(s, C). Indeed, the only way for b to avoid being set to 0 in Step 4 is to
have C 0 = Encrypt2(p

0, K), contradiction; so that step sets p0 to s and sets b to 0, and
decapsulation outputs H0(s, C).

6.3 Non-quantum reduction

The conversion by Dent requires nothing more than OW-CPA security for the underlying
PKE, and has a tight IND-CCA2 ROM proof, but for a different KEM. Compared to
Dent’s KEM, the most significant change in our KEM is the replacement of the ⊥ output
for decapsulation errors with a pseudorandom value. This variant is not new and similar
techniques have been used before for code-based schemes (e.g. [45, 46]). We expect that a
theorem along the following lines can be proven for our KEM, showing that this difference
does not have any sort of negative impact on the security proof.

21

110 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Expected Theorem 1 Let A be an IND-CCA2 adversary against the KEM, running in
time t, with advantage �, that performs at most q decapsulation queries and at most q1 and
q2 queries to the independent uniform random oracles H1 and H2 respectively. Then there
exists an OW-CPA adversary A0 against the PKE, running in time t0, which is successful
with probability �0, where

t0 ≤ t + (q + q1 + q2)T,

�0 ≥ � −
q −

q
,

2` 2 #M

where T is the running time of encapsulation, ` 2 is the number of bits of H2 output, and #M
is the size of the plaintext space.

We now indicate the modifications that need to be made in the proof of [23, Theorem 8].
First of all, the auxiliary table used by the algorithm simulating H1 (called KDF List in [23])
now contains entries of the type (x0, x1, x2, K) to reflect the different form of the input. The
simulator works in exactly the same way, checking the table for previously queried values
and outputting a randomly-generated value for K otherwise. Then, we have to modify the
response to decapsulation queries. These receive the same input as in [23], and the simulator
behaves similarly. It first checks if there exists a preimage p that was already queried by
the hash simulator for H2 and is consistent with the ciphertext. But now, the simulator
has to output a value for K even if this check fails: it will simply call the key-generating
simulator for H0(s, C) rather than H1(p, C), where s is an independently generated element
as in an honest run of the key generation algorithm. This modification has no impact on
the simulation and the adversary learns no more than if it would have received ⊥ instead.
Note that the game is still halted if the adversary attempts to query the simulator on the
challenge ciphertext.

Apart from these modifications, the proof is expected to proceed in the same way, gener-
ating the same probability bound. The probability bound is a consequence of one of two
events occurring, none of which are impacted by the above modifications: the probability
of the adversary querying the decapsulation oracle on the challenge ciphertext before this is
generated, or querying it on the encapsulation of a string for which the hash oracle hasn’t
been queried.

6.4 Quantum reduction

As noted above, Saito, Xagawa, and Yamakawa very recently introduced a KEM construction
“XYZ” with a tight QROM theorem [48, Theorem 5.2]. This theorem, like Dent’s theorem,
requires the underlying PKE to be correct (no decryption error) and deterministic. It also
makes a stronger security assumption regarding the PKE: the PKE is required to satisfy a
new notion of security called PR-CPA, which guarantees that encryption keys and ciphertexts
can be indistinguishably replaced by “fake”, randomly-generated equivalents. More precisely,

22

— Internet: Portfolio 111

to be considered PR-CPA secure, an encryption scheme needs to satisfy the following three
requirements:

- PR-key security : adversary has negligible advantage to distinguish a real public key
from a fake one.

- PR-ciphertext security : adversary has negligible advantage to distinguish a real cipher-
text from a fake one when using a fake public key.

- Statistical disjointness : negligible probability that a fake ciphertext is in the range of
a real ciphertext obtained via a fake key.

See [48, Definition 3.1].

Our KEM construction has two differences from XYZ. First, there is an extra hash value
in the ciphertext. Second, the ciphertext is an extra input to the hash used to compute the
session key. We expect that a QROM theorem can be proven for our KEM as a composition
of the following two steps.

Step 1: Reduce to passive attacks. The proof in [48] can be decomposed into two
parts. The first part shows that decapsulation does not reveal any additional information:
i.e., all attacks are as difficult as passive attacks.

The original proof of the first part proceeds as follows. If decryption fails or reencryption
produces a different ciphertext, XYZ decapsulation outputs H0(s, C). The proof simulates
H0(s, C) with Hq(C), where Hq (using the notation from [48]) is a random oracle.

If decryption succeeds and reencryption produces the same ciphertext, XYZ decapsulation
outputs H1(p). The proof redefines H1(p) as Hq(Encrypt(p, K)); this does not change the
attack success probability, since H1 is again a random oracle. It is crucial to understand
that this is valid only since the attack doesn’t have access to Hq—except via decapsulation
failures, but those are disjoint inputs to Hq.

Now decapsulation outputs Hq(C) for all ciphertexts C, whether C itself is valid or invalid.
The attack using this decapsulation oracle has the same output as an attack that instead
uses an oracle for its own randomly chosen Hq.

For our KEM construction, decapsulation outputs H1(p, C) in the success case rather than
H1(p). We proceed analogously. First simulate H0(s, C) with Hq(C, C), where Hq is a random
oracle. Then redefine H1(p, C) as Hq(Encrypt(p, K), C); this is again a random oracle, and
again the inputs to Hq are disjoint between the valid and invalid cases. Finally, decapsulation
maps C to Hq(C, C) in all cases, regardless of the validity of C.

Step 2: Invoke the PR-CPA assumptions. The second part of the proof in [48] shows
that, given the PR-CPA assumptions, passive attacks are infeasible. We expect this part of
the proof to apply directly to our KEM construction, invoking the PR-CPA assumptions for
the modified PKE.

23

112 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

We expect the PR-CPA assumptions for the modified PKE to be provable as follows from
the same assumptions for the original PKE. PR-key security is the same property for the
two PKEs, since KeyGen2 = KeyGen. PR-ciphertext security for the modified PKE for a
random oracle H2 should follow from PR-ciphertext security for the original PKE. Statistical
disjointness for the modified PKE is implied by statistical disjointness for the original PKE,
since identical ciphertexts for the modified PKE begin with identical ciphertexts for the
original PKE.

Plausibility of the PR-CPA assumptions for Classic McEliece. As noted in Sec-
tion 4, there is a long literature on information-set decoding, the fastest inversion attack
known against the McEliece PKE. This literature generally treats the problem of decoding
uniform random codes, and frequently observes that—in experiments—the attacks behave
the same way for uniform random binary Goppa codes. This behavior of attacks is sometimes
formalized and generalized to a hypothesis about all fast algorithms: namely, the genera-
tor matrix (or parity-check matrix) for a uniform random binary Goppa code is hard to
distinguish from the generator matrix (or parity-check matrix) for a uniform random code.

This hypothesis is the PR-key security assumption for this PKE. Cryptanalysis of this
hypothesis has focused mainly on key-recovery attacks, although, as noted earlier, there is a
paper [26] explicitly studying distinguishing attacks. None of these attacks threaten PR-key
security for our suggested parameters. This is not the same as saying that PR-key security
has been studied as thoroughly as OW-CPA security. Similarly, existing cryptanalysis of
PR-ciphertext security has focused mainly on inversion attacks. Statistical disjointness,
a statement about the sparsity of the range of the encryption function compared to the
ciphertext space, may be provable: a similar property “γ-uniformity” was proved by Cayrel,
Hoffmann, and Persichetti [14].

To summarize, there is already some work that can be viewed as studying the PR-CPA as-
sumptions. On the other hand, the assumptions go beyond the thoroughly studied McEliece
OW-CPA problem. A theorem assuming PR-CPA security, as in [48], is thus not a replace-
ment for a theorem assuming merely OW-CPA security, as in [23, Theorem 8]. Note that
the reduction to passive attacks is independent of this choice of assumption.

6.5 Relating the abstract conversion to the specification

The general specification in Section 2 can be viewed as the result of the following four steps:

• Start with the McEliece PKE. This PKE is correct and deterministic, and its OW-CPA
security has been thoroughly studied.

• Switch to Niederreiter’s dual PKE. This PKE is correct and deterministic, and its
OW-CPA security is tightly implied by the OW-CPA security of the McEliece PKE.

• Obtain a KEM by applying the ConfirmPlaintext conversion, followed by the

24

— Internet: Portfolio 113

RandomizeSessionKeys conversion. This KEM is correct, and its IND-CCA2 secu-
rity is the topic of the previous subsections.

• Apply three further optimizations discussed below. These optimizations preserve cor-
rectness, and they do not affect the IND-CCA2 security analysis.

The first optimization is as follows. Checking whether C = Encrypt2(p
0, K), with the knowl-

edge that p0 = Decrypt2(C, k), does not necessarily require a full Encrypt2 computation. In
particular, in Section 2, the decoding procedure is already guaranteed to output

• a weight-t vector whose syndrome is the input if such a vector exists, or

• ⊥ otherwise.

Checking whether C = Encrypt2(p
0, K) is thus a simple matter of checking H2(p

0).

The second optimization is as follows. The KEM private key (k, K, s) does not necessarily
need as much space as the space for k plus the space for K plus the space for s. For example,
if K can be computed efficiently from k, then it can be recomputed on demand, or optionally
cached. In Section 2, the situation is even simpler: decapsulation, with the first optimization,
does not look at K, so K is simply eliminated from the KEM private key.

The third optimization is that s is generated from a larger space than the plaintext space: it is
simpler to generate a uniform random n-bit string than to generate a uniform random weight-
t n-bit string. The set of s enters into the security analysis solely for the indistinguishability
of H0(s, C) from uniform random.

7 Expected strength (2.B.4) for each parameter set

7.1 Parameter set kem/mceliece6960119

IND-CCA2 KEM, Category 5.

7.2 Parameter set kem/mceliece8192128

IND-CCA2 KEM, Category 5.

8 Analysis of known attacks (2.B.5)

8.1 Information-set decoding, asymptotically

There is a long literature studying algorithms to invert the McEliece PKE. See Section 4.1.

25

114 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

The fastest attacks known use information-set decoding (ISD). The simplest form of ISD,
from 1962 Prange [47], tries to guess an error-free information set in the code. An information
set is, by definition, a set of positions that determines an entire codeword. The set is error-
free, by definition, if it avoids all of the error positions in the “received word”, i.e., the
ciphertext; then the ciphertext at those positions is exactly the codeword at those positions.
The attacker determines the rest of the codeword by linear algebra, and sees whether the
attack succeeded by checking whether the error weight is t.

One expects a random set of k positions to be an information set with reasonable probability,
the same 29% mentioned earlier. However, the chance of the set being error-free drops rapidly
as the number of errors increases. The following asymptotic statement holds for any real
number R with 0 < R < 1: if the code dimension k is (R + o(1))n, and the number of errors
t is Θ(n/ log n), then the chance of a set being error-free is (1 − R + o(1))t as n →∞. The
cost of ISD is thus (1/(1 − R) + o(1))t .

Subsequent improvements to ISD have affected the o(1) but have not changed the constant
1/(1 − R). See generally [10] and [54].

In the McEliece system, t is asymptotically (1 − R + o(1))n/lg n, so the assumption t ∈
Θ(n/ log n) holds.3 To summarize, the (OW-CPA) security level of the McEliece system
against all of these attacks is the n/lg n power of 1/(1 − R)1−R + o(1).

Meanwhile the ciphertext size is (1 − R + o(1))n bits, and the key size is (R(1 − R)+ o(1))n2

bits. Security level 2b thus uses key size (C0 +o(1))b
2(lg b)2 where C0 = R/(1−R)(lg(1−R))2 .

This C0 reaches its minimum value, approximately 0.7418860694, when R is approximately
0.7968121300.

8.2 Information-set decoding, concretely

We emphasize that o(1) does not mean 0: it means something that converges to 0 as n →∞.
More detailed attack-cost evaluation is therefore required for any particular parameters.

Our smaller parameter set mceliece6960119 takes m = 13, n = 6960, and t = 119. This pa-
rameter set was proposed in the attack paper [8] that broke the original McEliece parameters
(10, 1024, 50).

That paper reported that its attack uses 2266.94 bit operations to break the (13, 6960, 119)
parameter set. Subsequent ISD variants have reduced the number of bit operations consid-
erably below 2256 . However:

• None of these analyses took into account the costs of memory access. A closer look
shows that the attack in [8] is bottlenecked by random access to a huge array (much

3Beware that some ISD papers instead measure their results for much larger t ∈ Θ(n), such as “half of
the GV distance”. This dramatically increases cost from 2Θ(n/lg n) to 2Θ(n). For example, [38] two years ago
reports O(20.0473n) when t is half of the GV distance, compared to O(20.0576n) from Prange 55 years ago.
As these numbers illustrate, this inflation of t also makes differences between algorithms more noticeable.
Such large error rates are of interest in coding theory but are not relevant to the McEliece system.

26

— Internet: Portfolio 115

larger than the public key being attacked), and that subsequent ISD variants use
even more memory. The same amount of hardware allows much more parallelism in
attacking, e.g., AES-256.

• Known quantum attacks multiply the security level of both ISD and AES by an asymp-
totic factor 0.5+ o(1), but a closer look shows that the application of Grover’s method
to ISD suffers much more overhead in the inner loop.

We expect that switching from a bit-operation analysis to a cost analysis will show that
this parameter set is more expensive to break than AES-256 pre-quantum and much more
expensive to break than AES-256 post-quantum.

8.3 Key recovery

A different inversion strategy is to find the private key (g, α1, . . . , αn). As noted earlier,
one should not think that this is as difficult as a brute-force search: one can determine the
sequence (α1, . . . , αn) from g and the set {α1, . . . , αn}, or alternatively determine g from
(α1, . . . , αn). See generally [36], [28], and [43]. The number of choices of g is more than
21500 for our smaller parameter set and more than 21600 for our larger parameter set. Known
symmetries provide only a small speedup. The number of choices of (α1, . . . , αn) is much
larger. Our smaller parameter set has an extra defense here, namely that there are a huge
number of possibilities for the set {α1, . . . , αn}.
In a multi-message attack scenario, the cost of finding the private key is spread across many
messages. There are also faster multi-message attacks that do not rely on finding the private
key; see, e.g., [31] and [51]. Rather than analyzing multi-message security in detail, we rely
on the general fact that attacking T targets cannot gain more than a factor T . Our expected
security levels are so high that this is not a concern for any foreseeable value of T .

8.4 Chosen-ciphertext attacks

A traditional approach to chosen-ciphertext attacks against the McEliece system is to add
(say) two errors to a ciphertext Gm + e. This is equivalent to adding two errors to e.
Decryption succeeds if and only if the resulting error vector has weight t, i.e., exactly one of
the two error positions was already in e. It is straightforward to find e from the pattern of
decryption failures. See, e.g., [57]. For a Niederreiter ciphertext He, one similarly adds two
errors to e by adjusting He appropriately.

There are two reasons that these attacks do not work against our submission. First, KEM
decapsulation forces the ciphertext to include a hash of e as a confirmation, and the attacker
has no way to compute the hash of a modified version of e without knowing e in the first
place. Second, the KEM does not reveal decryption failures: the modified ciphertext will
produce an unpredictable session key, whether or not the modified error vector has weight t.

27

116 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

The confirmation allows attackers to check possibilities for e by checking their hashes. How-
ever, this is much less efficient than ISD.

9 Advantages and limitations (2.B.6)

The central advantage of this submission is security. See the design rationale.

Regarding efficiency, the use of random-looking linear codes with no visible structure forces
public-key sizes to be on the scale of a megabyte for quantitatively high security: the public
key is a full (generator/parity-check) matrix. Key-generation software is also not very fast.
Applications must continue using each public key for long enough to handle the costs of
generating and distributing the key.

There are, however, some compensating efficiency advantages. Encapsulation and decapsu-
lation are reasonably fast in software, and impressively fast in hardware, due to the simple
nature of the objects (binary vectors) and operations (such as binary matrix-vector mul-
tiplications). Key generation is also quite fast in hardware. The hardware speeds of key
generation and decoding are already demonstrated by our FPGA implementation. Encap-
sulation takes only a single pass over a public key, allowing large public keys to be streamed
through small coprocessors and small devices.

Furthermore, the ciphertexts are unusually small for post-quantum cryptography: under
256 bytes for our suggested high-security parameter sets. This allows ciphertexts to fit
comfortably inside single network packets. The small ciphertext size can be much more
important for total traffic than the large key size, depending on the ratio between how often
keys are sent and how often ciphertexts are sent. System parameters can be adjusted for
even smaller ciphertexts.

References

[1] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and Michael
Emmi. Verifying constant-time implementations. In Thorsten Holz and Stefan Savage,
editors, 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA,
August 10-12, 2016., pages 53–70. USENIX Association, 2016.

[2] Marco Baldi, Franco Chiaraluce, Roberto Garello, and Francesco Mininni. Quasi-cyclic
low-density parity-check codes in the McEliece cryptosystem. In Proceedings of IEEE In-
ternational Conference on Communications, ICC 2007, Glasgow, Scotland, 24-28 June
2007, pages 951–956. IEEE, 2007.

[3] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding random
binary linear codes in 2n/20: How 1+1 = 0 improves information set decoding. In David
Pointcheval and Thomas Johansson, editors, Advances in Cryptology - EUROCRYPT

28

— Internet: Portfolio 117

2012 - 31st Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings, volume 7237 of
Lecture Notes in Computer Science, pages 520–536. Springer, 2012.

[4] Thierry P. Berger, Pierre-Louis Cayrel, Philippe Gaborit, and Ayoub Otmani. Reducing
key length of the McEliece cryptosystem. In Bart Preneel, editor, Progress in Cryptol-
ogy - AFRICACRYPT 2009, Second International Conference on Cryptology in Africa,
Gammarth, Tunisia, June 21-25, 2009. Proceedings, volume 5580 of Lecture Notes in
Computer Science, pages 77–97. Springer, 2009.

[5] Daniel J. Bernstein. Grover vs. McEliece. In Sendrier [50], pages 73–80.

[6] Daniel J. Bernstein. Some small suggestions for the Intel instruction set, 2014. https:
//blog.cr.yp.to/20140517-insns.html.

[7] Daniel J. Bernstein, Tung Chou, and Peter Schwabe. McBits: Fast constant-time code-
based cryptography. In Guido Bertoni and Jean-Sébastien Coron, editors, Cryptographic
Hardware and Embedded Systems - CHES 2013 - 15th International Workshop, Santa
Barbara, CA, USA, August 20-23, 2013. Proceedings, volume 8086 of Lecture Notes in
Computer Science, pages 250–272. Springer, 2013.

[8] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Attacking and defending
the McEliece cryptosystem. In Johannes A. Buchmann and Jintai Ding, editors, Post-
Quantum Cryptography, Second International Workshop, PQCrypto 2008, Cincinnati,
OH, USA, October 17-19, 2008, Proceedings, volume 5299 of Lecture Notes in Computer
Science, pages 31–46. Springer, 2008.

[9] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Smaller decoding exponents:
Ball-collision decoding. In Phillip Rogaway, editor, Advances in Cryptology - CRYPTO
2011 - 31st Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18,
2011. Proceedings, volume 6841 of Lecture Notes in Computer Science, pages 743–760.
Springer, 2011.

[10] Daniel J. Bernstein, Tanja Lange, Christiane Peters, and Henk C. A. van Tilborg.
Explicit bounds for generic decoding algorithms for code-based cryptography. In Pre-
proceedings of WCC 2009, pages 168–180, 2009.

[11] Anne Canteaut and Herve Chabanne. A further improvement of the work factor in an
attempt at breaking McEliece’s cryptosystem. In Pascale Charpin, editor, Livre des
résumés—EUROCODE 94, Abbaye de la Bussière sur Ouche, France, October 1994,
1994. https://hal.inria.fr/inria-00074443.

[12] Anne Canteaut and Florent Chabaud. A new algorithm for finding minimum-weight
words in a linear code: Application to McEliece’s cryptosystem and to narrow-sense
BCH codes of length 511. IEEE Trans. Information Theory, 44(1):367–378, 1998.

[13] Anne Canteaut and Nicolas Sendrier. Cryptanalysis of the original McEliece cryptosys-
tem. In Kazuo Ohta and Dingyi Pei, editors, Advances in Cryptology - ASIACRYPT

29

118 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

’98, International Conference on the Theory and Applications of Cryptology and In-
formation Security, Beijing, China, October 18-22, 1998, Proceedings, volume 1514 of
Lecture Notes in Computer Science, pages 187–199. Springer, 1998.

[14] Pierre-Louis Cayrel, Gerhard Hoffmann, and Edoardo Persichetti. Efficient implemen-
tation of a CCA2-secure variant of McEliece using generalized Srivastava codes. In
Marc Fischlin, Johannes A. Buchmann, and Mark Manulis, editors, Public Key Cryp-
tography - PKC 2012 - 15th International Conference on Practice and Theory in Public
Key Cryptography, Darmstadt, Germany, May 21-23, 2012. Proceedings, volume 7293
of Lecture Notes in Computer Science, pages 138–155. Springer, 2012.

[15] Herve Chabanne and B. Courteau. Application de la méthode de décodage itérative
d’Omura ` eme de McEliece, 1993. e de Sherbrooke, a la cryptanalyse du syst` Universit´
Rapport de Recherche, number 122.

[16] Florent Chabaud. Asymptotic analysis of probabilistic algorithms for finding short
codewords. In Paul Camion, Pascale Charpin, and Sami Harari, editors, Eurocode ’92:
proceedings of the international symposium on coding theory and applications held in
Udine, October 23–30, 1992, pages 175–183. Springer, 1993.

[17] Tung Chou. McBits revisited. In Wieland Fischer and Naofumi Homma, editors, Crypto-
graphic Hardware and Embedded Systems - CHES 2017 - 19th International Conference,
Taipei, Taiwan, September 25-28, 2017, Proceedings, volume 10529 of Lecture Notes in
Computer Science, pages 213–231. Springer, 2017.

[18] George C. Clark, Jr. and J. Bibb Cain. Error-correcting coding for digital communica-
tion. Plenum, 1981.

[19] John T. Coffey and Rodney M. Goodman. The complexity of information set decoding.
IEEE Transactions on Information Theory, 35:1031–1037, 1990.

[20] John T. Coffey, Rodney M. Goodman, and P. Farrell. New approaches to reduced
complexity decoding. Discrete and Applied Mathematics, 33:43–60, 1991.

[21] Alain Couvreur, Ayoub Otmani, and Jean-Pierre Tillich. Polynomial time attack on
Wild McEliece over quadratic extensions. IEEE Trans. Information Theory, 63(1):404–
427, 2017.

[22] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput., 33(1):167–
226, January 2004.

[23] Alexander W. Dent. A designer’s guide to KEMs. In Kenneth G. Paterson, editor,
Cryptography and Coding, 9th IMA International Conference, Cirencester, UK, Decem-
ber 16-18, 2003, Proceedings, volume 2898 of Lecture Notes in Computer Science, pages
133–151. Springer, 2003.

[24] Ilya I. Dumer. Two decoding algorithms for linear codes. Problemy Peredachi Infor-
matsii, 25:24–32, 1989.

30

— Internet: Portfolio 119

[25] Ilya I. Dumer. On minimum distance decoding of linear codes. In Grigori A. Kabatian-
skii, editor, Fifth joint Soviet-Swedish international workshop on information theory,
Moscow, 1991, pages 50–52, 1991.

[26] Jean-Charles Faugère, Valérie Gauthier-Umaña, Ayoub Otmani, Ludovic Perret, and
Jean-Pierre Tillich. A distinguisher for high-rate McEliece cryptosystems. IEEE Trans.
Information Theory, 59(10):6830–6844, 2013.

[27] Matthieu Finiasz and Nicolas Sendrier. Security bounds for the design of code-based
cryptosystems. In Mitsuru Matsui, editor, Advances in Cryptology - ASIACRYPT 2009,
15th International Conference on the Theory and Application of Cryptology and In-
formation Security, Tokyo, Japan, December 6-10, 2009. Proceedings, volume 5912 of
Lecture Notes in Computer Science, pages 88–105. Springer, 2009.

[28] J. K. Gibson. Equivalent Goppa codes and trapdoors to McEliece’s public key cryp-
tosystem. In Donald W. Davies, editor, Advances in Cryptology - EUROCRYPT ’91,
Workshop on the Theory and Application of of Cryptographic Techniques, Brighton,
UK, April 8-11, 1991, Proceedings, volume 547 of Lecture Notes in Computer Science,
pages 517–521. Springer, 1991.

[29] Yann Hamdaoui and Nicolas Sendrier. A non asymptotic analysis of information set
decoding. IACR Cryptology ePrint Archive, 2013:162, 2013. https://eprint.iacr.
org/2013/162.

[30] Gernot Heiser. For safety’s sake: we need a new hardware-software contract! IEEE
Design and Test, 2017. To appear.

[31] Thomas Johansson and Fredrik Jönsson. On the complexity of some cryptographic
problems based on the general decoding problem. IEEE Trans. Information Theory,
48(10):2669–2678, 2002.

[32] Evgueni A. Krouk. Decoding complexity bound for linear block codes. Problemy
Peredachi Informatsii, 25:103–107, 1989.

[33] Pil Joong Lee and Ernest F. Brickell. An observation on the security of McEliece’s
public-key cryptosystem. In Christoph G. Günther, editor, Advances in Cryptology
- EUROCRYPT ’88, Workshop on the Theory and Application of of Cryptographic
Techniques, Davos, Switzerland, May 25-27, 1988, Proceedings, volume 330 of Lecture
Notes in Computer Science, pages 275–280. Springer, 1988.

[34] Jeffrey S. Leon. A probabilistic algorithm for computing minimum weights of large
error-correcting codes. IEEE Trans. Information Theory, 34(5):1354–1359, 1988.

[35] Gavriela Freund Lev, Nicholas Pippenger, and Leslie G. Valiant. A fast parallel al-
gorithm for routing in permutation networks. IEEE Trans. Computers, 30(2):93–100,
1981.

[36] Pierre Loidreau and Nicolas Sendrier. Weak keys in the McEliece public-key cryptosys-
tem. IEEE Trans. Information Theory, 47(3):1207–1211, 2001.

31

120 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

[37] Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random linear codes
in 20.054n . In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology -
ASIACRYPT 2011 - 17th International Conference on the Theory and Application of
Cryptology and Information Security, Seoul, South Korea, December 4-8, 2011. Pro-
ceedings, volume 7073 of Lecture Notes in Computer Science, pages 107–124. Springer,
2011.

[38] Alexander May and Ilya Ozerov. On computing nearest neighbors with applications
to decoding of binary linear codes. In Elisabeth Oswald and Marc Fischlin, editors,
Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-
30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in Computer Science, pages
203–228. Springer, 2015.

[39] Robert J. McEliece. A public-key cryptosystem based on algebraic coding theory. Tech-
nical report, NASA, 1978. http://ipnpr.jpl.nasa.gov/progressreport2/42-44/
44N.PDF.

[40] Rafael Misoczki and Paulo S. L. M. Barreto. Compact McEliece keys from Goppa codes.
In Michael J. Jacobson Jr., Vincent Rijmen, and Rei Safavi-Naini, editors, Selected Areas
in Cryptography, volume 5867 of Lecture Notes in Computer Science, pages 376–392.
Springer, 2009.

[41] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M. Barreto.
MDPC-McEliece: New McEliece variants from moderate density parity-check codes. In
Proceedings of the 2013 IEEE International Symposium on Information Theory, Istan-
bul, Turkey, July 7-12, 2013, pages 2069–2073. IEEE, 2013.

[42] Harald Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. Prob-
lems of Control and Information Theory, 15(2):159–166, 1986.

[43] Raphael Overbeck and Nicolas Sendrier. Code-based cryptography. In Daniel J. Bern-
stein, Johannes Buchmann, and Erik Dahmen, editors, Post-Quantum Cryptography,
pages 95–145. Springer Berlin Heidelberg, 2009.

[44] Edoardo Persichetti. Compact McEliece keys based on quasi-dyadic Srivastava codes.
J. Mathematical Cryptology, 6(2):149–169, 2012.

[45] Edoardo Persichetti. Secure and anonymous hybrid encryption from coding theory. In
Philippe Gaborit, editor, Post-Quantum Cryptography: 5th International Workshop,
PQCrypto 2013, Limoges, France, June 4-7, 2013. Proceedings, pages 174–187, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[46] Edoardo Persichetti. Code-based key encapsulation from McEliece’s cryptosystem. 2017.
http://arxiv.org/abs/1706.06306.

[47] Eugene Prange. The use of information sets in decoding cyclic codes. IRE Transactions
on Information Theory, IT-8:S5–S9, 1962.

32

— Internet: Portfolio 121

[48] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure key-
encapsulation mechanism in the quantum random oracle model. https://eprint.
iacr.org/2017/1005.

[49] Nicolas Sendrier. Finding the permutation between equivalent linear codes: The support
splitting algorithm. IEEE Trans. Information Theory, 46(4):1193–1203, 2000.

[50] Nicolas Sendrier, editor. Post-Quantum Cryptography, Third International Workshop,
PQCrypto 2010, Darmstadt, Germany, May 25-28, 2010. Proceedings, volume 6061 of
Lecture Notes in Computer Science. Springer, 2010.

[51] Nicolas Sendrier. Decoding one out of many. In Bo-Yin Yang, editor, Post-Quantum
Cryptography - 4th International Workshop, PQCrypto 2011, Taipei, Taiwan, November
29 - December 2, 2011. Proceedings, volume 7071 of Lecture Notes in Computer Science,
pages 51–67. Springer, 2011.

[52] Jacques Stern. A method for finding codewords of small weight. In Gérard D. Cohen
and Jacques Wolfmann, editors, Coding Theory and Applications, 3rd International
Colloquium, Toulon, France, November 2-4, 1988, Proceedings, volume 388 of Lecture
Notes in Computer Science, pages 106–113. Springer, 1988.

[53] Falko Strenzke. A timing attack against the secret permutation in the McEliece PKC.
In Sendrier [50], pages 95–107.

[54] Rodolfo Canto Torres and Nicolas Sendrier. Analysis of information set decoding for a
sub-linear error weight. In Tsuyoshi Takagi, editor, Post-Quantum Cryptography - 7th
International Workshop, PQCrypto 2016, Fukuoka, Japan, February 24-26, 2016, Pro-
ceedings, volume 9606 of Lecture Notes in Computer Science, pages 144–161. Springer,
2016.

[55] Johan van Tilburg. On the McEliece public-key cryptosystem. In Shafi Goldwasser,
editor, Advances in Cryptology - CRYPTO ’88, 8th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 21-25, 1988, Proceedings, volume
403 of Lecture Notes in Computer Science, pages 119–131. Springer, 1988.

[56] Johan van Tilburg. Security-analysis of a class of cryptosystems based on linear error-
correcting codes. PhD thesis, Technische Universiteit Eindhoven, 1994.

[57] Eric R. Verheul, Jeroen M. Doumen, and Henk C. A. van Tilborg. Sloppy Alice attacks!
Adaptive chosen ciphertext attacks on the McEliece public-key cryptosystem. In Mario
Blaum, Patrick G. Farrell, and Henk C. A. van Tilborg, editors, Information, coding and
mathematics, volume 687 of Kluwer International Series in Engineering and Computer
Science, pages 99–119. Kluwer, 2002.

[58] Wen Wang, Jakub Szefer, and Ruben Niederhagen. FPGA-based Niederreiter cryp-
tosystem using binary Goppa codes. Paper in submission, http://caslab.csl.yale.
edu/code/niederreiter/.

33

122 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

A Statements

These statements “must be mailed to Dustin Moody, Information Technology Laboratory,
Attention: Post-Quantum Cryptographic Algorithm Submissions, 100 Bureau Drive – Stop
8930, National Institute of Standards and Technology, Gaithersburg, MD 20899-8930, or can
be given to NIST at the first PQC Standardization Conference (see Section 5.C).”

First blank in submitter statement: full name. Second blank: full postal address. Third,
fourth, and fifth blanks: name of cryptosystem. Sixth and seventh blanks: describe and
enumerate or state “none” if applicable.

First blank in patent statement: full name. Second blank: full postal address. Third blank:
enumerate. Fourth blank: name of cryptosystem.

First blank in implementor statement: full name. Second blank: full postal address. Third
blank: full name of the owner.

34

— Internet: Portfolio 123

A.1 Statement by Each Submitter

I, , of , do
hereby declare that the cryptosystem, reference implementation, or optimized implementa-
tions that I have submitted, known as , is my own original
work, or if submitted jointly with others, is the original work of the joint submitters. I
further declare that (check one):

• I do not hold and do not intend to hold any patent or patent application with a claim
which may cover the cryptosystem, reference implementation, or optimized implemen-
tations that I have submitted, known as OR (check one
or both of the following):

– to the best of my knowledge, the practice of the cryptosystem, reference im-
plementation, or optimized implementations that I have submitted, known as

may be covered by the following U.S. and/or foreign patents:

– I do hereby declare that, to the best of my knowledge, the following pend-
ing U.S. and/or foreign patent applications may cover the practice of my sub-
mitted cryptosystem, reference implementation or optimized implementations:

I do hereby acknowledge and agree that my submitted cryptosystem will be provided to the
public for review and will be evaluated by NIST, and that it might not be selected for standard-
ization by NIST. I further acknowledge that I will not receive financial or other compensation
from the U.S. Government for my submission. I certify that, to the best of my knowledge,
I have fully disclosed all patents and patent applications which may cover my cryptosystem,
reference implementation or optimized implementations. I also acknowledge and agree that
the U.S. Government may, during the public review and the evaluation process, and, if my
submitted cryptosystem is selected for standardization, during the lifetime of the standard,
modify my submitted cryptosystem’s specifications (e.g., to protect against a newly discovered
vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish
the draft standards for public comment.

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below, for
any patent or patent application identified to cover the practice of my cryptosystem, reference
implementation or optimized implementations and the right to use such implementations for
the purposes of the public review and evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove
my cryptosystem from consideration for standardization. If my cryptosystem (or the derived
cryptosystem) is removed from consideration for standardization or withdrawn from consider-
ation by all submitter(s) and owner(s), I understand that rights granted and assurances made
under Sections 2.D.1, 2.D.2 and 2.D.3, including use rights of the reference and optimized
implementations, may be withdrawn by the submitter(s) and owner(s), as appropriate.

35

124 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Signed:

Title:

Date:

Place:

36

— Internet: Portfolio 125

A.2 Statement by Patent (and Patent Application) Owner(s)

If there are any patents (or patent applications) identified by the submitter, including those
held by the submitter, the following statement must be signed by each and every owner, or
each owner’s authorized representative, of each patent and patent application identified.

I, , of ,
am the owner or authorized representative of the owner (print
full name, if different than the signer) of the following patent(s)
and/or patent application(s):

and do hereby commit and agree to grant to any interested party on a worldwide basis, if
the cryptosystem known as is selected for standardization, in consid-
eration of its evaluation and selection by NIST, a non-exclusive license for the purpose of
implementing the standard (check one):

• without compensation and under reasonable terms and conditions that are demonstrably
free of any unfair discrimination, OR

• under reasonable terms and conditions that are demonstrably free of any unfair dis-
crimination.

I further do hereby commit and agree to license such party on the same basis with respect
to any other patent application or patent hereafter granted to me, or owned or controlled by
me, that is or may be necessary for the purpose of implementing the standard.

I further do hereby commit and agree that I will include, in any documents transferring
ownership of each patent and patent application, provisions to ensure that the commitments
and assurances made by me are binding on the transferee and any future transferee.

I further do hereby commit and agree that these commitments and assurances are intended by
me to be binding on successors-in-interest of each patent and patent application, regardless
of whether such provisions are included in the relevant transfer documents.

I further do hereby grant to the U.S. Government, during the public review and the evaluation
process, and during the lifetime of the standard, a nonexclusive, nontransferrable, irrevocable,
paid-up worldwide license solely for the purpose of modifying my submitted cryptosystem’s
specifications (e.g., to protect against a newly discovered vulnerability) for incorporation into
the standard.

Signed:

Title:

Date:

Place:

37

126 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

A.3 Statement by Reference/Optimized Implementations’
Owner(s)

The following must also be included:

I, , , am the
owner or authorized representative of the owner of the sub-
mitted reference implementation and optimized implementations and hereby grant the U.S.
Government and any interested party the right to reproduce, prepare derivative works based
upon, distribute copies of, and display such implementations for the purposes of the post-
quantum algorithm public review and evaluation process, and implementation if the corre-
sponding cryptosystem is selected for standardization and as a standard, notwithstanding that
the implementations may be copyrighted or copyrightable.

Signed:

Title:

Date:

Place:

38

— Internet: Portfolio 127

CRYSTALS-Dilithium
Algorithm Specifications and Supporting Documentation

Léo Ducas1, Eike Kiltz2, Tancrède Lepoint3, Vadim Lyubashevsky4,
Peter Schwabe5, Gregor Seiler6 and Damien Stehlé7

1 CWI, Netherlands
2 Ruhr Universität Bochum, Germany

3 SRI International, USA
4 IBM Research – Zurich, Switzerland

5 Radboud University, Netherlands
6 IBM Research – Zurich, Switzerland

7 ENS de Lyon, France

November 30, 2017

128 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

2 CRYSTALS-Dilithium

1 Introduction
We present the digital signature scheme Dilithium, whose security is based on the hardness
of finding short vectors in lattices. Our scheme was designed with the following criteria in
mind:

Simple to implement securely. The most compact lattice-based signature schemes
[DDLL13, DLP14] crucially require the generation of secret randomness from the dis-
crete Gaussian distribution. Generating such samples in a way that is secure against
side-channel attacks is highly non-trivial and can easily lead to insecure implementations, as
demonstrated in [BHLY16, EFGT17, PBY17]. While it may be possible that a very careful
implementation can prevent such attacks, it is unreasonable to assume that a universally-
deployed scheme containing many subtleties will always be expertly implemented. Dilithium
therefore only uses uniform sampling, as was originally proposed in [Lyu09, GLP12, BG14].
Furthermore all other operations (such as polynomial multiplication and rounding) are
easily implemented in constant time.

Be conservative with parameters. Since we are aiming for long-term security, we have
analyzed the applicability of lattice attacks from a very favorable, to the attacker, viewpoint.
In particular, we are considering quantum algorithms that require virtually as much space
as time. Such algorithms are currently unrealistic, and there seem to be serious obstacles in
removing the space requirement, but we are allowing for the possibility that improvements
may occur in the future.

Minimize the size of public key + signature. Since many applications require the
transmission of both the public key and the signature (e.g. certificate chains), we designed
our scheme to minimize the sum of these parameters. Under the restriction that we avoid
(discrete) Gaussian sampling, to the best of our knowledge, Dilithium has the smallest
combination of signature and public key sizes of any lattice-based scheme with the same
security levels.

Be modular – easy to vary security. The two operations that constitute nearly the
entirety of the signing and verification procedures are expansion of an XOF (we use
SHAKE-128 and SHAKE-256), and multiplication in the polynomial ring Zq[X]/(Xn + 1).
Highly efficient implementations of our algorithm will therefore need to optimize these
operations and make sure that they run in constant time. For all security levels, our
scheme uses the same ring with q = 223 − 213 + 1 and n = 256. Varying security simply
involves doing more/less operations over this ring and doing more/less expansion of the
XOF. In other words, once an optimized implementation is obtained for some security
level, it is almost trivial to obtain an optimized implementation for a higher/lower level.

1.1 Overview of the Basic Approach
The design of the scheme is based on the “Fiat-Shamir with Aborts” approach [Lyu09]
and bears most resemblance to the schemes proposed in [GLP12, BG14]. For readers
who are unfamiliar with the general framework of such signature schemes, we present a
simplified (and less efficient) version of our scheme in Fig. 1. This version is essentially a
slightly modified version of the scheme from [BG14]. We will now go through each of its
components to give the reader an idea of how such schemes work.

— Internet: Portfolio 129

L. Ducas, E.Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, D. Stehlé 3

Gen
01 A← Rk×`

q
02 (s1, s2)← S`η × Sk

η

03 t := As1 + s2
04 return (pk = (A, t), sk = (A, t, s1, s2))

Sign(sk,M)
05 z := ⊥
06 while z = ⊥ do
07 y← S`γ1−1
08 w1 := HighBits(Ay, 2γ2)
09 c ∈ B60 := H(M ‖ w1)
10 z := y + cs1
11 if ‖z‖∞ ≥ γ1 − β or ‖LowBits(Ay− cs2, 2γ2)‖∞ ≥ γ2 − β, then z := ⊥
12 return σ = (z, c)

Verify(pk,M , σ = (z, c))
13 w′1 := HighBits(Az− ct, 2γ2)
14 if return J‖z‖∞ < γ1 − βK and Jc = H (M ‖ w′1)K

Figure 1: Template for our signature scheme.

Key Generation. The key generation algorithm generates a k× ` matrix A each of whose
entries is a polynomial in the ring Rq = Zq[X]/(Xn + 1). As previously mentioned, we will
always have q = 223 − 213 + 1 and n = 256. Afterwards, the algorithm samples random
secret key vectors s1 and s2. Each coefficient of these vectors is an element of Rq with
small coefficients – of size at most η. Finally, the second part of the public key is computed
as t = As1 + s2. All algebraic operations in this scheme are assumed to be over the
polynomial ring Rq.

Signing Procedure. The signing algorithm generates a masking vector of polynomials y
with coefficients less than γ1. The parameter γ1 is set strategically – it is large enough
that the eventual signature does not reveal the secret key (i.e. the signing algorithm is
zero-knowledge), yet small enough so that the signature is not easily forged. The signer
then computes Ay and sets w1 to be the “high-order” bits of the coefficients in this
vector. In particular, every coefficient w in Ay can be written in a canonical way as
w = w1 · 2γ2 + w0 where |w0| ≤ γ2; w1 is then the vector comprising all the w1’s. The
challenge c is then created as the hash of the message and w1. The output c is a polynomial
in Rq with exactly 60 ±1’s and the rest 0’s. The reason for this distribution is that c
has small norm and comes from a domain of size > 2256. The potential signature is then
computed as z = y + cs1.

If z were directly output at this point, then the signature scheme would be insecure
due to the fact that the secret key would be leaked. To avoid the dependency of z on
the secret key, we use rejection sampling. The parameter β is set to be the maximum
possible coefficient of csi . Since c has 60 ±1’s and the maximum coefficient in si is η, it’s
easy to see that β ≤ 60η. If any coefficient of z is larger than γ1 − β, then we reject and
restart the signing procedure. Also, if any coefficient of the low-order bits of Az− ct is
greater than γ2 − β, we restart. The first check is necessary for security, while the second
is necessary for both security and correctness. The while loop in the signing procedure
keeps being repeated until the preceding two conditions are satisfied. The parameters are
set such that the expected number of repetitions is not too high (in our instantiations,
this number is between 4 and 7).

130 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

4 CRYSTALS-Dilithium

Verification. The verifier first computes w′1 to be the high-order bits of Az−ct, and then
accepts if all the coefficients of z are less than γ1−β and if c is the hash of the message and
w′1. Let us look at why verification works, in particular as to why HighBits(Az−ct, 2γ2) =
HighBits(Ay, 2γ2). The first thing to notice is that Az− ct = Ay− cs2. So all we really
need to show is that

HighBits(Ay, 2γ2) = HighBits(Ay− cs2, 2γ2). (1)

The reason for this is that a valid signature will have ‖LowBits(Ay− cs2, 2γ2)‖∞ < γ2− β.
And since we know that the coefficients of cs2 are smaller than β, we know that adding
cs2 is not enough to cause any carries by increasing any low-order coefficient to have
magnitude at least γ2. Thus Eq. (1) is true and the signature verifies correctly.

1.2 Dilithium
The basic template in Fig. 1 is rather inefficient, as is. The most glaring (but easily fixed)
inefficiency is that the public key consists of a matrix of k · ` polynomials, which could
have a rather large representation. The obvious fix is to have A generated from some seed
ρ using SHAKE-128, and this is a standard technique. The novelty of Dilithium over the
previous schemes is that we also shrink the size of the public key by a factor of 2.5 at the
expense of increasing the signature by around 150 bytes. For the recommended security
level, the scheme has 2.7KB signatures and 1.5KB public keys.

The main observation for obtaining this very favorable trade-off is that when the verifier
computes w′1 in Line 13, the high-order bits of Az− ct do not depend too much on the
low order bits of t because t is being multiplied by a very low-weight polynomial c. In
our scheme, some low-order bits of t are not included in the public key, and so the verifier
cannot always correctly compute the high-order bits of Az − ct. To make up for this,
the signer includes some “hints” as part of the signature, which are essentially the carries
caused by adding in the product of c with the missing low-order bits of t. With this hint,
the verifier is able to correctly compute w′1.

Additionally, we make our scheme deterministic using the standard technique of adding
a seed to the secret key and using this seed together with the message to produce the
randomness y in Line 07. The recent result of Kiltz et al. [KLS17] showed that the fewer
different signatures the adversary sees for the same messages, the tighter the reduction is
in the quantum random oracle model between the signature scheme and the underlying
hardness assumptions. While it’s not clear as to whether there is an improved quantum
attack for randomized signatures, we suggest the deterministic version as the default option.
Our full scheme in Fig. 4 also makes use of basic optimizations such as pre-hashing the
message M so as to not rehash it with every signing attempt.

Implementation Considerations. The main algebraic operation performed in the scheme
is a multiplication of a matrix A, whose elements are polynomials in Zq[X]/(X256 + 1)
by a vector of such polynomials. In our recommended parameter setting, A is a 5 × 4
matrix and therefore consists of 20 polynomials. Thus the multiplication Av involves 20
polynomial multiplications. As in most lattice-based schemes that are based on operations
over polynomial rings, we have chosen our ring so that the multiplication operation has
a very efficient implementation via the Number Theoretic Transform (NTT), which is
just a version of FFT that works over the finite field Zq rather than over the complex
numbers. To enable the NTT, we needed to choose a prime q so that the group Z∗q has
an element of order 2n = 512; or equivalently q ≡ 1 (mod 512). If r is such an element,
then X256 + 1 = (X − r)(X − r3) · · · (X − r511) and thus one can equivalently represent
any polynomial a ∈ Zq[X]/(X256 + 1) in its CRT (Chinese Remainder Theorem) form as
(a(r), a(r3), . . . , a(r2n−1)). The advantage of this representation is that the product of

— Internet: Portfolio 131

L. Ducas, E.Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, D. Stehlé 5

two polynomials is coordinate-wise. Therefore the most expensive parts of polynomial
multiplication are the transformations a → â and the inverse â → a – these are the NTT
and inverse NTT operations.

The other major time-consuming operation is the expansion of a seed ρ into the
polynomial matrix A. The matrix A is needed for both signing and verification, therefore
a good implementation of SHAKE-128 is important for the efficiency of the scheme.

For our AVX2 optimized implementation of the NTT we take a different approach
than other fast implementations in that we use integer arithmetic. Although we pack only
4 coefficients into one vector register of 256 bits, which is the same density that is also
used by floating point implementations, we can improve on the multiplication speed by
about a factor of 2. We achieved this speed-up by carefully scheduling the instructions
and interleaving the multiplications and reductions during the NTT so that parts of the
multiplication latencies are hidden.

1.3 Comparisons to Other Post-Quantum Signature Schemes
We now give a brief comparison between our signature scheme and other post-quantum
signature schemes that we are aware of.

1.3.1 Lattice Schemes

Schemes with Smaller Signature Sizes. The lattice-based digital signatures (with se-
curity reductions) that have the smallest signature sizes are [DDLL13, DLP14], which
are based on the NTRU assumption. If one adjusts the parameters of [DDLL13] and
[DLP14] so that the security is comparable to that of Dilithium1, the signature sizes will
be approximately 1.5KB and 1KB respectively (compared to 2.7KB in Dilithium), while
the public key sizes will remain approximately the same as in Dilithium.

The main down-side of [DDLL13, DLP14] is that they intrinsically require the use of
(discrete) Gaussian sampling in order to be efficient, which creates several serious real-world
issues. The first is that it is not straight-forward to construct a constant-time discrete
Gaussian sampler. The second is that mistakes in sampling (discrete) Gaussians are
extremely hard to detect in testing; yet even small deviations from the right distribution
can lead to complete signing key recovery by the adversary. For this reason, we believe
that a universally-used scheme should be very simple to implement in a secure fashion,
and we have thus eschewed using anything other than uniform sampling in Dilithium.

Schemes with (Quantum) Security Reductions from (Ring / Module)-LWE Only. The
security of Dilithium is, in the quantum random oracle model (QROM), tightly based on the
hardness of the standard MLWE and MSIS problems, as well as a “hybrid” SelfTargetMSIS
problem that was defined in [KLS17]. For the latter problem, there is a reduction
MSIS ≤ SelfTargetMSIS in the random oracle model via the forking lemma, but not in the
quantum random oracle model.

One could construct a version of Dilithium whose security is based entirely on the
hardness of Ring-LWE in the QROM, but this scheme would result in a 5X increase in the
public key size and a 2X increase in the signature size [KLS17, Table 1]. Furthermore, we
would not be able to work over a the ring that supports NTT, which would make signing
and verification slower. As we explain in Section 5, the SelfTargetMSIS problem is in fact
the lattice version of a problem upon which tight security proofs of today’s signatures
(e.g. Schnorr) using the Fiat-Shamir transform are based. We therefore believe that this
assumption is a perfectly sound one to make and avoiding it is not worth the significant
cost in speed and output size.

1The security in [DDLL13, DLP14] was not set as conservatively as for Dilithium – in particular, sieving
attacks were not considered.

132 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

6 CRYSTALS-Dilithium

1.3.2 Other Post-Quantum Signatures.

Of all the non-lattice post-quantum schemes that we are aware of, Dilithium has the smallest
combination of public key and signature size. There may be scenarios, however, that call
for one of these values to be very small, while not caring too much about the other. If one
would like to minimize the public key size, then hash-based signatures (e.g. [BHH+15]) are
a good option because the public key is less than a hundred bytes. The signature length of
such signatures, on the other hand, is between 30-40KB, and signing time is around 50X
slower than Dilithium. If, on the other hand, one would like to minimize the signature size,
then multivariate schemes (see the various comparisons in [CLP+17]) may be of interest.
The signature sizes in these schemes are less than one hundred bytes and signing time is
noticeably faster. The public keys, on the other hand, are often larger than 100KB.

2 Basic Operations
2.1 Ring Operations
We let R and Rq respectively denote the rings Z[X]/(Xn + 1) and Zq[X]/(Xn + 1), for q
an integer. Throughout this document, the value of n will always be 256 and q will be the
prime 8380417 = 223 − 213 + 1. Regular font letters denote elements in R or Rq (which
includes elements in Z and Zq) and bold lower-case letters represent column vectors with
coefficients in R or Rq. By default, all vectors will be column vectors. Bold upper-case
letters are matrices. For a vector v, we denote by vT its transpose. The boolean operator
JstatementK evaluates to 1 if statement is true, and to 0 otherwise.

Modular reductions. For an even (resp. odd) positive integer α, we define r ′ = r mod± α
to be the unique element r ′ in the range −α2 < r ′ ≤ α

2 (resp. −α−1
2 ≤ r ′ ≤ α−1

2) such that
r ′ ≡ r mod α. We will sometimes refer to this as a centered reduction modulo q.2 For
any positive integer α, we define r ′ = r mod+α to be the unique element r ′ in the range
0 ≤ r ′ < α such that r ′ ≡ r mod α. When the exact representation is not important, we
simply write r mod α.

Sizes of elements. For an element w ∈ Zq, we write ‖w‖∞ to mean |w mod± q|. We
define the `∞ and `2 norms for w = w0 + w1X + . . .+ wn−1Xn−1 ∈ R:

‖w‖∞ = max
i
‖wi‖∞, ‖w‖ =

√
‖w0‖2∞ + . . .+ ‖wn−1‖2∞.

Similarly, for w = (w1, . . . ,wk) ∈ Rk , we define

‖w‖∞ = max
i
‖wi‖∞, ‖w‖ =

√
‖w1‖2 + . . .+ ‖wk‖2.

We will write Sη to denote all elements w ∈ R such that ‖w‖∞ ≤ η.

2.2 NTT domain representation
Our modulus q is chosen such that there exists a 512-th root of unity r modulo q.
Concretely, we always work with r = 1753. This implies that the cyclotomic polynomial
X256 + 1 splits into linear factors X − r i modulo q with i = 1, 3, 5, . . . , 511. By the Chinese
remainder theorem our cyclotomic ring Rq is thus isomorphic to the product of the rings

2We draw the reader’s attention to the fact that for even α, the range includes α/2 but not −α/2. This
is a somewhat less standard choice, but defining things in this way makes some parts of the scheme (in
particular, the bit-packing of the public key) more efficient.

— Internet: Portfolio 133

L. Ducas, E.Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, D. Stehlé 7

Zq[X]/(X − r i) ∼= Zq. In this product of rings it is easy to multiply elements since the
multiplication is pointwise there. The isomorphism

a 7→
(
a(r), a(r3), . . . , a(r511)

)
: Rq →

∏

i
Zq[X]/(X − r i)

can be computed quickly with the help of the Fast Fourier Transform. Since X256 + 1 =
X256 − r256 = (X128 − r128)(X128 + r128) one can first compute the map

Zq[X]/(X256 + 1)→ Zq[X]/(X128 − r128)× Zq[X]/(X128 + r128)

and then continue separately with the two reduced polynomials of degree less than
128 noting that X128 + r128 = X128 − r384. The Fast Fourier Transform is also called
Number Theory Transform (NTT) in this case where the ground field is a finite field.
Natural fast NTT implementations do not output vectors with coefficients in the order
a(r), a(r3), . . . , a(r511). Therefore we define the NTT domain representation â = NTT(a) ∈
Z256

q of a polynomial a ∈ Rq to have coefficients in the order as output by our reference
NTT. Concretely,

â = NTT(a) = (a(r0), a(−r0), . . . , a(r127), a(−r127))

where ri = rbrv(128+i) with brv(k) the bitreversal of the 8 bit number k. With this notation,
and because of the isomorphism property, we have ab = NTT−1(NTT(a)NTT(b)). For vectors
y and matrices A, the representations ŷ = NTT(y) and Â = NTT(A) mean that every
polynomial yi and ai,j comprising y and A is in NTT domain representation. We give
further detail about our NTT implementations in Section 4.5.

2.3 Hashing
Our scheme uses several different algorithms that hash strings in {0, 1}∗ onto domains of
various forms. Below we give the high level descriptions of these functions and defer the
details of how exactly they are used in the signature scheme to Section 4.2.

Hashing to a Ball. Let Bh denote the set of elements of R that have h coefficients that
are either −1 or 1 and the rest are 0. We have |Bh| = 2h ·

(n
h
)
. For our signature scheme,

we will need a cryptographic hash function that hashes onto B60 (which has more than
2256 elements). The algorithm we will use to create a random element in B60 is sometimes
referred to as an “inside-out” version of the Fisher-Yates shuffle [Knu97], and its high-level
description is in Fig. 2.3

SampleInBall
01 Initialize c = c0c1 . . . c255 = 00 . . . 0
02 for i := 196 to 255
03 j ← {0, 1, . . . , i}
04 s ← {0, 1}
05 ci := cj
06 cj := (−1)s

07 return c

Figure 2: Create a random 256-element array with 60 ±1’s and 196 0′s

3Normally, the algorithm should begin at i = 0, but since there are 196 0’s, the first 195 iterations
would just be setting components of c to 0.

134 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

8 CRYSTALS-Dilithium

Expanding the Matrix A. The function ExpandA maps a uniform seed ρ ∈ {0, 1}256 to
a matrix A ∈ Rk×l

q in NTT domain representation. The matrix A is only needed for
multiplication. Hence, for the sake of faster implementations, the expansion function
ExpandA does not output A ∈ Rk×l

q = (Zq[X]/(X256 +1))k×l . Instead it outputs Â ∈ Z256
q ,

which is interpreted as the NTT domain representation of A. As A needs to be sampled
uniformly and the NTT is an isomorphism, ExpandA also needs to sample uniformly
in this representation. To be compatible to Dilithium, an implementation whose NTT
produces differently ordered vectors than our reference NTT needs to sample coefficients
in a non-consecutive order.

Sampling the vectors y. The function ExpandMask, used for deterministically generating
the randomness of the signature scheme, maps K ‖ µ ‖ κ to y ∈ S l

γ1−1.

Collision resistant hash. The function CRH used in our signature scheme is a collision
resistant hash function mapping to {0, 1}384.

2.4 High/Low Order Bits and Hints
To reduce the size of the public key, we will need some simple algorithms that extract
“higher-order” and “lower-order” bits of elements in Zq. The goal is that when given an
arbitrary element r ∈ Zq and another small element z ∈ Zq, we would like to be able to
recover the higher order bits of r + z without needing to store z. We therefore define
algorithms that take r , z and produce a 1-bit hint h that allows one to compute the higher
order bits of r + z just using r and h. This hint is essentially the “carry” caused by z in
the addition.

There are two different ways in which we will break up elements in Zq into their “high-
order” bits and “low-order” bits. The first algorithm, Power2Roundq, is the straightforward
bit-wise way to break up an element r = r1 · 2d + r0 where r0 = r mod± 2d and r1 =
(r − r0)/2d .

Notice that if we choose the representatives of r1 to be non-negative integers between 0
and bq/2dc, then the distance (modulo q) between any two r1 · 2d and r ′1 · 2d is usually
≥ 2d , except for the border case. In particular, the distance modulo q between bq/2dc · 2d

and 0 could be very small. This is problematic in the case that we would like to produce a
1-bit hint, as adding a small number to r can actually cause the high-order bits of r to
change by more than 1.

We avoid having the high-order bits change by more than 1 with a simple tweak. We
select an α that is a divisor of q − 1 and write r = r1 · α+ r0 in the same way as before.
For the sake of simplicity, we assume that α is even (which is possible, as q is odd). The
possible r1 · α’s are now {0, α, 2α, . . . , q − 1}. Note that the distance between q − 1 and
0 is 1, and so we remove q − 1 from the set of possible r1 · α’s, and simply round the
corresponding r ’s to 0. Because q − 1 and 0 differ by 1, all this does is possibly increase
the magnitude of the remainder r0 by 1. This procedure is called Decomposeq. Using
this procedure as a sub-routine, we can define the MakeHintq and UseHintq routines that
produce a hint and, respectively, use the hint to recover the high-order bits of the sum.
For notational convenience, we also define HighBitsq and LowBitsq routines that simply
extract r1 and r0, respectively, from the output of Decomposeq.

The below Lemmas state the crucial properties of these supporting algorithms that are
necessary for the correctness and security of our scheme. Their proofs can be found in
Appendix A.

Lemma 1. Suppose that q and α are positive integers satisfying q > 2α, q ≡ 1 (mod α)
and α even. Let r and z be vectors of elements in Rq where ‖z‖∞ ≤ α/2, and let h,h′

— Internet: Portfolio 135

L. Ducas, E.Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, D. Stehlé 9

Power2Roundq(r , d)
08 r := r mod+ q
09 r0 := r mod± 2d

10 return
(
(r − r0)/2d , r0

)

MakeHintq(z, r , α)
11 r1 := HighBitsq(r , α)
12 v1 := HighBitsq(r + z, α)
13 return Jr1 6= v1K

UseHintq(h, r , α)
14 m := (q − 1)/α
15 (r1, r0) := Decomposeq(r , α)
16 if h = 1 and r0 > 0 return (r1 + 1) mod+ m
17 if h = 1 and r0 ≤ 0 return (r1 − 1) mod+ m
18 return r1

Decomposeq(r , α)
19 r := r mod+ q
20 r0 := r mod± α
21 if r − r0 = q − 1
22 then r1 := 0; r0 := r0 − 1
23 else r1 := (r − r0)/α
24 return (r1, r0)

HighBitsq(r , α)
25 (r1, r0) := Decomposeq(r , α)
26 return r1

LowBitsq(r , α)
27 (r1, r0) := Decomposeq(r , α)
28 return r0

Figure 3: Supporting algorithms for Dilithium.

be vectors of bits. Then the HighBitsq, MakeHintq, and UseHintq algorithms satisfy the
following properties:

1. UseHintq(MakeHintq(z, r, α), r, α) = HighBitsq(r + z, α).

2. Let v1 = UseHintq(h, r, α). Then ‖r−v1 ·α‖∞ ≤ α+ 1. Furthermore, if the number
of 1’s in h is ω, then all except at most ω coefficients of r−v1 ·α will have magnitude
at most α/2 after centered reduction modulo q.

3. For any h,h′, if UseHintq(h, r, α) = UseHintq(h′, r, α), then h = h′.

Lemma 2. If ‖s‖∞ ≤ β and ‖LowBitsq(r, α)‖∞ < α/2− β, then

HighBitsq(r, α) = HighBitsq(r + s, α).

3 Signature
The Key Generation, Signing, and Verification algorithms for our signature scheme are
presented in Fig. 4. We present the deterministic version of the scheme in which the rand-
omness used in the signing procedure is generated (using SHAKE-256) as a deterministic
function of the message and a small secret key. Since our signing procedure may need to
be repeated several times until a signature is produced, we also append a counter in order
to make the SHAKE-256 output differ with each signing attempt of the same message.
Also due to the fact that each message may require several iterations to sign, we compute
an initial digest of the message using a collision-resistant hash function, and use this digest
in place of the message throughout the signing procedure.

As discussed in Section 1.2, the main design improvement of Dilithium over the scheme
in Fig. 1 is that the public key size is reduced by a factor of around 2.5 at the expense of
an additional hundred bytes in the signature. To accomplish the size reduction, the key
generation algorithm outputs t1 := Power2Roundq(t, d) as the public key instead of t as
in Fig. 1. This means that instead of dlog qe bits per coefficient, the public key requires
dlog qe − d bits. In our instantiation, q ≈ 223 and d = 14, which means that instead of 23
bits in each public key coefficient, there are instead 9.

136 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

10 CRYSTALS-Dilithium

The main problem with not having the entire t in the public key is that the verification
algorithm is no longer able to exactly compute w′1 in Line 13 in Fig. 1. In order to do this,
the verification algorithm will need the high order bits of Az− ct, but it can only compute
Az− ct1 · 2d = Az− ct + ct0. But since the product ct0 consists of only small numbers,
and we only care about the high order bits, we really only need to know the carries that
each coefficient of ct0 causes. These are the carries that the signer sends as a hint to the
verifier. Heuristically, based on our parameter choices, there should not be more than ω
positions in which a carry is caused. The signer therefore simply sends the positions in
which these carries occur (this is the extra bytes in the signature), which allows the verifier
to compute the high order bits of Az− ct.

3.1 Implementation Notes and Efficiency Trade-offs
To keep the size of the public (and secret) key small, both the Sign and Verify procedures
begin with extracting the matrix A (or more accurately, its NTT domain representation
Â) from the seed ρ. If storage space is not a factor, then Â can be pre-computed and be
part of the secret/public key. The signer can additionally pre-compute the NTT domain
representations of s1, s2, t0 to slightly speed up the signing operation. At the other extreme,
if the signer wants to store as small a secret key as possible, he only needs to store ρ and
K , and the random seed used to create s1, s2 in the key generation algorithm. All the
other parts of the secret key can be recreated from these. Furthermore, one can also keep
the memory for intermediate computations low by only keeping the parts of the NTT
domain representation that one is currently working with.

Another possible change is to remove the strict deterministic nature of the digital
signature. One may want to consider this option due to the recent side-channel attacks
that exploit determinism [SBB+17, PSS+17]. An easy way in which to give an option of
using randomized signatures is to allow the appending of some system randomness to the
input of ExpandMask when generating y. As we mentioned earlier, the security proof for
Dilithium is “tight” according to [KLS17] for deterministic signatures and the bound gets
gradually looser the more different signatures are seen per message. We therefore still
recommend using deterministic signatures except in environments that may be vulnerable
to the aforementioned side-channel attacks.

3.2 Correctness
In this section, we prove the correctness of the signature scheme.

If ‖ct0‖∞ < γ2, then by Lemma 1 we know that

UseHintq(h,w− cs2 + ct0, 2γ2) = HighBitsq(w− cs2, 2γ2) .

Since w = Ay and t = As1 + s2, we have that

w− cs2 = Ay− cs2 = A(z− cs1)− cs2 = Az− ct, (2)

and w− cs2 + ct0 = Az− ct1 · 2d . Therefore the verifier computes

UseHintq(h,Az− ct1 · 2d , 2γ2) = HighBitsq(w− cs2, 2γ2) .

Furthermore, because the signer also checks in Line 19 that r1 = w1, this is equivalent
to

HighBitsq(w− cs2, 2γ2) = HighBitsq(w, 2γ2). (3)

Therefore, the w1 computed by the verifier is the same as that of the signer, and the
verification procedure will always accept.

— Internet: Portfolio 137

L. Ducas, E.Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, D. Stehlé 11

Gen
01 ρ← {0, 1}256

02 K ← {0, 1}256

03 (s1, s2)← S`η × Sk
η

04 A ∈ Rk×`
q := ExpandA(ρ) B A is generated and stored in NTT Representation as Â

05 t := As1 + s2 B Compute As1 as NTT−1(Â · NTT(s1))
06 (t1, t0) := Power2Roundq(t, d)
07 tr ∈ {0, 1}384 := CRH(ρ ‖ t1)
08 return (pk = (ρ, t1), sk = (ρ,K , tr , s1, s2, t0))

Sign(sk,M)
09 A ∈ Rk×`

q := ExpandA(ρ) B A is generated and stored in NTT Representation as Â
10 µ ∈ {0, 1}384 := CRH(tr ‖ M)
11 κ := 0, (z,h) := ⊥
12 while (z,h) = ⊥ do B Pre-compute ŝ1 := NTT(s1), ŝ2 := NTT(s2), and t̂0 := NTT(t0)
13 y ∈ S`γ1−1 := ExpandMask(K ‖ µ ‖ κ)
14 w := Ay B w := NTT−1(Â · NTT(y))
15 w1 := HighBitsq(w, 2γ2)
16 c ∈ B60 := H(µ ‖ w1) B Store c in NTT representation as ĉ = NTT(c)
17 z := y + cs1 B Compute cs1 as NTT−1(ĉ · ŝ1)
18 (r1, r0) := Decomposeq(w− cs2, 2γ2) B Compute cs2 as NTT−1(ĉ · ŝ2)
19 if ‖z‖∞ ≥ γ1 − β or ‖r0‖∞ ≥ γ2 − β or r1 6= w1, then (z,h) := ⊥
20 else
21 h := MakeHintq(−ct0,w− cs2 + ct0, 2γ2) B Compute ct0 as NTT−1(ĉ · t̂0)
22 if ‖ct0‖∞ ≥ γ2 or the # of 1’s in h is greater than ω, then (z,h) := ⊥
23 κ := κ+ 1
24 return σ = (z,h, c)

Verify(pk,M , σ = (z,h, c))
25 A ∈ Rk×`

q := ExpandA(ρ) B A is generated and stored in NTT Representation as Â
26 µ ∈ {0, 1}384 := CRH(CRH(ρ ‖ t1) ‖ M)
27 w′1 := UseHintq(h,Az− ct1 · 2d , 2γ2) B Compute as NTT−1(Â · NTT(z)− NTT(c) · NTT(t1 · 2d))
28 return J‖z‖∞ < γ1 − βK and Jc = H (µ ‖ w′1)K and J# of 1’s in h is ≤ ωK

Figure 4: The signature scheme Dilithium.

3.3 Number of Iterations
We now want to compute the probability that Step 19 will set (z,h) to ⊥. The probability
that ‖z‖∞ < γ1 − β can be computed by considering each coefficient separately. For
each coefficient σ of cs1, the corresponding coefficient of z will be between −γ1 + β + 1
and γ1 − β − 1 (inclusively) whenever the corresponding coefficient of yi is between
−γ1 + β + 1 − σ and γ1 − β − 1 − σ. The size of this range is 2(γ1 − β) − 1, and the
coefficients of y have 2γ1 − 1 possibilities. Thus the probability that every coefficient of y
is in the good range is

(
2(γ1 − β)− 1

2γ1 − 1

)256·`
=
(

1− β

γ1 − 1/2

)`n
≈ e−256·β`/γ1 , (4)

where we used the fact that our values of γ1 are large compared to 1/2.
We now move to computing the probability that we have

‖r0‖∞ = ‖LowBitsq(w− cs2, 2γ2)‖∞ < γ2 − β .

If we (heuristically) assume that the low order bits are uniformly distributed modulo 2γ2,

138 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

12 CRYSTALS-Dilithium

Table 1: Parameters for Dilithium. The formulas for the sizes of the public key and
signature are given in Section 4.3. The explanations for the NIST security levels is in
Section 5.3.

I II III IV
weak medium recommended very high

q 8380417 8380417 8380417 8380417
d 14 14 14 14

weight of c 60 60 60 60
γ1 = (q − 1)/16 523776 523776 523776 523776
γ2 = γ1/2 261888 261888 261888 261888

(k, `) (3, 2) (4, 3) (5, 4) (6, 5)
η 7 6 5 3
β 375 325 275 175
ω 64 80 96 120

pk size (bytes) 896 1184 1472 1760
sig size (bytes) 1487 2044 2701 3366

Exp. reps (from Eq. (5)) 4.3 5.9 6.6 4.3

BKZ block-size b to break SIS 235 355 475 605
Best Known Classical bit-cost 68 103 138 176
Best Known Quantum bit-cost 62 94 125 160
BKZ block-size b to break LWE 200 340 485 595
Best Known Classical bit-cost 58 100 141 174
Best Known Quantum bit-cost 53 91 128 158

NIST Security Level - 1 2 3

Gen cycles (Haswell) 169, 972 269, 844 382, 756 512, 116
Sign cycles (Haswell) 765, 442 1, 285, 476 1, 817, 902 1, 677, 782

Verify cycles (Haswell) 196, 048 296, 920 395, 936 548, 558
Gen cycles (AVX2, Haswell) 104, 128 156, 432 225, 432 292, 404
Sign cycles (AVX2, Haswell) 338, 922 493, 332 673, 144 711, 018

Verify cycles (AVX2, Haswell) 105, 584 150, 228 207, 164 288, 398

then there is a
(

2(γ2 − β)− 1
2γ2

)256·k
≈ e−256·βk/γ2

probability that all the coefficients are in the good range (using the fact that our values
of β are large compared to 1/2).

As we already mentioned, if ‖cs2‖∞ ≤ β, then ‖r0‖∞ < γ2 − β implies that r1 = w1.
Thus the last check should succeed with overwhelming probability when the previous check
passed. Therefore, the probability that Step 19 passes is

≈ e−256·β(`/γ1+k/γ2) . (5)

It is more difficult to formally compute the probability that Step 22 results in a restart.
The parameters were set such that heuristically (z,h) = ⊥ with probability less than 1%.
Therefore the vast majority of the loop repetitions will be caused by Step 19.

— Internet: Portfolio 139

L. Ducas, E.Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, D. Stehlé 13

4 Implementation Details
4.1 Bit-packing
We now describe how we encode vectors as byte strings. This is needed for absorbing
them into SHAKE and defining the data layout of the keys and signature. To reduce
the computation time spent on SHAKE and the sizes of keys and signatures, we use
bit-packing.

We start with the vector w1 that, together with µ, is hashed to a ball. It consists
of k polynomials w1,1, . . . ,w1,k in Rq with coefficients that are roundings of elements in
Zq with respect to α = 2γ2. It follows that the coefficients lie in {0, . . . , 15} and can be
represented by 4 bits each. This allows w1 to be packed in a string of k · 256 · 4/8 = k · 128
bytes. Each byte encodes two consecutive coefficients of a polynomial w1,i in its low 4 bits
and high 4 bits, respectively. See Figure 5 for an explanation of the exact bit packing.

…
c1 c2 c3 c4 c5 c6

Byte 1 Byte 2 Byte 3

Figure 5: Bit-packing w1. The k polynomials comprising w1 are w1,1, . . . ,w1,k and we let
c1, . . . , c256 be the coefficients of w1,1 (with the lower powers first), c257, . . . , c512 be the
coefficients of w1,2, etc.

Next we turn to the vector t1, which is the power-of-two rounding of t. Note that
q− 1 = 223− 213 = (29− 1)214 + 213 which shows that the coefficients of the k polynomials
of t1 lie in {0, . . . , 29−1} and can be represented by 9 bits each. These 9 bits per coefficient,
in little-endian byte-order, are bit-packed. In total t1 needs k · 256 · 9/8 = 288k bytes. See
Figure 6 for an explanation of the exact bit packing.

…
c1

Byte 1 Byte 2 Byte 3

c2 c3

Figure 6: Bit-packing t1. The k polynomials comprising t1 are t1,1, . . . , t1,k and we let
c1, . . . , c256 be the coefficients of t1,1 (with the lower powers first), c257, . . . , c512 be the
coefficients of t1,2, etc.

The coefficients of the polynomials of t0 can be written in the form q + 213 − v with
v ∈ {0, . . . , 214 − 1}. These v in little endian byte-order are bit-packed. This results in
256 · 14/8 bytes per polynomial and k · 256 · 14/8 = 448k bytes for t0. See Figure 7 for an
explanation of the exact bit packing.

The polynomials in s1 and s2 have coefficients with infinity norm at most η. So every
coefficient of these polynomials is equivalent modulo q to η−c with some c ∈ {0, . . . , 2η}. In
the bit packing the values for c are stored so that each polynomial needs 256dlog 2η + 1e/8
bytes. This amounts to 256 · 4/8 = 128 bytes for the weak, medium and recommended
security levels, and 256 · 3/8 = 96 bytes for the very high security level. The bit-packing is

140 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

14 CRYSTALS-Dilithium

…
c1

Byte 1 Byte 2 Byte 3

c2

Figure 7: Bit-packing t0. The k polynomials comprising t0 are t0,1, . . . , t0,k and we let
c1, . . . , c256 be the coefficients of t0,1 (with the lower powers first), c257, . . . , c512 be the
coefficients of t0,2, etc.

done similarly to the case of w1, t1 and t0. See Figure 8 for an explanation of the exact
bit packing.

…
c1 c2 c3 c4 c5 c6

Byte 1 Byte 2 Byte 3

Figure 8: Bit-packing si . The ` polynomials comprising s1 are s1,1, . . . , s1,` and we let
η−c1, . . . , η−c256 be the coefficients of s1,1 (with the lower powers first), η−c257, . . . , η−c512
be the coefficients of s1,2, etc. where ci ∈ {0, . . . , 2η}. The k polynomials comprising s2 are
s2,1, . . . , s2,` and we let η− c1, . . . , η− c256 be the coefficients of s2,1 (with the lower powers
first), c257, . . . , c512 be the coefficients of s2,2, etc. ci ∈ {0, . . . , 2η}. The above picture is
for parameter sets where ci requires four bits per coefficient (i.e. when 4 ≤ η ≤ 15). When
η < 4, one would only use three bits per coefficient and pack in the obvious manner.

Finally, z contains polynomials whose coefficients are equivalent modulo q to γ1− 1− c
with c ∈ {0, . . . , 2γ1 − 2} and these values c are bit packed. Since dlog 2γ1 − 1e = 20,
bit-packing z requires l · 256 · 20/8 = 640l bytes and blocks of 2 coefficients are stored in 5
consecutive bytes. See Figure 9 for an explanation of the exact bit packing.

…
c1

Byte 1 Byte 2 Byte 3

…

Figure 9: Bit-packing z. The ` polynomials comprising z are z1, . . . , z` and we let
γ1 − 1 − c1, . . . , γ1 − 1 − c256 be the coefficients of z1 (with the lower powers first),
γ1 − 1− c257, . . . , γ1 − 1− c512 be the coefficients of z2, etc.

4.2 Hashing
Hashing to a Ball. We now precisely specify the operation of the function H : µ ‖ w1 7→
c ∈ B60 described in Fig. 2 as it is used in our signature scheme. H absorbs the 48 bytes
of µ immediately followed by the 128k bytes for the bit-packed representation of w1 into

— Internet: Portfolio 141

L. Ducas, E.Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, D. Stehlé 15

SHAKE-256. Throughout its operations the function squeezes SHAKE-256 in order to
obtain a stream of random bytes of variable length. The first 60 bits in the first 8 bytes of
this random stream are interpreted as 60 random sign bits si ∈ {0, 1}, i = 0, . . . , 59. The
remaining 4 bits are discarded. Then H uses Algorithm 2 to compute c. In each iteration
of the for loop it uses rejection sampling on elements from {0, . . . , 255} until it gets a
j ∈ {0, . . . , i}. An element in {0, . . . , 255} is obtained by interpreting the next byte of the
random stream from SHAKE-256 as a number in this set. For the sign s the corresponding
si−196 is used.

Expanding the Matrix A. The function ExpandA maps a uniform seed ρ ∈ {0, 1}256 to
a matrix A ∈ Rk×l

q in NTT domain representation. It computes each coefficient âi,j ∈ Rq

of Â separately. For the coefficient âi,j it absorbs the 32 bytes of ρ immediately followed
by one byte representing 0 ≤ 24 · j + i < 255 into SHAKE-128. Next it uses consecutive
blocks of 3 bytes of the variable-length output string in order to obtain a sequence of
integers between 0 and 223 − 1. This is done by setting the highest bit of the third
byte in each block to zero and interpreting the blocks in little endian byte order. So
for example the three bytes b0, b1 and b2 from SHAKE-128 are used to get the integer
0 ≤ b′2 · 216 + b1 · 28 + b0 ≤ 223 − 1 where b′2 is the logical AND of b2 and 2128 − 1. Finally,
ExpandA performs rejection sampling on these 23-bit integers to sample the 256 coefficients
ai,j(r0), ai,j(−r0), . . . , ai,j(r127)ai,j(−r127) of âi,j uniformly from the set {0, . . . , q − 1} in
the order of our NTT domain representation.

Sampling the vectors y. The function ExpandMask maps K ‖ µ ‖ κ to y ∈ S l
γ1−1,

where κ ≥ 0, and works as follows. It computes each of the l coefficients of y, which are
polynomials in Sγ1−1, independently. For the i-th polynomial, 0 ≤ i < l, it absorbs the
48 bytes of µ concatenated with the 32 bytes of K and two bytes representing κ + i in
little endian byte order into SHAKE-256. Then each block of 5 consecutive output bytes
is used to get two 20 bit integers between 0 and 220 − 1. For this the first two bytes of
each output block together with a third byte having as lower 4 bits the lower 4 bits of
the third output byte and 4 high zero bits is interpreted in little endian order. Then the
high 4 bits of the third output byte followed by the 16 bits of the fourth and and fifth
byte are interpreted as the second 20 bit integer. As an example assume we have received
the five bytes b0, . . . , b4 from SHAKE-128. Then ExpandMask computes the two integers
0 ≤ b′2 · 216 + b1 · 28 + b0 ≤ 220 − 1 and 0 ≤ b4 · 212 + b3 · 24 + b′′2 ≤ 220 − 1 where b′2 is the
AND of b2 and 15 and b′2 = bb2/16c. On the resulting sequence of 20 bit integers rejection
sampling is performed to get 256 values vj ∈ {0, . . . , 2γ1 − 2}. From these the polynomial
coefficients are computed in increasing order as q + γ1 − 1− vj .

Collision resistant hash. The function CRH in Figure 4 is a collision resistant hash
function. For this purpose 384 bits of the output of SHAKE-256 are used. CRH is called
with two different sets of inputs. First it is called with ρ ‖ t1. The function then absorbs
the 32 bytes of ρ followed by the k · 256 · 9/8 bytes for the bit-packed representation of t1
into SHAKE-256 and takes the first 48 bytes of the first output block of SHAKE-256 as
the output hash. The second input is µ ‖ M . Here the concatenation of the hash µ and
the message string are absorbed into SHAKE-256 and the first 48 output bytes are used
as the resulting hash.

4.3 Data layout of keys and signature
Public key. The public key, containing ρ and t1, is stored as the concatenation of the
bit-packed representations of ρ and t1 in this order. Therefore, it has a size of 32 + 288k
bytes.

142 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

16 CRYSTALS-Dilithium

Secret key. The secret key contains ρ, K , tr , s1, s2 and t0 and is also stored as the
concatenation of the bit-packed representation of these quantities in the given order.
Consequently, a secret key requires 64 + 48 + 32((k + l) · dlog 2η + 1e+ 14k) bytes. For the
weak, medium and high security level this is equal to 112 + 576k + 128l bytes. With the
very high security parameters one needs 112 + 544k + 96l = 3856 bytes.

Signature. The signature byte string is the concatenation of a bit packed representation
of z and encodings of h and c in this order. We describe the encoding of h, which needs
ω + k bytes. Together all the polynomials in the vector h have at most ω non-zero
coefficients. It is sufficient to store the locations of these non-zero coefficients. Each of the
first ω bytes of the byte string representing h is the index i of the next non-zero coefficient
in its polynomial, i.e. 0 ≤ i ≤ 255, or zero if there are no more non-zero coefficients. The
bytes numbers ω up to ω + k − 1 record the k positions j of the polynomial boundaries in
the string of ω coefficient indices, where 0 ≤ j ≤ ω. In the encoding of the challenge c,
the first 256 bits are 0 or 1 when the corresponding coefficient of c is zero or non-zero,
respectively. The next 60 bits are 0 or 1 if the corresponding non-zero coefficient is 1 or
−1, respectively. Note that there are precisely 60 non-zero coefficients. The 4 bits up to
the next byte boundary are zero.

Therefore, a signature requires 640l + ω + k + 40 bytes.

4.4 Constant time implementation
Our reference implementation does not branch depending on secret data and does not access
memory locations that depend on secret data. For the modular reductions that are needed
for the arithmetic in Rq we never use the ’%’ operator of the C programming language.
Instead we use Montgomery reductions without the correction steps and special reduction
routines that are specific to our modulus q. For computing the rounding functions described
in Section 2.4, we have implemented branching-free algorithms. On the other hand, when
it is safe to reveal information, we have not tried to make the code constant-time. This
includes the computation of the challenges and the rejection conditions in the signing
algorithm. When performing rejection sampling, our code reveals which of the conditions
was the reason for the rejection, and in case of the norm checks, which coefficient violated
the bound. This is safe since the rejection probabilities for each coefficient are independent
of secret data. The challenges reveal information about CRH(µ ‖ w1) also in the case of
rejected y, but this does not reveal any information about the secret key when CRH is
modeled as a random oracle and w1 has high min-entropy.

4.5 Reference implementation
Our reference NTT is a natural iterative implementation for 32 bit unsigned integers that
uses Cooley-Tukey butterflies in the forward transform and Gentleman-Sande butterflies in
the inverse transform. For modular reductions after multiplying with a precomputed root
of unity we use the Montgomery algorithm as was already done before in e.g. [ADPS16].
In order that the reduced values are correct representatives, the precomputed roots contain
the Montgomery factor 232 mod q. We also use Montgomery reductions after the pointwise
product of the polynomials in the NTT domain representations. Since we cannot get the
Montgomery factor in at this point, these products are in fact Hensel remainders r ′ ≡ r232

(mod q). We then make use of the fact that the NTT transform is linear and multiply by
an additional Montgomery factor after the inverse NTT when we divide out the factor 256.

The implementations of the functions ExpandA and ExpandMask initially squeeze a
number of output blocks of SHAKE-256 and SHAKE-128 that gives enough randomness
with high probability. In the case of ExpandA, which samples uniform polynomials and
hence needs at least 3 · 256 = 768 random bytes per polynomial, 5 blocks from SHAKE-128

— Internet: Portfolio 143

L. Ducas, E.Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, D. Stehlé 17

of 168 bytes each are needed at least for one polynomial. They suffice with probability
greater than 1−2−132. ExpandMask initially retrieves 5 blocks from SHAKE-256 that have
136 bytes. This is the minimum number of blocks and suffices with probability greater
than 1− 2−81.

As mentioned in the introduction our reference implementation is protected against
timing attacks. For this reason the centralized remainders in the rounding functions given
in Figure 3 are not computed with branchings. Instead we use the following well-known
trick to compute the centralized remainder r ′ = r mod± α where 0 ≤ r < q. Subtracting
α/2 + 1 from r yields a negative result if and only if r ≤ α/2. Therefore, shifting this
result arithmetically to the right by 31 bits gives −1, i.e. the integer with all bits equal to
1, if r ≤ α/2 and 0 otherwise. Then the logical AND of the shifted value and α is added
to r and α/2 − 1 subtracted. This results in r − α if r > α and r if r ≤ α/2, i.e. the
centralized remainder.

We make heavy use of lazy reduction in our implementation. In the NTT we do not
reduce the results of additions and subtractions at all. For rounding and norm checking
it is important to map to standard representatives. This freezing of the coefficients is
achieved in constant-time by conditionally subtracting q with another instance of the
arithmetic right shift trick.

4.6 AVX2 optimized implementation
We have written an optimized implementation of Dilithium for CPUs that support the
AVX2 instruction set. Since the two most time-consuming operations are polynomial
multiplication and the expansion of the matrix and vectors, the optimized implementation
speeds up these two operations.

For polynomial multiplication, we use a vectorized version of the NTT. This NTT
achieves a full multiplication of two polynomials including three NTTs and the pointwise
multiplication in less than 5000 Haswell cycles and is about a factor of 4.5 faster than the
reference C code compiled using gcc with full machine-specific optimizations turned on.
Contrary to some other implementations (e.g. [ADPS16]), we do not use floating point
instructions. When using floating point instructions, modular reductions are easily done by
multiplying with a floating point inverse of q and rounding to get the quotient from which
the remainder can be computed with another multiplication and a subtraction. Instead
of this approach we use integer instructions only and the same Montgomery reduction
methodology as in the reference C code. When compared to the floating point NTT from
[ADPS16] applied to the Dilithium prime q = 223 − 213 + 1, our integer NTT is about two
times faster.

At any time our AVX2 optimized NTT has 32 unsigned integer coefficients, of 32 bits
each, loaded into 8 AVX2 vector registers. Each of these vector registers then contains
4 extended 64 bit coefficients. So after three levels of NTT the reduced polynomials fit
completely into these 8 registers and we can transform them to linear factors without
further loads and stores. In the second to last and last level the polynomials have degree
less than 4. This means that every polynomial fits into one register but only half of
the coefficients need to be multiplied by roots. For this reason we shuffle the vectors in
order to group together coefficients that need to be multiplied. The instruction that we
use for this task are perm2i128 in the second last level and a combination of vpshufd
and vpblendd in the last level. The multiplications with the constant roots of unity are
performed using the vpmuludq instruction. This instruction computes a full 64 bit product
of two 32 bit integers. It has a latency of 5 cycles on both Haswell and Skylake. In each
level of the NTT half of the coefficients need to be multiplied. Therefore we can do four
vector multiplications and Montgomery reductions in parallel. This hides some of the
latency of the multiplication instructions.

For faster matrix and vector expansion, we use a vectorized SHAKE implementation

144 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

18 CRYSTALS-Dilithium

that operates on 4 parallel sponges and hence can absorb and squeeze blocks in and out of
these 4 sponges at the same time. For sampling this means that up to four coefficients can
be sampled simultaneously.

4.7 Computational Efficiency
We have performed timing experiments with our reference implementation on a Haswell
CPU. The results are presented in Table 1. They include the number of CPU cycles needed
by the three operations key generation, signing and signature verification. These numbers
are the medians of 10000 operations each. Signing was performed with a message size
of 32 bytes. The computer we have used is equipped with an Intel Core i7-4770K CPU
running at the constant clock frequency of 3500 Mhz. Hyperthreading and Turbo Boost
are switched off. The system runs Debian stable with Linux Kernel version 3.16.0 and the
code was compiled with gcc 6.3.0.

5 Security Reductions
The standard security notion for digital signatures is UF-CMA security, which is security
under chosen message attacks. In this security model, the adversary gets the public key and
has access to a signing oracle to sign messages of his choice. The adversary’s goal is to come
up with a valid signature of a new message. A slightly stronger security requirement that
is sometimes useful is SUF-CMA (Strong Unforgeability under Chosen Message Attacks),
which also allows the adversary to win by producing a different signature of a message
that he has already seen.

It can be shown that in the (classical) random oracle model, Dilithium is SUF-CMA
secure based on the hardness of the standard MLWE and MSIS lattice problems. The
reduction, however, is not tight. Furthermore, since we also care about quantum attackers,
we need to consider the security of the scheme when the adversary can query the hash
function on a superposition of inputs (i.e. security in the quantum random oracle model –
QROM). Since the classical security proof uses the “forking lemma” (which is essentially
rewinding), the reduction does not transfer over to the quantum setting.

There are no counter-examples of schemes whose security is actually affected by the
non-tightness of the reduction. For example, schemes like Schnorr signatures [Sch89], GQ
signatures [GQ88], etc. all set their parameters ignoring the non-tightness of the reduction.
Furthermore, the only known uses of the additional power of quantum algorithms against
schemes whose security is based on quantum-resistant problems under a classical reduction
involve “Grover-type” algorithms that improve exhaustive search (although it has been
shown that there cannot be a “black-box” proof that the Fiat-Shamir transform is secure
in the QROM [ARU14]).

The reason that there haven’t been any attacks taking advantage of the non-tightness
of the reduction is because there is an intermediate problem which is tightly equivalent,
even under quantum reductions, to the UF-CMA security of the signature scheme. This
problem is essentially a “convolution” of the underlying mathematical problem (such as
MSIS or discrete log) with a cryptographic hash function H. It would appear that as long
as there is no relationship between the structure of the math problem and H, solving this
intermediate problem is not easier than solving the mathematical problem.4

Below, we will introduce the hardness assumptions upon whose hardness the SUF-CMA
security of our scheme is based. The first two assumptions, MLWE and MSIS, are standard
lattice problems which are a generalization of LWE,Ring-LWE,SIS, and Ring-SIS. The third
problem, SelfTargetMSIS is the aforementioned problem that’s based on the combined

4In the ROM, there is indeed a (non-tight) reduction using the forking lemma that states that solving
this problem is as hard as solving the underlying mathematical problem.

— Internet: Portfolio 145

L. Ducas, E.Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, D. Stehlé 19

hardness of MSIS and the hash function H. In the classical ROM, there is a (non-tight)
reduction from MSIS to SelfTargetMSIS.

5.1 Assumptions
The MLWE Problem. For integers m, k, and a probability distribution D : Rq → [0, 1],
we say that the advantage of algorithm A in solving the decisional MLWEm,k,D problem
over the ring Rq is

AdvMLWE
m,k,D :=

∣∣Pr[b = 1 | A← Rm×k
q ; t← Rm

q ; b ← A(A, t)]
− Pr[b = 1 | A← Rm×k

q ; s1 ← Dk ; s2 ← Dm; b ← A(A,As1 + s2)]
∣∣ .

The MSIS Problem. To an algorithm A we associate the advantage function AdvMSIS
m,k,γ

to solve the (Hermite Normal Form) MSISm,k,γ problem over the ring Rq as

AdvMSIS
m,k,γ(A) := Pr

[
0 < ‖y‖∞ ≤ γ ∧ [I | A] · y = 0 | A← Rm×k

q ; y← A(A)
]
.

The SelfTargetMSIS Problem. Suppose that H : {0, 1}∗ → B60 is a cryptographic hash
function. To an algorithm A we associate the advantage function

AdvSelfTargetMSIS
H,m,k,γ (A) :=

Pr
[

0 ≤ ‖y‖∞ ≤ γ
∧ H([I | A] · y ‖ M) = c

∣∣∣∣A← Rm×k
q ;

(
y :=

[
r
c

]
,M
)
← A|H(·)〉(A)

]
.

5.2 Signature Scheme Security
The concrete security of Dilithium was analyzed in [KLS17], where it was shown that if H is
a quantum random oracle (i.e., a quantum-accessible perfect hash function), the advantage
of an adversary A breaking the SUF-CMA security of the signature scheme is

AdvSUF-CMA
Dilithium (A) ≤ AdvMLWE

k,`,D (B) + AdvSelfTargetMSIS
H,k,`+1,ζ (C) + AdvMSIS

k,`,ζ′(D) + 2−254 , 5 (6)

for D a uniform distribution over Sη, and

ζ = max{γ1 − β, 2γ2 + 1 + 2d−1 · 60} ≤ 4γ2, (7)

ζ ′ = max{2(γ1 − β), 4γ2 + 2} ≤ 4γ2 + 2. (8)

Furthermore, if the running times and success probabilities (i.e. advantages) of A,B,C,D
are tA, tB, tC, tD, εA, εB, εC, εD, then the lower bound on tA/εA is within a small multiplicative
factor of min ti/εi for i ∈ {B,C,D}.

Intuitively, the MLWE assumption is needed to protect against key-recovery, the
SelfTargetMSIS is the assumption upon which new message forgery is based, and the MSIS
assumption is needed for strong unforgeability. We will now sketch some parts of the
security proof that are relevant to the concrete parameter setting.

5To simplify the concrete security bound, we assume that ExpandA produces a uniform matrix A ∈ Rk×`
q ,

ExpandMask(K , ·) is a perfect pseudo-random function, and CRH is a perfect collision-resistant hash
function.

146 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

20 CRYSTALS-Dilithium

5.2.1 UF-CMA Security Sketch

It was shown in [KLS17] that for zero-knowledge deterministic signature schemes, if an
adversary having quantum access to H and classical access to a signing oracle can produce a
forgery of a new message, then there is also an adversary who can produce a forgery without
access to the signing oracle (so he only gets the public key).6 The latter security model is
called UF-NMA – unforgeability under no-message attack. By the MLWE assumption, the
public key (A, t = As1 + s2) is indistinguishable from (A, t) where t is chosen uniformly
at random. The proof that our signature scheme is zero-knowledge is fairly standard and
follows the framework from [Lyu09, Lyu12, BG14]. It is formally proved in [KLS17]7 and
we sketch the proof in Appendix B.

If we thus assume that the MLWEk,`,D problem is hard, where D is the distribution that
samples a uniform integer in the range [−η, η], then to prove UF-NMA security, we only
need to analyze the hardness of the experiment where the adversary receives a random
(A, t) and then needs to output a valid message/signature pair M , (z,h, c) such that

• ‖z‖∞ < γ1 − β

• H(UseHintq(h,Az− ct1 · 2d , 2γ2)‖M) = c

• # of 1’s in h is ≤ ω

Lemma 1 implies that one can rewrite

UseHintq(h,Az− ct1 · 2d , 2γ2) = Az− ct1 · 2d + u, (9)

where ‖u‖∞ ≤ 2γ2 + 1. Furthermore, only ω coefficients of u will have magnitude greater
than γ2. If we write t = t1 · 2d + t0 where ‖t0‖∞ ≤ 2d−1, then we can rewrite Eq. (9) as

Az− ct1 · 2d + u = Az− c(t− t0) + u = Az− ct + (ct0 + u) = Az− ct + u′. (10)

Note that the worst-case upper-bound for u′ is

‖u′‖∞ ≤ ‖ct0‖∞ + ‖u‖∞ ≤ ‖c‖1 · ‖t0‖∞ + ‖u‖∞ ≤ 60 · 2d−1 + 2γ2 + 1 < 4γ2.

Thus a (quantum) adversary who is successful at creating a forgery of a new message is
able to find z, c,u′,M such that ‖z‖∞ < γ1−β, ‖c‖∞ = 1, ‖u′‖∞ < 4γ2, and M ∈ {0, 1}∗
such that

H

[A | t | Ik] ·

z
c
u′

 ‖ M

 = c. (11)

Since (A, t) is completely random, this is exactly the definition of the SelfTargetMSIS
problem from above. A standard forking lemma argument can be used to show that
an adversary solving the above problem in the (standard) random oracle model can be
used to solve the MSIS problem. While giving a reduction using the forking lemma is a
good “sanity check”, it is not particularly useful for setting parameters due to its lack of
tightness. So how does one set parameters? The Fiat-Shamir transform has been used
for over 3 decades (and we have been aware of the non-tightness of the forking lemma for
two of them), yet the parameter settings for schemes employing it have ignored this loss

6It was also shown in [KLS17] that the “deterministic” part of the requirement can be relaxed. The
security proof simply loses a factor of the number of different signatures produced per message in its
tightness. Thus, for example, if one were to implement the signature scheme (with the same secret key) on
several devices with different random-number generators, the security of the scheme would not be affected
much.

7In that paper, it is actually proved that the underlying zero-knowledge proof is zero-knowledge and
then the security of the signature scheme follows via black box transformations.

— Internet: Portfolio 147

L. Ducas, E.Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, D. Stehlé 21

in tightness. Implicitly, therefore, these schemes rely on the exact hardness of analogues
(based on various assumptions such as discrete log [Sch89], one-wayness of RSA [GQ88],
etc.) of the problem in Eq. (11).

The intuition for the security of the problem in Eq. (11) (and its discrete log, RSA,
etc. analogues) is as follows: since H is a cryptographic hash function whose structure
is completely independent of the algebraic structure of its inputs, choosing some M
“strategically” should not help – so the problem would be equally hard if the M were fixed.
Then, again relying on the independence of H and the algebraic structure of its inputs,
the only approach for obtaining a solution appears to be picking some w, computing
H(w ‖ M) = c, and then finding z,u′ such that Az + u′ = w + ct.8 The hardness of
finding such z,u′ with `∞-norms less than 4γ2 such that

Az + u′ = t′ (12)

for some t′ is the problem whose concrete security we will be analyzing. Note that this is
conservative because in Eq. (11) ‖z‖∞ < γ1 − β ≈ 2γ2. Furthermore, only ω coefficients of
u′ can be larger than 2γ2.

5.2.2 The Addition of the Strong Unforgeabilty Property

To handle the strong-unforgeability requirement, one needs to handle an additional case.
Intuitively, the reduction from UF-CMA to UF-NMA used the fact that a forgery of a
new message will necessarily require the use of a challenge c for which the adversary has
never seen a valid signature (i.e., (z,h, c) was never an output by the signing oracle). To
prove strong-unforgeability, we also have to consider the case where the adversary sees a
signature (z,h, c) for M and then only changes (z,h). In other words, the adversary ends
up with two valid signatures such that

UseHintq(h,Az− ct1 · 2d , 2γ2) = UseHintq(h′,Az′ − ct1 · 2d , 2γ2).

By Lemma 1, the above equality can be shown to imply that there exist ‖z‖∞ ≤ 2(γ1 − β)
and ‖u‖∞ ≤ 4γ2 + 2 such that Az + u = 0.

5.3 Concrete Security Analysis
In Appendix C, we describe the best known lattice attacks against the problems in Eq. (6)
upon which the security of our signature scheme is based. The best attacks involve
finding short vectors in some lattice. The main difference between the MLWE and MSIS
problems is that the MLWE problem involves finding a short vector in a lattice in which
an “unusually short” vector exists. The MSIS problem, on the other hand, involves just
finding a short vector in a random lattice. In knapsack terminology, the MLWE problem is
a low-density knapsack, while MSIS is a high-density knapsack instance. The analysis for
the two instances is slightly different and we analyze the MLWE problem in Appendix C.2
and the MSIS problem (as well as SelfTargetMSIS) in Appendix C.3.

We follow the general methodology from [ADPS16, BCD+16] to analyze the security
of our signature scheme, with minor adaptations. This methodology is significantly
more conservative than prior ones used in lattice-based cryptography. In particular, we
assume the adversary can run the asymptotically best algorithms known, with no overhead
compared to the asymptotic run-times. In particular, we assume the adversary can cheaply
handle huge amounts of (possibly quantum) memory. This conservatism is in line with
the goal of long-term post-quantum security. We note that despite this security analysis
methodology, our schemes remain competitive in practice.

8This is indeed the (non-tight) proof sketch in the classical random oracle model.

148 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

22 CRYSTALS-Dilithium

The security parameters in Table 1 are based on this conservative methodology. Since
we are making so many approximations (in favor of the adversary), it may seem a little
strange that our numbers are so “precisely” stated. The purpose of such precision is to
make it possible to compare between our scheme and other lattice-based ones based on
the same conservative analysis. On the other hand, because our security levels understates
the actual security of the schemes and the best cryptanalytic algorithms are extremely
memory-intensive, we believe that our schemes still satisfy their stated “NIST Security
Level” designation despite the security numbers appearing to be below the required levels.

While the MLWE and MSIS problems are defined over polynomial rings, we do not
currently have any way of exploiting this ring structure, and therefore the best attacks are
mounted by simply viewing these problems as LWE and SIS problems. The LWE and SIS
problems are exactly as in the definitions of MLWE and MSIS in Section 5.1 with the ring
Rq being replaced by Zq.

5.4 Changing Security Levels
The most straightforward way of raising/lowering the security of Dilithium is by changing
the values of (k, `) and then adapting the value of η (and then β and ω) accordingly as in
Table 1. Increasing (k, `) by 1 each results in the public key increasing by ≈ 300 bytes and
the signature by ≈ 700 bytes; and increases security by ≈ 30 bits.

A different manner in which to increase security would be by lowering the values of γ1
and/or γ2. This would make forging signatures (whose hardness is based on the underlying
SIS problem) more difficult. Rather than increasing the size of the public key / signature,
the negative effect of lowering the γi is that signing would require more repetitions. One
could similarly increase the value of η in order to make the LWE problem harder at the
expense of more repetitions.9 Because the increase in running time is rather dramatic
(e.g. halving both γi would end up squaring the number of required repetitions as per
Eq. (5)), we recommend increasing (k, `) when needing to “substantially” increase security.
Changing the γi should be reserved only for slight “tweaks” in the security levels.

References
[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-

quantum key exchange – a new hope. In Proceedings of the 25th USENIX
Security Symposium, pages 327–343. USENIX Association, 2016. http://
cryptojedi.org/papers/#newhope. 16, 17, 21, 28

[AG11] Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors.
In Luca Aceto, Monika Henzinger, and Jiri Sgall, editors, ICALP 2011, Part I,
volume 6755 of LNCS, pages 403–415. Springer, Heidelberg, July 2011. 29

[ARU14] Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum attacks
on classical proof systems: The hardness of quantum rewinding. In FOCS,
pages 474–483, 2014. 18

[BCD+16] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig,
Valeria Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take
off the ring! Practical, quantum-secure key exchange from LWE. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and
Shai Halevi, editors, ACM CCS 16, pages 1006–1018. ACM Press, October
2016. 21

9The two changes in this paragraph may require lowering d so as to keep the value ‖ct0‖∞ smaller
than γ2 with high probability. Lowering d will increase the size of the public key.

— Internet: Portfolio 149

L. Ducas, E.Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, D. Stehlé 23

[BDGL16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions
in nearest neighbor searching with applications to lattice sieving. In Robert
Krauthgamer, editor, 27th SODA, pages 10–24. ACM-SIAM, January 2016. 27

[BG14] Shi Bai and Steven D. Galbraith. An improved compression technique for
signatures based on learning with errors. In CT-RSA, pages 28–47, 2014. 2, 20,
26

[BHH+15] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben
Niederhagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe, and
Zooko Wilcox-O’Hearn. SPHINCS: practical stateless hash-based signatures.
In Marc Fischlin and Elisabeth Oswald, editors, Advances in Cryptology –
EUROCRYPT 2015, volume 9056 of LNCS, pages 368–397. Springer, 2015.
http://cryptojedi.org/papers/#sphincs. 6

[BHLY16] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom.
Flush, gauss, and reload - A cache attack on the BLISS lattice-based signature
scheme. In CHES, pages 323–345, 2016. 2

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the
parity problem, and the statistical query model. J. ACM, 50(4):506–519, 2003.
29

[BS16] Jean-François Biasse and Fang Song. Efficient quantum algorithms for compu-
ting class groups and solving the principal ideal problem in arbitrary degree
number fields. In Robert Krauthgamer, editor, 27th SODA, pages 893–902.
ACM-SIAM, January 2016. 30

[CDPR16] Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering short
generators of principal ideals in cyclotomic rings. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS,
pages 559–585. Springer, Heidelberg, May 2016. 30

[CDW17] Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Short Stickelberger
class relations and application to ideal-SVP. In EUROCRYPT (1), volume
10210 of Lecture Notes in Computer Science, pages 324–348, 2017. 30

[CGS14] Peter Campbell, Michael Groves, and Dan Shepherd. Soliloquy: A cautionary
tale. In ETSI 2nd Quantum-Safe Crypto Workshop, pages 1–9, 2014. 30

[CLP+17] Ming-Shing Chen, Wen-Ding Li, Bo-Yuan Peng, Bo-Yin Yang, and Chen-Mou
Cheng. Implementing 128-bit secure mpkc signatures. Cryptology ePrint
Archive, Report 2017/636, 2017. https://eprint.iacr.org/2017/636. 6

[CN11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates.
In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume
7073 of LNCS, pages 1–20. Springer, Heidelberg, December 2011. 27

[DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice
signatures and bimodal gaussians. In CRYPTO (1), pages 40–56, 2013. 2, 5

[DLP14] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. Efficient identity-based
encryption over NTRU lattices. In ASIACRYPT, pages 22–41, 2014. 2, 5

[EFGT17] Thomas Espitau, Pierre-Alain Fouque, Benoit Gerard, and Mehdi Tibouchi.
Side-channel attacks on bliss lattice-based signatures – exploiting branch tra-
cing against strongswan and electromagnetic emanations in microcontrollers.
Cryptology ePrint Archive, Report 2017/505, 2017. https://eprint.iacr.
org/2017/505 To appear in CCS 2017. 2

150 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

24 CRYSTALS-Dilithium

[GLP12] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical
lattice-based cryptography: A signature scheme for embedded systems. In
CHES, pages 530–547, 2012. 2

[GQ88] Louis C. Guillou and Jean-Jacques Quisquater. A "paradoxical" indentity-based
signature scheme resulting from zero-knowledge. In CRYPTO, pages 216–231,
1988. 18, 21

[HPS11] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Analyzing blockwise
lattice algorithms using dynamical systems. In Phillip Rogaway, editor,
CRYPTO 2011, volume 6841 of LNCS, pages 447–464. Springer, Heidelberg,
August 2011. 27

[KF17] Paul Kirchner and Pierre-Alain Fouque. Revisiting lattice attacks on overstret-
ched NTRU parameters. In EUROCRYPT (1), volume 10210 of Lecture Notes
in Computer Science, pages 3–26, 2017. 30

[KLS17] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treatment
of Fiat-Shamir signatures in the quantum random-oracle model. Cryptology
ePrint Archive, Report 2017/916, 2017. https://eprint.iacr.org/2017/916.
4, 5, 10, 19, 20, 26

[Knu97] Donald Knuth. The Art of Computer Programming, volume 2. Addison-Wesley,
3 edition, 1997. page 145. 7

[Laa15] Thijs Laarhoven. Search problems in cryptography. PhD thesis, Eindhoven
University of Technology, 2015. 27

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and
factoring-based signatures. In ASIACRYPT, pages 598–616, 2009. 2, 20

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT,
pages 738–755, 2012. 20, 26

[PBY17] Peter Pessl, Leon Groot Bruinderink, and Yuval Yarom. To bliss-b or not to be -
attacking strongswan’s implementation of post-quantum signatures. Cryptology
ePrint Archive, Report 2017/490, 2017. https://eprint.iacr.org/2017/490.
To appear in CCS 2017. 2

[PSS+17] Damian Poddebniak, Juraj Somorovsky, Sebastian Schinzel, Manfred Lochter,
and Paul Rösler. Attacking deterministic signature schemes using fault attacks.
Cryptology ePrint Archive, Report 2017/1014, 2017. https://eprint.iacr.
org/2017/1014. 10

[SBB+17] Niels Samwel, Lejla Batina, Guido Bertoni, Joan Daemen, and Ruggero Susella.
Breaking ed25519 in wolfssl. Cryptology ePrint Archive, Report 2017/985,
2017. https://eprint.iacr.org/2017/985. 10

[Sch89] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In
CRYPTO, pages 239–252, 1989. 18, 21

[SE94] Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Improved
practical algorithms and solving subset sum problems. Math. Program., 66:181–
199, 1994. 26

— Internet: Portfolio 151

L. Ducas, E.Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, D. Stehlé 25

A Proofs for Rounding Algorithm Properties
The three lemmas below prove each of the three parts of Lemma 1.

Lemma 3. Let r , z ∈ Zq with ‖z‖∞ ≤ α/2. Then

UseHintq (MakeHintq(z, r , α), r , α) = HighBitsq(r + z, α).

Proof. The output of Decomposeq is an integer r1 such that 0 ≤ r1 < (q − 1)/α and
another integer r0 such that ‖r0‖∞ ≤ α/2. Because ‖z‖∞ ≤ α/2, the integer v1 :=
HighBitsq(r + z, α) either stays the same as r1 or becomes r1 ± 1 modulo m = (q − 1)/α.
More precisely, if r0 > 0, then −α/2 < r0 + z ≤ α. This implies that v1 is either r1 or
r1 + 1 mod m. If r0 ≤ 0, then we have −α ≤ r0 + z ≤ α/2. In this case, we have v1 = r1
or r1 − 1 mod m.

The MakeHintq routine checks whether r1 = v1 and outputs 0 if this is so, and 1 if
r1 6= v1. The UseHintq routine uses the “hint” h to either output r1 (if y = 0) or, depending
on whether r0 > 0 or not, output either r1 + 1 mod+ m or r1 − 1 mod+ m.

The lemma below shows that r is not too far away from the output of the UseHintq
algorithm. This will be necessary for the security of the scheme.

Lemma 4. Let (h, r) ∈ {0, 1} × Zq and let v1 = UseHintq(h, r , α). If h = 0, then
‖r − v1 · α‖∞ ≤ α/2; else ‖r − v1 · α‖∞ ≤ α+ 1.

Proof. Let (r1, r0) := Decomposeq(r , α). We go through all three cases of the UseHintq
procedure.

Case 1 (h = 0): We have v1 = r1 and

r − v1 · α = r1 · α+ r0 − r1 · α = r0 ,

which by definition has absolute value at most α/2.
Case 2 (h = 1 and r0 > 0): We have v1 = r1 + 1− κ · (q − 1)/α for κ = 0 or 1. Thus

r − v1 · α = r1 · α+ r0 − (r1 + 1− κ · (q − 1)/α) · α
= −α+ r0 + κ · (q − 1).

After centered reduction modulo q, the latter has magnitude ≤ α.
Case 3 (h = 1 and r0 ≤ 0): We have v1 = r1 − 1 + κ · (q − 1)/α for κ = 0 or 1. Thus

r − v1 · α = r1 · α+ r0 − (r1 − 1 + κ · (q − 1)/α) · α
= α+ r0 − κ · (q − 1).

After centered reduction modulo q, the latter quantity has magnitude ≤ α+ 1.

The next lemma will play a role in proving the strong existential unforgeability of
our signature scheme. It states that two different h, h′ cannot lead to UseHintq(h, r , α) =
UseHintq(h′, r , α).

Lemma 5. Let r ∈ Zq and h, h′ ∈ {0, 1}. If UseHintq(h, r , α) = UseHintq(h′, r , α), then
h = h′.

Proof. Note that UseHintq(0, r , α) = r1 and UseHintq(1, r , α) is equal to (r1±1) mod+(q−
1)/α. Since (q − 1)/α ≥ 2, we have that r1 6= (r1 ± 1) mod+(q − 1)/α.

We now prove Lemma 2.

152 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

26 CRYSTALS-Dilithium

Proof. (Of Lemma 2) We prove the lemma for integers, rather than vectors of polynomials,
since the HighBits function works independently on each coefficient. If ‖LowBitsq(r , α)‖∞ <
α/2−β, then r = r1 ·α+ r0 where −α/2 +β < r0 ≤ α/2 +β. Then r + s = r1 ·α+ (r0 + s)
and −α/2 < r0 + s ≤ α/2. Therefore r + s mod ± α = r0 + s, and thus

(r + s)− ((r + s) mod ± α) = r1 · α = r − (r mod ± α),

and the claim in the Lemma follows.

B Zero-Knowledge Proof
The security of our scheme does not rely on the part of the public key t0 being secret and
so we will be assuming that the public key is t rather than t1.

We want to first compute the probability that some particular (z, c) is generated in
Step 17 taken over the randomness of y and the random oracle H which is modeled as a
random function. We have

Pr[z, c] = Pr[c] · Pr[y = z− cs1 | c].

Whenever z has all its coefficients less than γ1−β then the above probability is exactly
the same for every such tuple (z, c). This is because ‖csi‖∞ ≤ β (with overwhelming
probability), and thus ‖z− cs1‖∞ ≤ γ1 − 1, which is a valid value of y. Therefore, if we
only output z when all its coefficients have magnitudes less than γ1 − β, then the resulting
distribution will be uniformly random over S`γ1−β−1 × B60.

The simulation of the signature follows [Lyu12, BG14]. The simulator picks a uniformly
random (z, c) in S`γ1−β−1 × B60, after which it also makes sure that

‖r0‖∞ = ‖LowBitsq(w− cs2, 2γ2)‖∞ < γ2 − β.

By Equation (2), we know that w − cs2 = Az − ct, and therefore the simulator can
perfectly simulate this as well.

If z does indeed satisfy ‖LowBitsq(w−cs2, 2γ2)‖∞ < γ2−β, then as long as ‖cs2‖∞ ≤ β,
we will have

r1 = HighBitsq(w− cs2, 2γ2) = HighBitsq(w, 2γ2) = w1.

Since our β was chosen such that the probability (over the choice of c, s2) that ‖cs2‖∞ < β
is > 1− 2−128, the simulator does not need to perform the check that r1 = w1 and can
always assume that it passes.

We can then program
H(µ ‖ w1)← c .

Unless we have already set the value of H(µ ‖ w1) to something else, the resulting pair
(z, c) has the same distribution as in a genuine signature of µ. It was shown in [KLS17]
that the probability, over the random choice of A and y, that we already set the value of
H(µ ‖ w1) is less than 2−255.

All the other steps (after Step 19) of the signing algorithm are performed using public
information and are therefore simulatable.

C Concrete Security
C.1 Lattice Reduction and Core-SVP Hardness
The best known algorithm for finding very short non-zero vectors in Euclidean lattices is
the Block–Korkine–Zolotarev algorithm (BKZ) [SE94], proposed by Schnorr and Euchner

— Internet: Portfolio 153

L. Ducas, E.Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, D. Stehlé 27

in 1991. More recently, it was proven to quickly converge to its fix-point [HPS11] and
improved in practice [CN11]. Yet, what it achieves asymptotically remains unchallenged.

BKZ with block-size b makes calls to an algorithm that solves the Shortest lattice
Vector Problem (SVP) in dimension b. The security of our scheme relies on the necessity
to run BKZ with a large block-size b and the fact that the cost of solving SVP is
exponential in b. The best known classical SVP solver [BDGL16] runs in time ≈ 2cC ·b

with cC = log2
√

3/2 ≈ 0.292. The best known quantum SVP solver [Laa15, Sec. 14.2.10]
runs in time ≈ 2cQ·b with cQ = log2

√
13/9 ≈ 0.265. One may hope to improve these run-

times, but going below ≈ 2cP ·b with cP = log2
√

4/3 ≈ 0.2075 would require a theoretical
breakthrough. Indeed, the best known SVP solvers rely on covering the b-dimensional
sphere with cones of center-to-edge angle π/3: this requires 2cP ·b cones. The subscripts C,
Q, P respectively stand for Classical, Quantum and Paranoid.

The strength of BKZ increases with b. More concretely, given as input a basis (c1, . . . , cn)
of an n-dimensional lattice, BKZ repeatedly uses the b-dimensional SVP-solver on lattices
of the form (ci+1(i), . . . , cj(i)) where i ≤ n, j = min(n, i + b) and where ck(i) denotes
the projection of ck orthogonally to the vectors (c1, . . . , ci). The effect of these calls
is to flatten the curve of the `i = log2 ‖ci(i − 1)‖’s (for i = 1, . . . ,n). At the start of
the execution, the `i ’s typically decrease fast, at least locally. As BKZ preserves the
determinant of the ci ’s, the sum of the `i ’s remains constant throughout the execution,
and after a (small) polynomial number of SVP calls, BKZ has made the `i ’s decrease less.
It can be heuristically estimated that for sufficiently large b, the local slope of the `i ’s
converges to

slope(b) = 1
b − 1 log2

(
b

2πe(π · b)1/b
)
,

unless the local input `i ’s are already too small or too large. The quantity slope(b) decreases
with b, implying that the larger b the flatter the output `i ’s.

In our case, the input `i ’s are of the following form (cf. Fig. 10). The first ones
are all equal to log2 q and the last ones are all equal to 0. BKZ will flatten the jump,
decreasing `i ’s with small i’s and increasing `i ’s with large i’s. However, the local slope
slope(b) may not be sufficiently small to make the very first `i ’s decrease and the very
last `i ’s increase. Indeed, BKZ will not increase (resp. increase) some `i ’s if these are
already smaller (resp. larger) than ensured by the local slope guarantee. In our case, the
`i ’s are always of the following form at the end of the execution:

• The first `i ’s are constant equal to log2 q (this is the possibly empty Zone 1).

• Then they decrease linearly, with slope slope(b) (this is the never-empty Zone 2).

• The last `i ’s are constant equal to 0 (this is the possibly empty Zone 3).

The graph is continuous, i.e., if Zone 1 (resp. Zone 3) is not empty, then Zone 2 starts
with `i = log2 q (resp. ends with `i = 0).

C.2 Solving MLWE
Any MLWE`,k,D instance for some distribution D can be viewed as an LWE instance of
dimensions 256·` and 256·k. Indeed, the above can be rewritten as finding vec(s1), vec(s2) ∈
Z256·` × Z256·k from (rot(A), vec(t)), where vec(·) maps a vector of ring elements to
the vector obtained by concatenating the coefficients of its coordinates, and rot(A) ∈
Z256·k×256·`

q is obtained by replacing all entries aij ∈ Rq of A by the 256 × 256 matrix
whose z-th column is vec

(
xz−1 · aij

)
.

Given an LWE instance, there are two lattice-based attacks. The primal attack and
the dual attack. Here, the primal attack consists in finding a short non-zero vector in the

154 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

28 CRYSTALS-Dilithium

0 i
0

`i

log2 q

Zo
ne

1

Zo
ne

3

0 i
0

`i

log2 q

Zo
ne

1

Zo
ne

2

Zo
ne

3

Before reduction After b-BKZ with small b

0 i
0

`i

log2 q
Zo

ne
2

Zo
ne

3

0 i
0

`i

log2 q

Zo
ne

2

After b-BKZ with med. b After b-BKZ with large b

Figure 10: Evolution of Gram-Schmidt length in log-scale under BKZ reduction for various
blocksizes. The area under the curves remains constant, and the slope in Zone 2 decrease
with the blocksize. Note that Zone 3 may disappear before Zone 1, depending on the shape
of the input basis.

lattice Λ = {x ∈ Zd : Mx = 0 mod q} where M = (rot(A)[1:m]|Im|vec(t)[1:m]) is an m× d
matrix where d = 256 · `+ m + 1 and m ≤ 256 · k. Indeed, it is sometime not optimal to
use all the given equations in lattice attacks.

We tried all possible numberm of rows, and, for each trial, we increased the blocksize of b
until the value `d−b obtained as explained above was deemed sufficiently large. As explained
in [ADPS16, Sec. 6.3], if 2`d−b is greater than the expected norm of (vec(s1), vec(s2)) after
projection orthogonally to the first d − b vectors, it is likely that the MLWE solution can
be easily extracted from the BKZ output.

The dual attack consists in finding a short non-zero vector in the lattice Λ′ = {(x,y) ∈
Zm ×Zd : MTx + y = 0 mod q)}, M = (rot(A)[1:m]) is an m × d matrix where d = 256 · `
and m ≤ 256 · k. Again, for each value of m, we increased the value of b until the
value `1 obtained as explained above was deemed sufficiently small according the analysis
of [ADPS16, Sec. 6.3].

C.3 Solving MSIS and SelfTargetMSIS
As per the discussion in Section 5.2.1, the best known attack against the SelfTargetMSIS
problem involves either breaking the security of H or solving the problem in Eq. (12). The
latter amounts to solving the MSISk,`+1,ζ problem for the matrix [A | t′]. 10

Note that the MSIS instance can be mapped to a SIS256·k,256·(`+1),ζ instance by consi-
dering the matrix rot(A|t′) ∈ Z256·k×256·(`+1)

q . The attack against the MSISk,`,ζ′ instance
in Eq. (6) can similarly be mapped to a SIS256·k,256·`,ζ′ instance by considering the matrix
rot(A) ∈ Z256·k×256·`

q . The attacker may consider a subset of w columns, and let the
solution coefficients corresponding to the dismissed columns be zero.
Remark 1. An unusual aspect here is that we are considering the infinity norm, rather
than the Euclidean norm. Further, for our specific parameters, the Euclidean norms of the
solutions are above q. In particular, the vector (q, 0, . . . , 0)T belongs to the lattice, has

10Note that a solution to Eq. (12) would require the coefficient in from of t′ to be ±1, while we’re
allowing any small polynomial. Furthermore, as discussed after Eq. (12), some parts of the real solution
are smaller than the bound ζ, but we’re ignoring this for the sake of being conservative with our analysis.

— Internet: Portfolio 155

L. Ducas, E.Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, D. Stehlé 29

0 i0

`i

log2 q

Zo
ne

1

Zo
ne

2

Zo
ne

3

0 i0

`i

Zo
ne

2

Zo
ne

3

Keeping q-vectors Forgetting q-vectors

Figure 11: Effect of forgetting q-vectors by randomization, under the same BKZ-blocksize
b.

Euclidean norm below that of the solution, but its infinity norm above the requirement.
This raises difficulties in analyzing the strength of BKZ towards solving our infinity norm
SIS instances: indeed, even with small values of b, the first `i ’s are short (they correspond
to q-vectors), even though they are not solutions.

For each number w of selected columns and for each value of b, we compute the
estimated BKZ output `i ’s, as explained above. We then consider the smallest i such that
`i is below log2 q and the largest j such that `j above 0. These correspond to the vectors
that were modified by BKZ, with smallest and largest indices, respectively. In fact, for
the same cost as a call to the SVP-solver, we can obtain

√
4/3b vectors with Euclidean

norm ≈ 2`i after projection orthogonally to the first i − 1 basis vectors. Now, let us look
closely at the shape of such a vector. As the first i − 1 basis vectors are the first i − 1
canonical unit vectors multiplied by q, projecting orthogonally to these consists in zeroing
the first i − 1 coordinates. The remaining w − i + 1 coordinates have total Euclidean
norm ≈ 2`i ≈ q, and the last w − j coordinates are 0. We heuristically assume that these
coordinates have similar magnitudes σ ≈ 2`i/

√
j − i + 1; we model each such coordinate

as a Gaussian of standard deviation σ. We assume that each one of our
√

4/3b vectors
has its first i − 1 coordinates independently uniformly distributed modulo q, and finally
compute the probability that all coordinates in both ranges [0, i − 1] and [i, j] are less than
B in absolute value. Our cost estimate is the inverse of that probability multiplied by the
run-time of our b-dimensional SVP-solver.

Forgetting q-vectors. For all the parameter sets in Table 1, the best parametrization of
the attack above kept the basis in a shape with a non-trivial Zone 1. We note that the
coordinates in this range have a quite lower probability of passing the `∞ constraint than
coordinates in Zone 2. We therefore considered a strategy consisting of “forgetting” the
q-vectors, by re-randomizing the input basis before running the BKZ algorithm. For the
same blocksize b, this makes Zone 1 of the output basis disappear (BKZ does not find
the q-vectors), at the cost of producing a basis with first vectors of larger Euclidean norms.
This is depicted in Fig. 11.

It turns out that this strategy always improves over the previous strategy for the
parameter ranges considered in Table 1. We therefore used this strategy for our security
estimates.

C.4 On Other Attacks
For our parameters, the BKW [BKW03] and Arora–Ge [AG11] families of algorithms are
far from competitive.

156 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

30 CRYSTALS-Dilithium

Algebraic attacks. One specificity of our LWE and SIS instances is that they are inherited
from MLWE and MSIS instances. One may wonder whether the extra algebraic structure
of the resulting lattices can be exploited by an attacker. The line of work of [CGS14,
BS16, CDPR16, CDW17] did indeed find new cryptanalytic results on certain algebraic
lattices, but [CDW17] mentions serious obstacles towards breaking cryptographic instances
of Ring-LWE. By switching from Ring-LWE to MLWE, we get even further away from
those weak algebraic lattice problems.

Dense sublattice attacks. Kirchner and Fouque [KF17] showed that the existence of
many linearly independent and unexpectedly short lattice vectors (much shorter than
Minkowski’s bound) helps BKZ run better than expected in some cases. This could
happen for our primal LWE attack, by extending M = (rot(A)[1:m]|Im|vec(t)[1:m]) to
(rot(A)[1:m]|Im|rot(t)[1:m]): the associated lattice now has 256 linearly independent short
vectors rather than a single one. The Kirchner-Fouque analysis of BKZ works best if both
q and the ratio between the number of unexpectedly short vectors and the lattice dimension
are high. In the NTRU case, for example, the ratio is 1/2, and, for some schemes derived
from NTRU, the modulus q is also large. We considered this refined analysis of BKZ in
our setup, but, to become relevant for our parameters, it requires a parameter b which
is higher than needed with the usual analysis of BKZ. Note that [KF17] also arrived to
the conclusion that this attack is irrelevant in the small modulus regime, and is mostly a
threat to fully homomorphic encryption schemes and cryptographic multilinear maps.

Note that, once again, the switch from Ring-LWE to MLWE takes us further away
from lattices admitting unconventional attacks. Indeed, the dimension ratio of the dense
sub-lattice is 1/2 in NTRU, at most 1/3 in lattices derived from Ring-LWE, and at most
1/(`+ 2) in lattices derived from MLWE.

Specialized attack against `∞-SIS. At last, we would like to mention that it is not clear
whether the attack sketched in Appendix C.3 above for SIS in infinity norm is optimal.
Indeed, as we have seen, this approach produces many vectors, with some rather large
uniform coordinates (at indices 1, . . . , i), and smaller Gaussian ones (at indices i, . . . , j). In
our current analysis, we simply hope that one of the vector satisfies the `∞ bound. Instead,
one could combine them in ways that decrease the size of the first (large) coefficients, while
letting the other (small) coefficients grow a little bit.

This situation created by the use of `∞-SIS (see Remark 1) has — to the best of our
knowledge — not been studied in detail. After a preliminary analysis, we do not consider
such an improved attack a serious threat to our concrete security claims, especially in light
of the approximations already made in favor of the adversary.

— Internet: Portfolio 157

CRYSTALS-Kyber

Algorithm Specifcations And Supporting Documentation

Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, Damien Stehlé

November 30, 2017

1

158 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Contents
1 Written specifcation 3

1.1 Preliminaries and notation. 3
1.2 Specifcation of Kyber.CPAPKE . 6
1.3 Specifcation of Kyber.CCAKEM . 9
1.4 Kyber parameter sets . 9
1.5 Design rationale . 10

2 Performance analysis 13
2.1 Implementation considerations and tradeo˙s . 13
2.2 Performance of reference and AVX2 implementations . 14

3 Known Answer Test values 14

4 Expected security strength 15
4.1 Security defnition . 15
4.2 Rationale of our security estimates . 15
4.3 Security Assumption . 16

4.3.1 Tight reduction from MLWE in the ROM . 16
4.3.2 Non-tight reduction from MLWE in the QROM . 16

4.4 Estimated security strength . 17
4.5 Additional security properties . 18

4.5.1 Forward secrecy. 18
4.5.2 Side-channel attacks. 18
4.5.3 Multi-target attacks . 19
4.5.4 Misuse resilience . 19

5 Analysis with respect to known attacks 19
5.1 Attacks against the underlying MLWE problem . 19

5.1.1 Attacks against LWE. 19
5.1.2 Primal attack. 20
5.1.3 Dual attack . 21
5.1.4 Core-SVP hardness of Kyber . 21
5.1.5 Algebraic attacks. 21

5.2 Attacks against symmetric primitives . 22
5.3 Attacks exploiting decryption failures . 22

6 Advantages and limitations 24
6.1 Advantages . 24
6.2 Comparison to SIDH . 24
6.3 Comparison to code-based KEMs . 24
6.4 Comparison to other lattice-based schemes . 24

6.4.1 Schemes that build a KEM directly . 25
6.4.2 LWE based schemes . 25
6.4.3 Ring-LWE based schemes . 25
6.4.4 NTRU . 25
6.4.5 Di˙erent Polynomial Rings . 26
6.4.6 Deterministic Noise. 26

2

— Internet: Portfolio 159

1 Written specifcation
Kyber is an IND-CCA2-secure key-encapsulation mechanism (KEM), which has frst been described in [18].
The security of Kyber is based on the hardness of solving the learning-with-errors problem in module lattices
(MLWE problem [51]). The construction of Kyber follows a two-stage approach: we frst introduce an IND-
CPA-secure public-key encryption scheme encrypting messages of a fxed length of 32 bytes, which we call
Kyber.CPAPKE. We then use a slightly tweaked Fujisaki–Okamoto (FO) transform [35] to construct the
IND-CCA2-secure KEM. Whenever we want to emphasize that we are speaking about the IND-CCA2-secure
KEM, we will refer to it as Kyber.CCAKEM.

In Subsection 1.1 we give preliminaries and fx notation. In Subsection 1.2 we give a full specifca-
tion of Kyber.CPAPKE. Subsection 1.3 gives details of the transform that we use in Kyber to obtain
Kyber.CCAKEM from Kyber.CPAPKE. Subsection 1.4 lists the parameters that we propose for di˙erent
security levels. Finally, Subsection 1.5 explains the design rationale behind Kyber.

1.1 Preliminaries and notation.

Bytes and byte arrays. Inputs and outputs to all API functions of Kyber are byte arrays. To simplify
notation, we denote by by B the set {0, . . . , 255}, i.e., the set of 8-bit unsigned integers (bytes). Consequently
we denote by Bk the set of byte arrays of length k and by B∗ the set of byte arrays of arbitrary length (or
byte streams). For two byte arrays a and b we denote by (akb) the concatenation of a and b. For a byte array
a we denote by a + k the byte array starting at byte k of a (with indexing starting at zero). For example,
let a by a byte array of length ̀ , let b be another byte array and let c = (akb) be the concatenation of a and
b; then b = a + ̀ . When it is more convenient to work with an array of bits than an array of bytes we make
this conversion explicit via the BytesToBits function that takes as input an array of ̀ bytes and produces as
output an array of 8` bits. Bit βi at position i of the output bit array is obtained from byte bi/8 at position � �

mod 8))i/8 of the input array by computing βi = (bi/8/2
(i mod 2 .

Polynomial rings and vectors. We denote by R the ring Z[X]/(Xn +1) and by Rq the ring Zq[X]/(X
n+1),

where n = 2n 0−1 such that Xn + 1 is the 2n 0
-th cyclotomic polynomial. Throughout this document, the

values of n, n0 and q are fxed to n = 256, n0 = 9, and q = 7681. Regular font letters denote elements in R or
Rq (which includes elements in Z and Zq) and bold lower-case letters represent vectors with coeÿcients in
R or Rq . By default, all vectors will be column vectors. Bold upper-case letters are matrices. For a vector

Tv (or matrix A), we denote by v (or AT) its transpose. For a vector v we write v[i] to denote it’s i-th
entry (with indexing starting at zero); for a matrix A we write A[i][j] to denote the entry in row i, column
j (again, with indexing starting at zero).

0Modular reductions. For an even (resp. odd) positive integer α, we defne r = r mod± α to be the
0 α − α−1 0 α−1 0unique element r in the range − α < r0 ≤ (resp. ≤ r ≤) such that r = r mod α. For any 2 2 2 2

0 0positive integer α, we defne r = r mod+α to be the unique element r in the range 0 ≤ r0 < α such that
0r = r mod α. When the exact representation is not important, we simply write r mod α.

Rounding. For an element x ∈ Q we denote by dxc rounding of x to the closest integer with ties being
rounded up.

Sizes of elements. For an element w ∈ Zq, we write kwk∞ to mean |w mod± q|. We now defne the ̀ ∞

and ̀ 2 norms for w = w0 + w1X + . . . + wn−1X
n−1 ∈ R:

p
kwk∞ = max kwik∞, kwk = kw0k2 ∞.∞ + . . . + kwn−1k2

i

Similarly, for w = (w1, . . . , wk) ∈ Rk, we defne
p

kwk∞ = max kwik∞, kwk = kw1k2 + . . . + kwkk2 .
i

Sets and Distributions. For a set S, we write s ← S to denote that s is chosen uniformly at random from
S. If S is a probability distribution, then this denotes that s is chosen according to the distribution S.

3

160 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Compression and Decompression. We now defne a function Compress (x, d) that takes an element q

x ∈ Zq and outputs an integer in {0, . . . , 2d − 1}, where d < dlog2(q)e. We furthermore defne a function
Decompress , such that q � �0 x = Decompress Compress (x, d), d (1)q q

is an element close to x – more specifcally
l k q|x 0 − x mod± q| ≤ Bq := .
2d+1

The functions satisfying these requirements are defned as:

Compress (x, d) = d(2d/q) · xc mod+2d ,q

Decompress (x, d) = d(q/2d) · xc .q

When Compress or Decompress is used with x ∈ Rq or x ∈ Rk, the procedure is applied to each q q q
coeÿcient individually.

The main reason for defning the Compress and Decompress functions is to be able to discard some low-q q
order bits in the public key and the ciphertext, which do not have much e˙ect on the correctness probability
of decryption – thus reducing the size of public keys and ciphertexts.

Yet, the Compress and Decompress are also used for another purpose than compression, namely to q q
perform the usual LWE error correction during encryption and decryption. More precisely, in line 20 of
the encryption procedure (Algorithm 5) the Decompress function is used to create error tolerance gaps by q
sending 0 to 0 and 1 to dq/2c. Later on, on line 4 of the decryption procedure (Algorithm 6), the Compressq

Tfunction is used to decrypt to a 1 if v − s u is closer to dq/2c than to 0, and decrypt to a 0 otherwise.

Symmetric primitives. The design of Kyber makes use of a pseudorandom function PRF : B32 ×B → B∗

and of an extendable output function XOF : B∗ → B∗ . Kyber also makes use of two hash functions H : B∗ →
B32 and G : B∗ → B32 × B32 .

NTTs and bitreversed order. A very eÿcient way to perform multiplications in Rq is via the so-called Pn−1number-theoretic transform (NTT). For a polynomial g = giX
i ∈ Rq we defne the polynomial ĝ ini=0

NTT domain as

n−1X
NTT(g) = ĝ = ĝiX

i , with
i=0

n−1X
ψj gj ω

ijĝi = ,
j=0

√
where we fx the n-th primitive root of unity to ω = 3844 and thus ψ = ω = 62. The motivation of choosing
ψ = 62 is that it is the smallest integer that has multiplicative order 512 modulo 7681, i.e., the smallest
integer whose square is an n-th root of unity.

The inverse NTT−1 of the function NTT is essentially the same as the computation of NTT, except that it
uses ω−1 mod q = 6584, multiplies by powers of ψ−1 mod q = 1115 after the summation, and also multiplies
each coeÿcient by the scalar n−1 mod q = 7651, so that

n−1X
NTT−1(ĝ) = g = giX

i , with
i=0

n−1X −1ψ−i gj ω
−ijgi = n ˆ .

j=0

For the parameters of Kyber (see Subsection 1.4), both NTT and NTT−1 can be computed very eÿciently
in place, i.e., without requiring any additional memory. However, this means that the output coeÿcients
will be stored in memory in a permuted order. More specifcally, they will be in bitreversed order, i.e.,

4

— Internet: Portfolio 161

coeÿcient âi will be stored at position br256(i), where br256 reverses the bits in an 8-bit integer. For example,
br256(142) = 113. Our implementations of Kyber use an NTT which assumes inputs to be in “normal” (i.e.,
not bitreversed) order, returning output in NTT domain in bitreversed order and an NTT−1 which assumes
inputs to be in bitreversed order and computes outputs in normal order.

Using NTT and NTT−1 we can compute the product f · g of two elements f, g ∈ Rq very eÿciently as
NTT−1(NTT(f) ◦ NTT(g)), where ◦ denotes pointwise or coeÿcient-wise multiplication.

When we apply NTT or NTT−1 to a vector or matrix of elements of Rq, then this means that the
respective operation is applied to each entry individually. When we apply ◦ to matrices or vectors it means
that we perform a usual matrix multiplication, but that the individual products of entries are computed as
pointwise multiplications of coeÿcients. Throughout the document we will write NTT and NTT−1 whenever
we refer to the concrete functions as defned above and use normal-font NTT whenever we refer to the general
technique.

Uniform sampling in Rq. Kyber uses a deterministic approach to sample elements in Rq that are
statistically close to a uniformly random distribution. For this sampling we use a function Parse : B∗ → Rq,
which receives as input a byte stream B = b0, b1, b2, . . . and computes an element â = â0 + â1X + â2X

2 +
· · · + ân−1X

n−1 in Rq (which is assumed to be in NTT domain) as described in Algorithm 1 (note that this
description of Parse assumes q = 7681 and in particular dlog2(q)e = 13).

Algorithm 1 Parse : B∗ → Rq

Input: Byte stream B = b0, b1, b2 · · · ∈ B∗

Output: Polynomial â ∈ Rq, assumed to be in NTT domain
i := 0
j := 0
while j < n do

d := bi + 256 · bi+1

213d := d mod+

if d < q then
ˆ := dabr256(j)
j := j + 1

end if
i := i + 2

end while
return â0 + â1X + · · · + ân−1X

n−1

The intuition behind the function Parse is that if the input byte array is statistically close to a uniformly
random byte array, then the output polynomial is statistically close to a uniformly random element of Rq. We
can assume that this element is in NTT domain, because the NTT maps polynomials with uniformly random
coeÿcients to polynomials with again uniformly random coeÿcients. Note that in line 7 we bitreverse the
index; this ensures that when Parse writes output as a consecutive stream, the output is in NTT domain
with bitreversed coeÿcient order; i.e., in precisely the format that typical implementations of NTT−1 take
as input.

Sampling from a binomial distribution. Noise in Kyber is sampled from a centered binomial distribu-
tion Bη for some positive integer η. We defne Bη as follows:

Sample (a1, . . . , aη, b1, . . . , bη) ← {0, 1}2η

ηX
and output (ai − bi).

i=1

When we write that a polynomial f ∈ Rq or a vector of such polynomials is sampled from Bη, we mean that
each coeÿcient is sampled from Bη.

For the specifcation of Kyber we need to defne how a polynomial f ∈ Rq is sampled according to Bη

deterministically from 64η bytes of output of a pseudorandom function (we fx n = 256 in this description).
This is done by the function CBD (for “centered binomial distribution”) defned as described in Algorithm 2.

5

162 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Algorithm 2 CBDη : B64η → Rq

Input: Byte array B = (b0, b1, . . . , b64η−1) ∈ B64η

Output: Polynomial f ∈ Rq

(β0, . . . , β512η−1) := BytesToBits(B)
for i from 0 to 255 doPη−1

a := j=0 β2iη+jPη−1
b := j=0 β2iη+η+j

fi := a − b
end for
return f0 + f1X + f2X2 + · · · + f255X255

Encoding and decoding. There are two data types that Kyber needs to serialize to byte arrays: byte
arrays and (vectors of) polynomials. Byte arrays are trivially serialized via the identity, so we need to defne
how we serialize and deserialize polynomials. In Algorithm 3 we give a pseudocode description of the function
Decode`, which deserialize-serializes an array of 32` bytes into a polynomial f = f0 + f1X + · · · + f255X255

(we again fx n = 256 in this description) with each coeÿcient fi in {0, . . . , 2 ` − 1}. We defne the function
Encode` as the inverse of Decode`. Whenever we apply Encode` to a vector of polynomials we encode each
polynomial individually and concatenate the output byte arrays.

Algorithm 3 Decode` : B32` → Rq

Input: Byte array B ∈ B32`

Output: Polynomial f ∈ Rq

(β0, . . . , β256β−1) := BytesToBits(B)
for i from 0 to 255 doP`−1

fi := j=0 βi`+j 2
j

end for
return f0 + f1X + f2X2 + · · · + f255X255

1.2 Specifcation of Kyber.CPAPKE

Kyber.CPAPKE is essentially the LPR encryption scheme that was introduced (for Ring-LWE) by Lyuba-
shevsky, Peikert, and Regev in the presentation of [54] at Eurocrypt 2010 [55]; the description is also in the
full version of the paper [56, Sec. 1.1]. The roots of this scheme go back to the frst LWE-based encryption
scheme presented by Regev in [71, 72] and even further to the NTRU cryptosystem presented by Ho˙stein,
Pipher, and Silverman in [41].

The main modifcation we apply to the LPR encryption scheme is to use Module-LWE instead of Ring-
LWE. Also, we adopt the approach taken by Alkım, Ducas, Pöppelmann and Schwabe in [5] for the generation
of the public matrix A. Furthermore, we shorten public keys and ciphertexts by “bit dropping” via learning-
with-rounding [10, Eq. 2.1], which is a common technique for reducing the output sizes in lattice-based
schemes (c.f. [63, 69]).

Parameters. Kyber.CPAPKE is parameterized by integers n, k, q, η, du, dv , and dt. As stated before,
throughout this document n is always 256 and q is always 7681. Furthermore, throughout this document du

and dt will always be 11 and dv will always be 3. The values of k and η vary for di˙erent security levels.
Using the notation of Subsection 1.1 we give the defnition of key generation, encryption, and decryption

of the Kyber.CPAPKE public-key encryption scheme in Algorithms 4, 5, and 6. A more high-level view of
these algorithms is given in the comments.

6

— Internet: Portfolio 163

Algorithm 4 Kyber.CPAPKE.KeyGen(): key generation

Output: Secret key sk ∈ B13·k·n/8

Output: Public key pk ∈ Bdt ·k·n/8+32

1: d ← B32

2: (ρ, σ) := G(d)
3: N := 0

Â ∈ Rk×k4: for i from 0 to k − 1 do . Generate matrix q in NTT domain
5: for j from 0 to k − 1 do

ˆ6: A[i][j] := Parse(XOF(ρkjki))
7: end for
8: end for
9: for i from 0 to k − 1 do . Sample s ∈ Rk from Bηq

10: s[i] := CBDη(PRF(σ, N))
11: N := N + 1
12: end for
13: for i from 0 to k − 1 do . Sample e ∈ Rk from Bηq
14: e[i] := CBDη(PRF(σ, N))
15: N := N + 1
16: end for
17: ŝ := NTT(s)
18: t := NTT−1(Â ◦ ̂s) + e
19: pk := (Encodedt (Compressq(t, dt))kρ) . pk := As + e
20: sk := Encode13(ŝ mod +q) . sk := s
21: return (pk , sk)

7

164 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Algorithm 5 Kyber.CPAPKE.Enc(pk , m, r): encryption

Input: Public key pk ∈ Bdt ·k·n/8+32

Input: Message m ∈ B32

Input: Random coins r ∈ B32

Output: Ciphertext c ∈ Bdu ·k·n/8+dv ·n/8

1: N := 0
2: t := Decompressq(Decodedt (pk), dt)
3: ρ := pk + dt · k · n/8
4: for i from 0 to k − 1 do . Generate matrix Â ∈ Rq

k×k in NTT domain
5: for j from 0 to k − 1 do
6: ÂT [i][j] := Parse(XOF(ρkikj))
7: end for
8: end for
9: for i from 0 to k − 1 do . Sample r ∈ Rk from Bηq

10: r[i] := CBDη (PRF(r, N))
11: N := N + 1
12: end for
13: for i from 0 to k − 1 do . Sample e1 ∈ Rk from Bηq
14: e1[i] := CBDη(PRF(r, N))
15: N := N + 1
16: end for
17: e2 := CBDη(PRF(r, N)) . Sample e2 ∈ Rq from Bη

18: r̂ := NTT(r)
19: u := NTT−1(ÂT ◦ ̂r) + e1 . u := AT r + e1

20: v := NTT−1(NTT(t)T ◦ ̂r) + e2 + Decode1(Decompress (m, 1)) . v := tT r + e2 + Decompress (m, 1)q q

21: c1 := Encodedu (Compressq(u, du))
22: c2 := Encodedv (Compressq(v, dv))
23: return c = (c1kc2) . c := (Compress (u, du), Compress (v, dv))q q

Algorithm 6 Kyber.CPAPKE.Dec(sk , c): decryption

Input: Secret key sk ∈ B13·k·n/8

Input: Ciphertext c ∈ Bdu ·k·n/8+dv ·n/8

Output: Message m ∈ B32

1: u := Decompressq(Decodedu (c), du)
2: v := Decompressq(Decodedv (c + du · k · n/8), dv)
3: ŝ := Decode13(sk)

T4: m := Encode1(Compress (v − NTT−1(ŝT ◦ NTT(u)), 1)) . m := Compress (v − s u, 1))q q

5: return m

8

— Internet: Portfolio 165

1.3 Specifcation of Kyber.CCAKEM

We construct the Kyber.CCAKEM IND-CCA2-secure KEM from the IND-CPA-secure public-key encryption
scheme described in the previous subsection via a slightly tweaked Fujisaki–Okamoto transform [35]. In
Algorithms 7, 8, and 9 we defne key generation, encapsulation, and decapsulation of Kyber.CCAKEM.

Algorithm 7 Kyber.CCAKEM.KeyGen()

Output: Public key pk ∈ Bdt ·k·n/8+32

Output: Secret key sk ∈ B(13+dt)·k·n/8+96

1: z ← B32

2: (pk , sk 0) := Kyber.CPAPKE.KeyGen()
3: sk := (sk 0kpkkH(pk)kz)
4: return (pk , sk)

Algorithm 8 Kyber.CCAKEM.Enc(pk)

Input: Public key pk ∈ Bdt ·k·n/8+32

Output: Ciphertext c ∈ Bdu ·k·n/8+dv ·n/8

Output: Shared key K ∈ B32

1: m ← B32

2: m ← H(m) . Do not send output of system RNG
3: (¯ = G(mkH(pk))K, r) :
4: c := Kyber.CPAPKE.Enc(pk ,m; r)
5: K := H(K̄kH(c))
6: return (c, K)

Algorithm 9 Kyber.CCAKEM.Dec(c, sk)

Input: Ciphertext c ∈ Bdu ·k·n/8+dv ·n/8

Input: Secret key sk ∈ B(13+dt)·k·n/8+96

Output: Shared key K ∈ B32

1: pk := sk + 13 · k · n/8
2: h := sk + (13 + dt) · k · n/8 + 32 ∈ B32

3: z := sk + (13 + dt) · k · n/8 + 64
4: m0 := Kyber.CPAPKE.Dec(s, (u, v))
5: (K̄ 0, r0) := G(m0kh)

06: c0 := Kyber.CPAPKE.Enc(pk ,m , r0)
7: if c = c0 then
8: return K := H(K̄ 0kH(c))
9: else

10: return K := H(zkH(c))
11: end if
12: return K

1.4 Kyber parameter sets
We defne three parameter sets for Kyber, which we call Kyber512, Kyber768, and Kyber1024. The
parameters are listed in Table 1. Note that the table also lists the derived parameter δ, which is the
probability that decapsulation of a valid Kyber.CCAKEM ciphertext fails. The parameters were obtained
via the following approach:

9

166 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Table 1: Parameter sets for Kyber

n k q η (du, dv, dt) δ

Kyber512 256 2 7681 5 (11, 3, 11) 2−145

Kyber768 256 3 7681 4 (11, 3, 11) 2−142

Kyber1024 256 4 7681 3 (11, 3, 11) 2−169

• n is set to 256 because the goal is to encapsulate 256-bit symmetric keys. Smaller values of n would
require to encode multiple key bits into one polynomial coeÿcient, which requires lower noise levels
and therefore lowers security. Larger values of n would reduce the capability to easily scale security
via parameter k.

• q is set to the smallest prime satisfying 2n | (q − 1); this is required to enable the fast NTT-based
multiplication.

• k is selected to fx the lattice dimension as a multiple of n; changing k is the main mechanism in Kyber
to scale security (and as a consequence, eÿciency) to di˙erent levels.

• The remaining parameters η, du, dv, and dt were chosen to balance between security (see Section 4),
public-key and ciphertext size, and failure probability. Note that all three parameter sets achieve a
failure probability of < 2−128 with some margin. We discuss this in more detail in Subsections 1.5
and 5.3. We decided to fx du and dt to the same value, which slightly simplifes implementations.

The failure probability δ is computed with the help of the Kyber.py Python script which is available online
at https://github.com/pq-crystals/kyber/tree/master/scripts/. For the theoretical background of
that script see [18, Theorem 1].

Instantiating PRF, XOF, H, and G. What is still missing to complete the specifcation of Kyber is the
instantiation of the symmetric primitives. We instantiate all of those primitives with functions from the
FIPS-202 standard [60] as follows:

• We instantiate XOF with SHAKE-128;

• we instantiate H with SHA3-256;

• we instantiate G with SHA3-512; and

• we instantiate PRF(s, b) with SHAKE-256(s||b).

1.5 Design rationale
The design of Kyber is based on the module version [51] of the Ring-LWE LPR encryption scheme [54]
with bit-dropping [63, 69]. It is also enhanced by many of the improvements of preceding implementations of
lattice-based encryption schemes such as NewHope [5]. In NewHope (and all other Ring-LWE schemes),
operations were of the form As+e where all the variables were polynomials in some ring. The main di˙erence
in Kyber is that A is now a matrix (with a small dimension like 3) over a constant-size polynomial ring
and s, e are vectors over the same ring. We refer to this as a scheme over “module lattices.”

The use of Module-LWE. Previous proposals of LWE-based cryptosystems either used the very structured
Ring-LWE problem (as, for example, NewHope [5]) or standard LWE (as, for example, Frodo [17]). The
main advantage of structured LWE variants based on polynomial rings is eÿciency in terms of both speed
and key and ciphertext sizes. The disadvantages are concerns that the additional structure might enable
more eÿcient attacks and that tradeo˙s between eÿciency and security can be scaled only rather coarsely.
The advantages of standard LWE is the lack of structure and easy scalability, but those come at the cost of
signifcantly decreasing eÿciency. Module-LWE o˙ers a trade-o˙ between these two extremes. In the specifc
case of the Module-LWE parameters used in Kyber, we obtain somewhat reduced structure compared to

10

— Internet: Portfolio 167

Ring-LWE, much better scalability, and—when encrypting messages of a fxed size of 256 bits—performance
very similar to Ring-LWE-based schemes.

Active security. In [19], Bos, Costello, Naehrig, and Stebila used a passively secure KEM to migrate TLS
to transitional post-quantum security (i.e., post-quantum confdentiality, but only pre-quantum authentica-
tion). Subsequent work, like NewHope [5] or Frodo [17] followed up and proposed more eÿcient and more
conservative instantiations of the underlying passively secure KEM. One advantage of passively secure KEMs
is that they can accept a higher failure probability (which allows to either increase security by increasing
noise or decreasing public-key and ciphertext size). The other advantage is that they do not require a CCA
transform, and therefore come with faster decapsulation. Despite these advantages, Kyber is defned as an
IND-CCA2 secure KEM only. For many applications like public-key encryption (via a KEM-DEM construc-
tion) or in authenticated key exchange active security is mandatory. However, also in use cases (like key
exchange in TLS) that do not strictly speaking require active security, using a an actively secure KEM has
advantages. Most notably, it allows (intentional or accidental) caching of ephemeral keys. Furthermore, the
CCA transform of Kyber protects against certain bugs in implementations. Specifcally, passively secure
schemes will not notice if the communication partner uses “wrong” noise, for example, all-zero noise. Such a
bug in the encapsulation of Kyber will immediately be caught by the re-encryption step during decapsula-
tion. As a conclusion, we believe that the overhead of providing CCA security is not large enough to justify
saving it and making the scheme less robust.

The role of the NTT. Multiplication in Rq based on the number-theoretic transform (NTT) has multiple
advantages: it is extremely fast, does not require additional memory (like, for example, Karatsuba or Toom
multiplication) and can be done in very little code space. Consequently, it has become common practice to
choose parameters of lattice-based crypto to support this very fast multiplication algorithm. Some schemes
go further and make the NTT part of the defnition of the scheme. A prominent example is again NewHope,
which samples the public value a in NTT domain and also sends messages in NTT domain to save 2 NTTs.
NewHope was not the frst scheme to do this; for earlier examples see [53, 69, 73].

In Kyber we also decided to make the NTT part of the defnition of the scheme, but only in the sampling
of A. A consequence of this decision is that the NTT appears in the specifcation of Kyber.CPAPKE. Note
that multiplications by A have to use the NTT, simply because Â is sampled in NTT domain1 . As a
consequence, implementations will also want to use the NTT for all other multiplications, so we make those
invocations of NTT and NTT−1 also explicit in Alg. 4, Alg. 5, and Alg. 6. Note that also the secret key sk
is stored in NTT domain.

We could have chosen to not make the NTT part of the defnition of Kyber, which would have increased
simplicity of the description. The cost for this increased simplicity would have been k2 additional NTT
operations in both key generation and encapsulation, which would result in a signifcant slowdown. We
could have also chosen to send messages in NTT domain like NewHope does. However, this would prevent
us from compressing public-key and ciphertext via the Compress function and thus result in larger ciphertexts q
and public keys.

Against all authority. For the generation of the public uniformly random matrix A, we decided to adopt
the “against-all-authority” approach of NewHope. This means that the matrix is not a system parameter
but instead generated freshly as part of every public key. There are two advantages to this approach: First,
this avoids discussions about how exactly a uniformly random system parameter was generated. Second, it
protects against the all-for-the-price-of-one attack scenario of an attacker using a serious amount of compu-
tation to fnd a short basis of the lattice spanned by A once and then using this short basis to attack all
users. The cost for this decision is the expansion of the matrix A from a random seed during key generation
and encapsulation; we discuss this cost more in Subsection 2.1.

Binomial noise. Theoretic treatments of LWE-based encryption typically consider LWE with Gaussian
noise, either rounded Gaussian [71] or discrete Gaussian [21]. As a result, many early implementations also
sampled noise from a discrete Gaussian distribution, which turns out to be either fairly ineÿcient (see, for
example, [19]) or vulnerable to timing attacks (see, for example, [22, 68, 33]). The performance of the best
known attacks against LWE-based encryption does not depend on the exact distribution of noise, but rather
on the standard deviation (and potentially the entropy). This motivates the use of noise distributions that

1An alternative would be to apply NTT−1 to Â but that would counteract the whole point of sampling A in NTT domain.

11

168 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

we can easily, eÿciently, and securely sample from. One example is the centered binomial distribution used
in [5]. Another example is the use of “learning-with-rounding” (LWR), which adds deterministic uniform
noise by dropping bits as in Kyber’s Compress function. In the design of Kyber we decided to use q
centered binomial noise and thus rely on LWE instead of LWR as the underlying problem. The compression
of ciphertexts via Compress introduces additional noise (making the scheme more secure), but we do not q
consider this noise in our security analysis (this choice is motivated by the absence of a Ring/Module variant
of a hardness reduction for LWR [10]).

Allowing decapsulation failures. Another interesting design decision is whether to allow decapsulation
failures (i.e., decryption failures in Kyber.CPAPKE) or choose parameters that not only have a negligible, but
a zero chance of failure. The advantages of zero failure probability are obvious: CCA transforms and security
proofs become easier and we could have avoided a whole discussion of attacks exploiting decapsulation failures
in Subsection 5.3. The disadvantage of designing LWE-based encryption with zero failures is that it means
either decreasing security against attacks targeting the underlying lattice problem (by signifcantly decreasing
the noise) or decreasing performance (by compensating for the loss in security via an increase of the lattice
dimension). The decision to allow failure probabilities of < 2−140 in all parameter sets of Kyber refects
the intuition that

• decapsulation failures are a problem if they appear with non-negligible probability; but

• attacks attempting to exploit failures that occur with extremely low probability as in Kyber are a
much smaller threat than, for example, improvements to hybrid attacks [43] targeting schemes with
very low noise.

¯Additional Hashes. In the CCA transform we hash the (hash of the) public key pk into the pre-key K
and into the random coins r (see line 3 of Alg. 8), and we hash the (hash of the) ciphertext into the fnal key
K. These hashes would not be necessary for the security reduction (see Section 4), but they add robustness.
Specifcally, the fnal shared key output by Kyber.CCAKEM depends on the full view of exchanged messages
(public key and ciphertext), which means that the KEM is contributory and safe to use in authenticated key
exchanges without additional hashing of context. Hashing pk also into the random coins r adds protection
against a certain class of multi-target attacks that attempt to make use of protocol failures. This is discussed
in more detail in Subsection 5.3.

Choice of symmetric primitives. In the design of Kyber we need an extendable output function (XOF),
two hash functions, and a pseudorandom function. We decided to rely on only one underlying primitive for
all those functions. This helps to reduce code size in embedded platforms and (for a conservative choice)
reduces concerns that Kyber could be attacked by exploiting weaknesses in one out of several symmetric
primitives. There are only relatively few extendable output functions described in the literature. The
best known ones, which also coined the term XOF, are the SHAKE functions based on Keccak [15] and
standardized in FIPS-202 [60]. This standard conveniently also describes hash functions with the output
lengths we need; furthermore, SHAKE is designed to also work as a PRF. These properties of the FIPS-202
function family made the choice easy, but there are still two decisions that may need explanation:

• We could have chosen to instantiate all symmetric primitives with only one function (e.g., SHAKE-
256) from the FIPS-202 standard. The choice of SHAKE-128 as instantiation of the XOF is actually
important for performance; also we do not need any of the traditional security properties of hash
functions from SHAKE-128, but rather that the output “looks uniformly random”. In an earlier version
of Kyber we instantiated H, G, and PRF all with SHAKE-256. We decided to change this to di˙erent
functions from the FIPS-202 family to avoid any domain-separation discussion. Note that this decision
increases code-size at most marginally: all 4 functions can be obtained by a call to a “Keccak” function
with appropriate arguments (see, for example, [14]).

• We could have decided to use KMAC from NIST Special Publication 800-185 to instantiate the PRF.
We decided against this, because it would increase the numbers of Keccak permutations required in
the generation of the noise polynomials and thus noticeably and unnecessarily decrease performance.

12

— Internet: Portfolio 169

Supporting non-incremental hash APIs. In line 3 of Alg. 8 we feed H(pk) (instead of pk) into G and
in line 5 we feed H(c) (instead of c) into H. Using H(pk) in the call to G enables a small speedup for
decapsulation as described in Subsection 2.1. However, there is another reason why we frst hash pk and c,
namely that it simplifes implementing Kyber with a non-incremental hash API. If Kyber is implemented
in an environment which already o˙ers a library for hashing, but only o˙ers calls of the form h = H(m), then
producing a hash of the form h = H(m1km2) would frst require copying m1 and m2 into one consecutive
area of memory. This would require unnecessary copies and, more importantly, additional stack space. Such
non-incremental hash APIs are not uncommon: one example is the API of NaCl [13].

Return value for decapsulation failure. Traditionally the FO transform returns ⊥ (i.e., a special failure
symbol) when decapsulation fails. We use a variant that instead sets the resulting shared key to a pseudo-
random value computed as the hash of a secret z and the ciphertext c. This variant of the FO transform
was proven secure in [42]. In practice it has the advantage that implementations of Kyber’s decapsulation
are safe to use even if higher level protocols fail to check the return value. In fact, it would be safe to always
return “success” (i.e., 0 in the NIST API for KEMs). Our implementation of decapsulation returns a negative
value on failure to allow the caller to abort early and not continue working with a key that would produce
failures in later protocol stages (e.g., MAC verifcations).

2 Performance analysis
In this section we consider implementational aspects of Kyber and report performance results of two imple-
mentations: the ANSI C reference implementation requested by NIST and an implementation optimized using
AVX2 vector instructions included in the submission package under Additional_Implementations/avx2/.
We remark that the optimized implementation in ANSI C in subdirectory Optimized_Implementation/, as
requested by the Call for Proposals, is a copy of the reference implementation.

2.1 Implementation considerations and tradeo˙s

Implementing the NTT. Many di˙erent tradeo˙s are possible when implementing the number-theoretic
transform. The most important ones are between code size (which becomes mainly relevant on embedded
processors) and speed. The two implementations of Kyber included in the submission package have a
dedicated forward NTT (from normal to bitreversed order) and inverse NTT (from bitreversed to normal
order). Also, both implementations use precomputed tables of powers of ω and ψ. What is particularly
interesting about using the NTT on embedded platforms is that the multiplication of two elements of Rq

can be computed without any additional temporary storage. What is particularly interesting about using
the NTT on large processors is that it is extremely eÿciently vectorizable. Since 2013, the most eÿcient
approach to compute the NTT on 64-bit Intel processors was to represent coeÿcients as double-precision
foating-point values [39, 5]. In our AVX2-optimized implementation of Kyber, we show that carefully
optimizing the NTT using AVX2 integer instructions results in much better performance. Specifcally, on
Intel Haswell CPUs one (forward or inverse) NTT in Kyber takes only about 480 cycles.

Keccak. The second speed-critical component inside Kyber are the symmetric primitives, i.e., SHA3-256,
SHA3-512, SHAKE-128, and SHAKE-256, all based on the Keccak permutation. SHA3 has the reputation to
not be the fastest hash function in software (see, for example, [50]). To some extent this is compensated by the
fact that most calls to Keccak are parallel and thus very eÿciently vectorizable. Our AVX2 implementation
makes use of this fact. Also, ARM recently announced that future ARMv8 processors will have hardware
support for SHA3 [38], so there is a good chance that at least on some architectures, software performance
of SHA3 will not be an issue in the future.

Hardware-RNGs for key generation. During key generation, both our implementations use SHAKE-256
to generate the secret terms s and e; however, this is not required. The choice of RNG during key generation
is a local decision that any user and platform can make independently. In particular on platforms with fast
hardware AES (like the AES-NI instructions on modern Intel processors), one can speed up key generation by
using AES-256 in counter mode to generate the uniformly random noise that is then fed as input into CBD.
We considered using this in our AVX2 implementation, but using this optimization means that testvectors

13

170 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

would not match between our two implementations. This is not an issue in actual deployments, where
randombytes is not deterministic.

Caching of ephemeral keys. Applications that are even more conscious of key-generation time can decide
to cache ephemeral keys for some time. This is enabled by the fact that Kyber is IND-CCA2 secure.

Tradeo˙s between secret-key size and speed. It is possible to use di˙erent tradeo˙s between secret-key
size and decapsulation speed. If secret-key size is critical, it is of course possible to not store H(pk) and
also to not store the public key as part of the secret key but instead recompute it during decapsulation.
Furthermore, not keeping the secret key in NTT domain makes it possible to compress each coeÿcient to
only 5 bits, resulting in a total size of only 320 bytes for the three polynomials. Finally, as all randomness
in key generation is generated from two 32-byte seeds, it is also possible to only store these seeds and re-run
key generation during decapsulation.

In the other direction, if secret-key size does not matter very much and decapsulation speed is critical,
one might decide to store the expanded matrix A as part of the secret key and avoid recomputation from
the seed ρ during the re-encapsulation part of decapsulation.

Both implementations included in the submission package use the secret-key format described in Algo-
rithm 7, i.e., with polynomials in NTT domain, including the public key and H(pk), but not including the
matrix A.

Local storage format of static public keys. A user who is frequently encapsulating messages to the
same public key can speed up encapsulation by locally storing an expanded public key containing the matrix
A and H(pk). This saves the cost of expanding the matrix A from the seed ρ and the cost of hashing pk in
every encapsulation.

2.2 Performance of reference and AVX2 implementations
Table 2 reports performance results of the reference implementation and of our implementation optimized us-
ing AVX2 vector instructions. All benchmarks were obtained on one core of an Intel Core i7-4770K (Haswell)
processor clocked at 3491.789 MHz (as reported by /proc/cpuinfo) with TurboBoost and hyperthreading
disabled. The benchmarking machine has 32GB of RAM and is running Debian GNU/Linux with Linux
kernel version 4.9.0. Both implementations were compiled with gcc version 6.3.0. We used compiler fags
-O3 -fomit-frame-pointer -march=native -fPIC. to compile both implementations. All cycle counts
reported are the median of the cycle counts of 10 000 executions of the respective function. The implementa-
tions are not optimized for memory usage, but generally Kyber has only very modest memory requirements.
This means that in particular our implementations do not need to allocate any memory on the heap.

3 Known Answer Test values
All KAT values are included in subdirectories of the directory KAT of the submission package. Specifcally,
the KAT values of Kyber512 are in the subdirectory KAT/kyber512; the KAT values of Kyber768 are in
the subdirectory KAT/kyber768; and the KAT values of Kyber1024 are in the subdirectory KAT/kyber1024.
Each of those directories contains the KAT values as generated by the PQCgenKAT_kem program provided by
NIST. Specifcally, those fles are:

• KAT/kyber512/PQCkemKAT_1632.req,

• KAT/kyber512/PQCkemKAT_1632.rsp,

• KAT/kyber768/PQCkemKAT_2400.req,

• KAT/kyber768/PQCkemKAT_2400.rsp,

• KAT/kyber1024/PQCkemKAT_3168.req, and

• KAT/kyber1024/PQCkemKAT_3168.rsp.

14

— Internet: Portfolio 171

Table 2: Key and ciphertext sizes and cycle counts for all paramter sets of Kyber. Cycle counts were
obtained on one core of an Intel Core i7-4770K (Haswell); “ref” refers to the C reference implementation,
“AVX2” to the implementation using AVX2 vector instructions; sk stands for secret key, pk for public key,
and ct for ciphertext.

Kyber512

Sizes (in Bytes) Haswell Cycles (ref) Haswell Cycles (AVX2)
sk: 1632 gen: 141 872 gen: 55 160

pk: 736 enc: 205 468 enc: 75 680

ct: 800 dec: 246 040 dec: 74 428

Kyber768

Sizes (in Bytes) Haswell Cycles (ref) Haswell Cycles (AVX2)
sk: 2400 gen: 243 004 gen: 85 472

pk: 1088 enc: 332 616 enc: 112 660

ct: 1152 dec: 394 424 dec: 108 904

Kyber1024

Sizes (in Bytes) Haswell Cycles (ref) Haswell Cycles (AVX2)
sk: 3168 gen: 368 564 gen: 121 056

pk: 1440 enc: 481 042 enc: 157 964

ct: 1504 dec: 558 740 dec: 154 952

4 Expected security strength

4.1 Security defnition
Kyber.CCAKEM (or short, Kyber) is an IND-CCA2-secure key encapsulation mechanism, i.e., it fulflls
the security defnition stated in Section 4.A.2 of the Call for Proposals.

4.2 Rationale of our security estimates
Our estimates of the security strength for the three di˙erent parameter sets of Kyber—and consequently
the classifcation into security levels as defned in Section 4.A.5 of the Call for Proposals—are based on the
cost estimates of attacks against the underlying module-learning-with-errors (MLWE) problem as detailed
in Subsection 5.1.

To justify this rationale, we will in the following give two reductions from MLWE: a tight reduction in
the random-oracle model (ROM) in Theorem 2 and a non-tight reduction in the quantum-random-oracle
model (QROM) in Theorem 3. With those reductions at hand, there remain two avenues of attack that
would break Kyber without solving the underlying MLWE problem, namely

1. breaking one of the assumptions of the reductions, in particular attacking the symmetric primitives
used in Kyber; or

2. exploiting the non-tightness of the QROM reduction.

We briefy discuss 1.) in Subsection 5.2. The discussion of 2.) requires considering two separate issues,
namely

• a (quadratic) non-tightness in the decryption-failure probability of Kyber.CPAPKE, and

• a (quadratic) non-tightness between the advantage of the MLWE attacker and the quantum attacker
against Kyber.

15

172 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

In Subsection 5.3 we discuss quantum attacks exploiting decryption failures and in the presentation of the
non-tight QROM reduction we explain why the non-tightness between quantum attacks against MLWE
and quantum attacks against Kyber is unlikely to matter in practice. More specifcally, we show how to
eliminate this non-tightness if we allow the reasonable, but non-standard, assumption that Kyber.CPAPKE
ciphertexts are pseudorandom, even if all randomness is generated pseudorandomly from a hash of the
encrypted message.

4.3 Security Assumption
The hard problem underlying the security of our schemes is Module-LWE [20, 51]. It consists in distinguishing
uniform samples (ai, bi) ← Rk × Rq from samples (ai, bi) ∈ Rk × Rq where ai ← Rk is uniform andq q q

Tbi = ai s + ei with s ← Bk common to all samples and ei ← Bη fresh for every sample. More precisely, for η

an algorithm A, we defne Advmlwe
m,k,η(A) =

����
��

− Pr
�
b0 = 1 : A ← Rm×k; b ← Rm; b0 ← A(A, b)q q

� ���� .
A ← Rq

m×k; (s, e) ← βη
k × βη

m;
b0 = 1 :

b = As + e; b0 ← A(A, b)
Pr

4.3.1 Tight reduction from MLWE in the ROM

We frst note that Kyber.CPAPKE is tightly IND-CPA secure under the Module-LWE hardness assumption.

Theorem 1. Suppose XOF and G are random oracles. For any adversary A, there exist adversaries B and
(A) ≤ 2 · Advmlwe C with roughly the same running time as that of A such that Advcpa

k+1,k,η(B) + Kyber.CPAPKE
prfAdv (C).PRF

The proof of this theorem is easily obtained by noting that, under the MLWE assumption, public-key
and ciphertext are pseudo-random.

Kyber.CCAKEM is obtained via a slightly tweaked Fujisaki-Okamoto transform [42, 35] applied to
Kyber.CPAPKE. The following concrete security statement proves Kyber.CCAKEM’s IND-CCA2-security
when the hash functions G and H are modeled as random oracles. It is obtained by combining the generic
bounds from [42] with Theorem 1 (and optimizing the constants appearing in the bound).

Theorem 2. Suppose XOF, H, and G are random oracles. For any classical adversary A that makes at most
qRO many queries to random oracles XOF, H and G, there exist adversaries B and C of roughly the same
running time as that of A such that

Advcca
Kyber.CCAKEM(A) ≤ 2Advmlwe

PRF(C) + 4qRO δ. k+1,k,η(B) + Advprf

Note that the security bound is tight. The negligible additive term 4qRO δ stems from Kyber.CPAPKE’s
decryption-failure probability δ.

4.3.2 Non-tight reduction from MLWE in the QROM

As for security in the quantum random oracle model (QROM), [42, 74] proved that Kyber.CCAKEM is IND-
CCA2 secure in the QROM, provided that Kyber.CPAPKE is IND-CPA secure. A slightly tighter reduction
can be obtained by requiring the base scheme Kyber.CPAPKE to be pseudo-random. Pseudo-randomness
[74] requires that, for every messagem, a (randomly generated) ciphertext (c1, c2) ← Kyber.CPAPKE.Enc(pk ,m)
is computationally indistinguishable from a random ciphertext of the form (Compressq(u, du), Compressq(v, dv)),
for uniform (u, v). (We also require the property of “statistical disjointness” [74] which is trivially fulflled for
Kyber.CPAPKE.) The proof of Kyber.CPAPKE’s IND-CPA security indeed shows that Kyber.CPAPKE is
tightly pseudo-random under the Module-LWE hardness assumption.

Theorem 3. Suppose XOF, H, and G are random oracles. For any quantum adversary A that makes at
most qRO many queries to quantum random oracles XOF, H and G, there exist quantum adversaries B and
C of roughly the same running time as that of A such that

Advcca
Kyber.CCAKEM(A) ≤ 4qRO ·

q
Advmlwe 2

k+1,k,η(B) + Advprf (C) + 8qRO δ. PRF

16

— Internet: Portfolio 173

Table 3: Classical and quantum core-SVP hardness of the di˙erent proposed parameter sets of Kyber
together with the claimed security level as defned in Section 4.A.5 of the Call for Proposals. Complexities
are given in terms of the base-2 logarithm of the number of operations.

core-SVP (classical) core-SVP (quantum) Claimed security level
Kyber512
Kyber768
Kyber1024

112
178
241

102
161
218

1 (AES-128)
3 (AES-192)
5 (AES-256)

Unfortunately, the above security bound is non-tight and therefore can only serve as an asymptotic
indication of Kyber.CCAKEM’s CCA-security in the quantum random oracle model.

Tight reduction under non-standard assumption. We can use [42, 74] to derive a tight security
bound in the QROM from a non-standard security assumption, namely that a deterministic version of
Kyber.CPAPKE, called DKyber.CPAPKE, is pseudo-random in the QROM. Deterministic Kyber.CPAPKE
is defned as Kyber.CPAPKE, but the random coins r used in encryption are derived deterministically
from the message m as r := G(m). Pseudo-randomness for deterministic encryption states that an en-
cryption (c1, c2) of a randomly chosen message is computationally indistinguishable from a random cipher-
text (Compressq(u, du), Compress (v, dv)), for uniform (u, v). In the classical ROM, pseudo-randomness of q

DKyber.CPAPKE is tightly equivalent to MLWE but in the QROM the reduction is non-tight (and is the q
Advmlwe reason for the term qRO · k+1,k,η(B) in Theorem 3). Concretely, we obtain the following bound:

Advcca prf 2
Kyber.CCAKEM(A) ≤ 2Advmlwe

DKyber.CPAPKE(C) + Adv (D) + 8qRO δ. k+1,k,η(B) + Advpr
PRF

We remark that we are not aware of any quantum attack on deterministic Kyber.CPAPKE that performs
better than breaking the MLWE problem.

4.4 Estimated security strength
Table 3 lists the security levels according to the defnition in Section 4.A.5 of the Call for Proposals for the
di˙erent parameter sets of Kyber. Our claims are based on the cost estimates of the best known attacks
against the MLWE problem underlying Kyber as detailed in Subsection 5.1. Specifcally we list the classical
and the quantum core-SVP hardness and use those to derive security levels.

The impact of MAXDEPTH. The best known quantum speedups for the sieving algorithm, which we
consider in our cost analysis (see Subsection 5.1.1), are only mildly a˙ected by limiting the depth of a
quantum circuit, because it uses Grover search on sets of small size (compared to searching through the
whole keyspace of AES). For the core-SVP-hardness operation estimates to match the quantum gate cost
of breaking AES at the respective security levels, a quantum computer would need to support a maximum
depth of 70–80. When limiting the maximum depth to smaller values, or when considering classical attacks,
the core-SVP-hardness estimates are smaller than the gate counts for attacks against AES. We discuss this
di˙erence in the following.

Gates to break AES vs. core-SVP hardness. The classical core-SVP hardness of the MLWE problem
underlying Kyber di˙ers by a factor of ≈ 230 from the gate count to classically break the corresponding
AES instances. The core-SVP hardness is a very conservative lower bound on the cost of an actual attack
against the MLWE problem (for details, see Subsection 5.1). Specifcally, the core-SVP-hardness ignores

• the (polynomial) number of calls to the SVP oracle that are required to solve the MLWE problem;

• the gate count required for one “operation”;

• additional cost of sieving with asymptotically subexponential complexity;

• the cost of access into exponentially large memory; and

17

174 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

• the additional rounding noise (the LWR problem, see [10, 6]), i.e. the deterministic, uniformly dis-
tributed noise introduced in ciphertexts via the Compress function.q

The state of research into SVP-solving algorithms is way too premature to assign meaningful cost es-
timates to each of those items. However, it seems clear that in any actual implementation of an attack
algorithm the product of the cost of those items will exceed 230 . See also the paragraph “How conservative
is this analysis?” in Subsection 5.1.4.

4.5 Additional security properties
4.5.1 Forward secrecy.

Kyber has a very eÿcient key-generation procedure (see also Section 2) and is therefore particularly well
suited for applications that use frequent key generations to achieve forward secrecy.

4.5.2 Side-channel attacks.

Timing attacks. Neither straight-forward reference implementations nor optimized implementations of
Kyber use any secret-dependent branches or table lookups2.This means that typical implementations of
Kyber are free from the two most notorious sources of timing leakage. Another possible source of timing
leakage are non-constant-time multipliers like the UMULL instruction on ARM Cortex-M3 processors, which
multiplies two 32-bit integers to obtain a 64-bit result. However, multiplications in Kyber have only 16-bit
inputs, and most non-constant-time multipliers show timing variation only for larger inputs. For example, on
ARM Cortex-M3 processors the obvious way to implement multiplications in Kyber is through the constant-
time MUL instruction, which multiplies two 32-bit integers, but returns only the bottom 32-bits of the result.
What remains as a source of timing leakage are modular reductions, which are sometimes implemented via
conditional statements. However, timing leakage in modular reductions is easily avoided by using (faster)
Montgomery [59] and Barrett reductions [11] as illustrated in our reference and AVX2 implementations.

Di˙erential attacks. We expect that any implementation of Kyber without dedicated protection against
di˙erential power or electromagnetic radiation (EM) attacks will be vulnerable to such attacks. This is true
for essentially any implementation of a cryptographic scheme that uses long-term (non-ephemeral) keys.
Deployment scenarios of Kyber in which an attacker is assumed to have the power to mount such an attack
require specially protected—typically masked—implementations. In [62], Oder, Schneider, Pöppelmann, and
Güneysu present such a masked implementation of Ring-LWE decryption with a CCA transform very similar
to the one used in Kyber. The implementation targets Cortex-M4F microcontrollers; the conclusion of the
work is that protecting the decryption (decapsulation) step against frst-order DPA incurs an overhead of
about about a factor of 5.5. The techniques presented in that paper also apply to Kyber and we expect
that the overhead for protecting Kyber against di˙erential attacks is in the same ballpark.

Template attacks. Protections against di˙erential attacks do not help if an attacker is able to recover even
ephemeral secrets from a single power or EM trace. At CHES 2017, Primas, Pessl, and Mangard presented
such a single-trace attack against an implementation of Ring-LWE on a Cortex-M4F microcontroller [70].
The attacker model in this attack is rather strong: it is the typical setting of template attacks, which assumes
an attacker who is able to generate template traces on known inputs on a device with leakage very similar
to the actual target device. In [70], the authors used the same device for generating target traces and in the
attack. The attack was facilitated (maybe even enabled) by the fact that the implementation under attack
used variable-time modular reductions. Consequently, the paper states that “One of the frst measures to
strengthen an implementation against SPA attacks is to ensure a constant runtime and control fow”. This is
the case for all implementations of Kyber. The attack from [70] would thus certainly not straight-forwardly
apply to implementations of Kyber, but more research is required to investigate whether also constant-time
implementations of Kyber (and other lattice-based schemes) succumb to template attacks, and what the
cost of suitable countermeasures is.

2Note that the rejection sampling in generating the matrix A does not involve any secret data.

18

— Internet: Portfolio 175

4.5.3 Multi-target attacks

Our security analysis makes no formal claims about security bounds in the multi-target setting. However,
in the design of Kyber we made two decisions that aim at improving security against attackers targeting
multiple users:

• We adopt the “against-all-authority” approach of re-generating the matrix A for each public key from
NewHope [5]. This protects against an attacker attempting to break many keys at the cost of breaking
one key.

• In the CCA transform (see Alg. 8) we hash the public key into the pre-key K̄ and the coins r. Making
the coins r dependent of the public key protects against precomputation attacks that attempt to break
one out of many keys. For details, see Subsection 5.3.

4.5.4 Misuse resilience

The frst, and most important, line of defense against misuse is the decision to make IND-CCA2 security
non-optional. As discussed in Subsection 1.5, it would have been possible to achieve slightly shorter public
keys and ciphertexts, and faster decapsulation, in a CPA-secure variant of Kyber. Using IND-CCA2 security
by default makes it safe to use Kyber with static keys and as a consequence also to re-use ephemeral keys
for some time. What is not safe, is to reuse the same randomness in encapsulation, but that randomness is
also not exposed to the outside by the API. The CCA transform has a second e˙ect in terms of robustness:
it protects against a broken implementation of the noise sampling. A rather peculiar aspect of LWE-based
cryptography is that it will pass typical functional tests even if one communication partner does not add any
noise (or by accident samples all-zero noise). The deterministic generation of noise via SHAKE-256 during
encapsulation and the re-encryption step during decapsulation will reveal such an implementation mistake
immediately.

¯An additional line of defense against misuse is to hash the public-key into the “pre-key” K and thus
make sure that the KEM is contributory. Only few protocols require a KEM to be contributory and those
protocols can always turn a non-contributory KEM into a contributory one by hashing the public key into
the fnal key. Making this hash part of the KEM design in Kyber ensures that nothing will go wrong on
the protocol level if implementers omit the hash there.

A similar statement holds for additionally hashing the ciphertext into the fnal key. Several protocols
need to ensure that the key depends on the complete view of exchanged protocol messages. This is the
case, for example, for the authenticated-key-exchange protocols described in the Kyber paper [18, Sec. 5].
Hashing the full protocol view (public key and ciphertext) into the fnal key already as part of the KEM
makes it unnecessary (although of course still safe) to take care of these hashes on the higher protocol layer.

5 Analysis with respect to known attacks

5.1 Attacks against the underlying MLWE problem

MLWE as LWE. The best known attacks against the underlying MLWE problem in Kyber do not make
use of the structure in the lattice. We therefore analyze the hardness of the MLWE problem as an LWE
problem. We briefy discuss the current state of the art in algebraic attacks, i.e., attacks that exploit the
structure of module lattices (or ideal lattices) at the end of this subsection.

5.1.1 Attacks against LWE.

Many algorithms exist for solving LWE (for a survey see [4]), but many of those are irrelevant for our
parameter set. In particular, because there are only m = (k + 1)n LWE samples available to the attacker,
we can rule out BKW types of attacks [45] and linearization attacks [8]. This essentially leaves us with two
BKZ [75, 25] attacks, usually referred to as primal and dual attacks that we will recall in Subsections 5.1.2
and 5.1.3.

19

176 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

The algorithm BKZ proceeds by reducing a lattice basis using an SVP oracle in a smaller dimension b.
It is known [40] that the number of calls to that oracle remains polynomial, yet concretely evaluating the
number of calls is rather painful, and this is subject to new heuristic ideas [25, 24, 7]. We choose to ignore
this polynomial factor, and rather evaluate only the core SVP hardness, that is the cost of one call to an
SVP oracle in dimension b, which is clearly a pessimistic estimation (from the defender’s point of view).
This approach to deriving a conservative cost estimate for attacks against LWE-based cryptosystems was
introduced in [5, Sec. 6].

Enumeration vs. sieving. There are two algorithmic approaches for the SVP oracle in BKZ: enumeration
and sieving algorithms. These two classes of algorithms have very di˙erent performance characteristics and,
in particular for sieving, it is hard to predict how practical performance scales from lattice dimensions that
have been successfully tackled to larger dimensions that are relevant in attacks against cryptosystems like
Kyber. The starting point of such an analysis is the fact that enumeration algorithms have super-exponential
running time, while sieving algorithms have only exponential running time. Experimental evidence from
typical implementations of BKZ [37, 25, 29] shows that enumeration algorithms are more eÿcient in “small”
dimensions, so one question is at what dimension sieving becomes more eÿcient. So far it seems that sieving
is slower in practice for accessible dimensions of up to b ≈ 130. However, a recent work [31] showed (in the
classical setting) that sieving techniques can be sped up in practice for exact-SVP, being now less than an
order of magnitude slower than enumeration already in dimension 60 to 80.

The analysis is complicated by the fact that sieving algorithms are much more memory intensive than
enumeration algorithms. Specifcally, sieving algorithms have exponential complexity not only in time, but
also in memory, while enumeration algorithms require only small amounts of memory. In practice, the
cost of access to memory increases with the size of memory, which typically only becomes noticeable once
the memory requirement exceeds fast local memory (RAM). There is no study, yet, that investigates the
algorithmic optimization and practical performance of sieving using slow background storage.

We follow the approach of [5, Sec. 6] to obtain a conservative lower bound on the performance of both
sieving and enumeration for the dimensions that are relevant for the cryptanalysis of Kyber. This approach
works in the RAM model, i.e., it assumes that access into even exponentially large memory is free. Under this
assumption sieving becomes more eÿcient than even sophisticated enumeration, with serious optimization
as described in [25] and with quantum speedups, for dimensions larger than 250, quite possibly already
earlier. The smallest dimension that we are interested in for the cryptanalysis of Kyber is 390, so that the
performance of sieving in the RAM model serves as a conservative lower bound for the performance of both
enumeration and sieving.

A lot of recent work has pushed the eÿciency of the original lattice sieve algorithms [61, 58], improving p b+o(b) ≈ 20.292bthe heuristic complexity from (4/3)b+o(b) ≈ 20.415b down to 3/2 using Locality Sensitive
Hashing (LSH) techniques [48, 12]. The hidden sub-exponential factor is known to be much greater than
one in practice. Again, we ignore this factor to arrive at a security estimate with a conservative margin.
Most of the sieving algorithms have been shown [49, 47] to beneft from Grover’s quantum search algorithm,

20.292bbringing the complexity down to 20.265b . We will use as the classical and 20.265b and the quantum
cost estimate of both the primal and dual attacks with block size (dimension) b. We recall those two attacks
in the following.

5.1.2 Primal attack.

The primal attack consists of constructing a unique-SVP instance from the LWE problem and solving it
using BKZ. We examine how large the block dimension b is required to be for BKZ to fnd the unique
solution. Given the matrix LWE instance (A, b = As + e) one builds the lattice Λ = {x ∈ Zm+kn+1 :
(A| − Im| − b)x = 0 mod q} of dimension d = m + kn + 1, volume qm, and with a unique-SVP solution √
v = (s, e, 1) of norm λ ≈ ς kn + m. Note that the number of used samples m may be chosen between 0
and (k + 1)n in our case and we numerically optimize this choice.

Success condition. We model the behavior of BKZ using the geometric series assumption (which is known
to be optimistic from the attacker’s point of view), that fnds a basis whose Gram-Schmidt norms are given
by kb?k = δd−2i−1 · Vol(Λ)1/d, where δ = ((πb)1/b · b/2πe)1/2(b−1) [24, 4]. The unique short vector v will be i
detected if the projection of v onto the vector space spanned by the last b Gram-Schmidt vectors is shorter

20

— Internet: Portfolio 177

√
than b? . Its projected norm is expected to be ς b, that is the attack is successful if and only if d−b

√
b ≤ δ2b−d−1 m/dς · q . (2)

We note that this analysis introduced in [5] di˙ers and is more conservative than prior works, which were
typically based on the hardness of unique-SVP estimates of [36]. The validity of the new analysis has been
confrmed by further analysis and experiments in [3].

5.1.3 Dual attack

The dual attack consists of fnding a short vector in the dual lattice w ∈ Λ0 = {(x, y) ∈ Zm × Zkn : Atx =
t ty mod q}. Assume we have found a vector (x, y) of length ` and compute z = v · b = vtAs + v e =

t tw s + v e mod q, which is distributed as a Gaussian of standard deviation ̀ ς if (A, b) is indeed an LWE
sample (otherwise it is uniform mod q). Those two distributions have maximal variation distance bounded
by � = 4 exp(−2π2τ 2), where τ = `ς/q, that is, given such a vector of length ̀ one has an advantage � against
decision-LWE.

The length ̀ of a vector given by the BKZ algorithm is given by ̀ = kb0k. Knowing that Λ0 has dimension
d = m + kn and volume qkn we get ̀ = δd−1qkn/d. Therefore, obtaining an �-distinguisher requires running
BKZ with block dimension b, where

− 2π2τ2 ≥ ln(�/4). (3)

Note that small advantages � are not relevant since the agreed key is hashed: an attacker needs an advantage
of at least 1/2 to signifcantly decrease the search space of the agreed key. He must therefore amplify his
success probability by building about 1/�2 many such short vectors. Because the sieve algorithms provides
20.2075b vectors, the attack must be repeated at least R times where

R = max(1, 1/(20.2075b�2)).

This makes the conservative assumption that all the vectors provided by the Sieve algorithm are as short as
the shortest one.

5.1.4 Core-SVP hardness of Kyber

In Table 4 we list the classical and quantum core-SVP-hardness of the three parameter sets of Kyber. The
lower bounds of the cost of the primal and dual attack were computed following the approach outlined above
using the analysis script Kyber.py that is available online at https://github.com/pq-crystals/kyber/
tree/master/scripts/.

How conservative is this analysis? The core-SVP-hardness estimates give a lower bound on the cost
of actual attacks rather than attempting to assign costs to various building blocks that require further
study. To give an idea of how far this lower bound is from recent estimates that attempt to fnd a tighter
bound, consider the example of the “BCNS” key exchange [19]. In [5, Table 6], the NewHope paper
computes the classical core-SVP hardness for the parameters used in [19] as 286 . The claimed classical
security level for those parameters in [19] is 2128. Note that [5] does not contradict this claim, the factor of
2128/286 = 242 rather indicates how conservative the core-SVP hardness estimate is. As a second example,
consider another commonly used tool for estimating (classical) security of LWE-based cryptosystems, namely
the lwe-estimator script by Albrecht [1]. Applied to the Kyber parameter sets it estimates a classical
security of 2142 for Kyber512, 2209 for Kyber768, and 2273 for Kyber1024. Note that also these estimates
count number of “operations” rather than gates, and are in the RAM model, i.e., ignore the cost of memory
access for sieving.

5.1.5 Algebraic attacks.

While the best known attacks against the MLWE instance underlying Kyber do not make use of the
structure in the lattice, we still discuss the current state of the art of such attacks. Most noticeably, several
recent works propose new quantum algorithms against Ideal-SVP [32, 23, 16, 27, 28], i.e., solving the shortest
vector problem in ideal lattices. The work of [28] mentions obstacles towards a quantum attack on Ring-LWE

21

178 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Table 4: Classical and quantum core-SVP hardness of the MLWE problem (treated as LWE problem)
underlying Kyber for di˙erent proposed parameter sets. The value b denotes the block dimension of BKZ
(i.e., the dimension of the SVP considered in the core-SVP-hardness estimates), and m the number of used
samples. Cost is given in log2 of operations and is the smallest cost for all possible choices of m and b.

b m Core-SVP (classical) Core-SVP (quantum)
Kyber512
Primal attack: 390 455 114 103
Dual attack: 385 485 112 102
Kyber768
Primal attack: 615 695 179 163
Dual attack: 610 690 178 161
Kyber1024
Primal attack: 845 835 244 221
Dual attack: 825 850 241 218

from their new techniques, but nevertheless suggests using Module-LWE, as it plausibly creates even more
obstacles. In [2], Albrecht and Deo establish a reduction from MLWE to RLWE, whose implication is that
a polynomial-time algorithm against RLWE with certain parameters would translate to a polynomial-time
algorithm against MLWE. In practical terms, however, this attack has a signifcant slow-down (and this is
not just due to the proof) as the dimension of the module increases. This does suggest that increasing the
dimension of the module may make the scheme more secure in concrete terms. In particular, going through
this reduction to attack Kyber768 would lead to an RLWE problem with quite large modulus and error
0 3(q = q , ς 0 > q2ς), and therefore require the attacker to consider more than 1 sample: the underlying lattice

remains a module with a rank strictly larger than 2.

5.2 Attacks against symmetric primitives
All symmetric building blocks of Kyber are instantiated with functions derived from Keccak [15]. In the
deterministic expansion of A from ρ we essentially need SHAKE-128 to produce output that “looks uniformly
random” and does not create any backdoors in the underlying lattice problem. In the noise generation we
require that concatenating a secret and a public input and feeding this concatenation to SHAKE-256 as
input results in a secure pseudorandom function. Breaking any of these properties of SHAKE would be a
major breakthrough in the cryptanalysis of SHAKE, which would require replacing SHAKE inside Kyber
by another XOF.

The security proofs model SHAKE-128, SHA3-256, and SHA3-512 as random oracles, i.e., they are subject
to the standard limitations of proofs in the (quantum-)random-oracle model. Turning these limitations into
an attack exploiting the instantiation of XOF, H, or G with SHAKE and SHA3 would again constitute a
major breakthrough in the understanding of either Keccak or random-oracle proofs in general.

5.3 Attacks exploiting decryption failures
All parameter sets of Kyber have a decapsulation-failure probability δ of somewhat below 2−140; for the
examples in the remainder of this subsection we assume the failure probability of 2−142 of Kyber768. In
Theorems 2 and 3 we see that this failure probability plays a role in the attacker’s advantage: in the classical

2context in the term 4qRO δ and in the quantum context in the term 8q δ, where qRO is the number of RO
queries to the (classical or quantum) random oracle.

Attacks exploiting failures. This term in the attacker’s advantage is not merely a proof artifact, it can
be explained by the following attack: An attacker searches through many di˙erent values of m (see line 1 of
Alg. 8) until he fnds one that produces random coins r (line 3 of Alg. 8) that lead to a decapsulation failure,

22

— Internet: Portfolio 179

which will give the attacker information about the secret key. In the quantum setting the search through
2di˙erent values of m is accelerated by Grover’s algorithm, which explains the square in the term q . With RO

this attack in mind note that with 264 ciphertexts (cmp. Section 4.A.2 of the Call for Proposals), there is a
chance of 2−78 of a decapsulation failure without any particular e˙ort by the attacker.

The e˙ect on Kyber. The attack sketched in the previous paragraph is based on two assumptions that
do not hold for Kyber: First it requires the capability to determine o˜ine (e.g., as part of the Grover
oracle) if a certain value of r produces a decapsulation failure. Second it assumes that one decapsulation
failure seriously threatens the secrecy of the private key. Concerning the frst assumption, an attacker cannot
determine o˜ine whether a given value of r, or more specifcally, the derived values r (line 9 of Alg. 5) and
e1 (line 13 of Alg. 5), produce a decapsulation failure. The reason is that the probability of decapsulation

T Tfailures largely depends on the products s e1 and e r and the attacker does not now the values of s and
e. A quantum attacker can try to use Grover search to precompute values of m that have a slightly higher
chance to produce a failure; as the attacker does not know the signs of the coeÿcients of e1 and s, the best
strategy is probably to search for values of m that produce e1 and r with above-average norm. The gain
achieved through such an approach is limited due to the fact that the distribution of a high-dimensional
Gaussian is tightly concentrated around its expected value, while that of a 1-dimensional Gaussian is not as
tightly concentrated around its mean.

The polynomial pair (e1, r) can be seen as a vector in Z1536 distributed as a discrete Gaussian with p √
standard deviation σ = η/2 = 2. By standard tail bounds on discrete Gaussians [9], we know that an
m-dimensional vector v drawn from a discrete Gaussian of standard deviation σ will satisfy

√ m (1−κ2)2Pr[kvk > κσ m] < κm · e , (4)

for any κ > 1. √
So for example, the probability of fnding a vector which is of length 1.33 · σ 1536 is already as small as

2−220 . Even if Grover’s algorithm reduces the search space and increases the probability to 2−110, fnding
such a vector merely increases the chances of getting a decryption error; and the probability increase is
governed by the tail-bounds for 1-dimensional Gaussians.3 For any vector v, if z is chosen according to a
Gaussian with standard deviation σ, then for any κ,

−κ2 /2Pr[hz, vi| > κσkvk] ≤ 2e . (5)

If originally, the above probability is set so that decryption errors occur with probability ≈ 2−140, then
4κ ≈ 14. If the adversary is then able to increase kvk by a factor of 1.33 (by being able to fnd larger (e1, r)),

then we can decrease κ by a factor of 1.33 to ≈ 10.5 in (5), which would still give us a probability of a
decryption error of less than 2−80 . However, fnding such a large v would take at least 2110 time, which
would make the whole attack cost at least 2190 .

Of course one can try to fnd a slightly smaller v in the frst step so that the entire attack takes less time.
If Grover’s algorithm really saves a square-root factor, then the optimal value is ≈ 1.1 for κ in (4), which
would allow us to lower κ by a factor of 1.1 in (5), and would still give a total time to fnd one decryption
error > 2128. This makes the attack completely impractical.

Furthermore, a single decapsulation failure in Kyber does not allow an attacker to recover much informa-
tion about the secret key s. To get an intuition for the amount of information obtained from failures, consider
the attack described in [34]. This is the standard attack that exploits failures in RLWE key encapsulation
schemes that reuse keys without the CCA transform. In this scenario the attacker can adaptively choose
arbitrary noise, i.e., set failure probabilities to arbitrary values and maximize the information obtained from
each failure or non-failure. The paper concludes that attacking RLWE key exchange in lattice dimension
1024 in this setting “can be done with perhaps 4, 000 queries” . It seems extremely unlikely that even 10
decapsulation failures in Kyber would allow an attacker to recover any meaningful information about the
secret key s. Note that the probability of f decapsulation failures in 264 ciphertexts is about 2−(e−64)f where

3The decryption noise is generated as an inner product of two vectors, and the distribution of this inner product closely
resembles the Gaussian distribution.

4The above formula only roughly approximates how the decryption error is calculated where z corresponds to the secret key
(s, e). We should also point out that a part of the decryption error in Kyber is caused by the rounding function Compress,
which the adversary has no control over. Therefore this attack will be even less practical than what we describe.

23

180 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

2−e is the largest probability of failure an attacker can achieve for one ciphertext. We have established that
even with a Grover search making 2110 calls to the hash function, an attacker can only get e > 80. This
very loose analysis shows that an attacker can’t reasonably hope to produce more than two or three failures
in less than 2128 time. We therefore conclude that the decryption failures do not introduce any weaknesses
into Kyber.

Multitarget attacks using failures. Despite the limited gain, an attacker could consider using Grover’s
algorithm to precompute values of m that produce r and e1 with large norm and then use this precomputed
set of values of m against many users. This multi-target attack is prevented by hashing the public key pk
into the random coins r and thereby into r and e1 (line 3 of Alg. 8).

6 Advantages and limitations

6.1 Advantages
In addition to the very competitive speeds, small parameters, and being based on a well-studied problem,
the unique advantages of Kyber are:

Ease of implementation: Optimized implementations only have to focus on a fast dimension-256 NTT
and a fast Keccak permutation. This will give very competitive performance for all parameter sets of
Kyber.

Scalability: Switching from one Kyber parameter set to another only requires changing the matrix
dimension (i.e., a #define in most C implementations) and the noise sampling.

We will now give a brief comparison of Kyber to other types of post-quantum schemes (that we are
aware of) and, more importantly, to other manners in which lattice-based schemes could be instantiated.

6.2 Comparison to SIDH
An interesting alternative to lattice-based KEMs is supersingular-isogeny Diÿe-Hellman (SIDH) [44]. The
obvious advantage of SIDH is the sizes of public keys and ciphertexts that—with suitable compression [26]—
are about a factor of 3 smaller than Kyber’s public keys and ciphertexts. The downside of SIDH is that it
is more than 2 orders of magnitude slower than Kyber. The scheme is also rather new, which makes it hard
to make defnitive comparisons. In the coming years, both implementation speeds and (quantum) attacks
against SIDH can improve which may result in faster schemes and/or larger parameters.

6.3 Comparison to code-based KEMs
When considering code-based KEMs, one needs to distinguish the “classical” McEliece and Niederreiter
schemes based on binary Goppa codes, and schemes with a less conservative (but more eÿcient) choice
of code. A KEM based on binary Goppa codes can reasonably claim to be a very conservative choice of
post-quantum primitive; however, its deployment will, in many scenarios, be hampered by massive public-
key size and key-generation time. Less conservative choices, like quasi-cyclic medium-density parity-check
(QC-MDPC) codes, are a closer competition in terms of performance but su˙er from the fact that for
eÿcient parameters at high security levels they do not achieve (provably) negligible failure probability,
which precludes their use in CCA-secure KEMs.

6.4 Comparison to other lattice-based schemes
There are certain design choices that one can make when designing lattice-based schemes, some of which can
have signifcant e˙ects on the eÿciency of the resulting scheme and on the underlying security assumption.
Below we list the most important ones and explain the advantages / disadvantages of them versus what we
chose for Kyber.

24

— Internet: Portfolio 181

6.4.1 Schemes that build a KEM directly

The Kyber KEM is constructed by encrypting a random message using the LPR encryption [54] (with
“bit-dropping”). Another approach one could take is directly building a KEM using the slightly di˙erent
ideas described in [30, 65]. The advantage of the constructions in [30, 65] over our approach is that if one
were to construct a CPA-secure KEM transmitting a b-bit key, then the ciphertext would be b bits shorter,
which is about a 3% saving for typical parameters [52]. If, however, one wishes to construct a CCA-secure
KEM like Kyber, then this advantage disappears since transformations from CPA-secure KEMs to CCA-
secure ones implicitly go through a CPA-secure encryption scheme, which will result in adding b bits to the
KEM. This is why, in Kyber, we simply use the LPR encryption scheme (instead of the CPA-secure key
encapsulation) to defne Kyber.CPAPKE, and then use this as a building block to construct the IND-CCA2-
secure KEM Kyber.CCAKEM. Since there is virtually no di˙erence between the two approaches, we will not
draw a distinction between schemes constructed in either manner throughout the rest of this section.

6.4.2 LWE based schemes

If one does not want to use any algebraic structure in the LWE problem (i.e. if one takes the MLWE problem
over the ring Z), then there are two possibilities for constructing encryption or key-exchange schemes. The
frst approach makes the public key and the secret key very large (on the order of Megabytes), while keeping
the ciphertext at essentially the same size as in Kyber. This type of scheme is the [67] version of the original
Regev scheme from [71]. Because of the very large public-key size, this scheme would be extremely ineÿcient
as a key exchange. A scheme more amenable to key exchange is [17], whose public key and ciphertext sizes
are both approximately 11 KB each, which is approximately 10 times larger than in Kyber. The running
time of each party is also larger by a factor of at least 10. In short, LWE-based schemes do not have any ring
structure but are an order of magnitude slower and larger than Kyber. They are good back-up schemes in
case algebraic structure in lattice schemes could somehow be devastatingly exploited by attackers.

6.4.3 Ring-LWE based schemes

The other extreme in the LWE design space are Ring-LWE (RLWE) schemes based on [54] (e.g., [5]). RLWE
is a special case of the MLWE problem where the width of the matrix A over the ring R is always 1 (and
typically, its height would be 2 for a PKE or KEM scheme). Varying the hardness of an RLWE scheme
therefore requires to change the dimension of the ring, whereas in Kyber, the ring is always the same and
the dimension of the module is being varied. As we mentioned above, one advantage of the approach we
chose for Kyber is that we only need to have one good implementation for operations over the ring; varying
the dimension of the module simply involves doing more (or fewer) of the same ring operations. Changing
the ring, on the other hand, would require completely re-implementing all the operations.

Another advantage of working with a constant-degree “small” ring is that it enables more fne-grained
tradeo˙s between performance and security. The simplest and most eÿcient way of implementing RLWE is
to work over rings Z[X]/(Xn + 1) where n is a power of 2. Since n is the only parameter that determines
the eÿciency and security of RLWE schemes, limiting it to powers of 2 may require overshooting the needed
security bound. For example, the dimension of Kyber768 is not reachable. One could of course work directly
modulo a polynomial of any desired degree (with the main restriction being that it has to be irreducible over
Z), but then the security would decrease slightly due the geometry of non-power-of-2 number felds and the
operations over the ring would be somewhat less trivial to implement (see [57]).

The one advantage of RLWE over Kyber is that if A is a k × k matrix, then extracting it from a seed
requires k times more XOF output than for a 1 × 1 matrix.

6.4.4 NTRU

When compared to Kyber, NTRU [41] has all the advantages and disadvantages of RLWE, but in addition
has two further negative points against it. First NTRU key generation is considerably more expensive
than in RLWE when the ring does not support NTT. The reason is that NTRU key generation requires
polynomial division, whereas RLWE key generation requires only multiplication (if the ring supports NTT,
then division is not much slower than multiplication). The second possible downside of NTRU is that the

25

182 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

geometry of its underlying lattice leads to attacks that do not exist against RLWE or MLWE schemes [46].
While this property does not seem to aid in attacks against the small parameters that are used for defning
NTRU cryptosystems, it may point to a possible weakness that could be further exploited. The one possible
advantage of using NTRU is a small performance advantage during encryption (encapsulation), but given the
disadvantages we do not consider this a good tradeo˙. Furthermore, it is not possible to defne an eÿcient
version of “Module-NTRU” that would allow for the advantages of Kyber described above in Section 6.1.

6.4.5 Di˙erent Polynomial Rings

One could consider using Kyber with a ring that is not Z[X]/(Xn + 1). An argument that could be made
for using di˙erent rings is that the rings currently used in Kyber have algebraic properties (e.g., subrings,
large Galois groups, etc.) which may be exploited in attacks. We choose to work with Z[X]/(Xn + 1) for
the following reasons:

• From a performance perspective there is no serious competition; the NTT-based multiplication sup-
ported by the parameters we chose for Kyber is at the same time very memory eÿcient and faster
than any other algorithm for multiplication in polynomial rings.

• Lattice-based schemes using the ring Z[X]/(Xn + 1) have been studied since at least [53]. When the
noise vectors are chosen as specifed in [54], there have been no improved attacks against RLWE (or
MLWE) that use the underlying algebraic structure [66]. Furthermore, being based on MLWE, the
algebraic structure of Kyber is very di˙erent from that which was exploited in the attacks against ideal
lattices in [16, 27, 28]5 – we emphasize that the lattice problems underlying the hardness of Kyber
are not ideal lattices.

• Some of the additional algebraic structure of Z[X]/(Xn + 1) is actually helpful against certain possible
attack vectors. As a simple example, it can be proved that when Xn +1 fully splits modulo q, there do
not exist polynomials in the ring that have small norm and many zeros in the NTT representation—the
existence of such polynomials for any q would weaken the security of MLWE.

• Finally, Z[X]/(Xn + 1) is one of the most widely studied, and best understood, rings (along with other
cyclotomic rings) in algebraic number theory. The fact that no attacks have been found against its use
for cryptosystems like Kyber makes it a much more conservative choice than some ring that is harder
to analyze and may show weaknesses only after many more years of study.

6.4.6 Deterministic Noise.

Instead of adding noise e, e1, and e2, one can add “deterministic” noise by simply dropping bits. This is the
basis behind the “Learning with Rounding” (LWR) problem [10], which for certain parameters is as hard as
the LWE problem. We believe that asymptotically this is a sound approach but the number of bits that can
be dropped before signifcant decryption error is introduced is not very large (≈ 2) in certain places in the
scheme. This may allow for a possibility of slightly improved attacks against the scheme. Since generating
noise is not a particularly costly operation, we did not choose to potentially weaken the scheme to save a
little time.

We point out that there is still bit-dropping in Kyber at exactly the same places that one would drop
bits to create deterministic noise, but we only do this for reducing the output size. If one believes that
deterministic noise adds some security (which we do), then Kyber also has the added security caused by
the deterministic noise. We also point out that it very easy to create a version of Kyber that relies entirely
on deterministic noise for security – one can simply remove the errors e, e1, e2 from the scheme description,
while keeping the bit-dropping (and possibly increasing the number of dropped bits due to the fact that no
noise was added).

5Also, like the attacks against NTRU, these do not apply for the small parameters used public key encryption schemes.

26

— Internet: Portfolio 183

References
[1] Martin Albrecht. Security estimates for the learning with errors problem, 2017. Version 2017-09-27,

https://bitbucket.org/malb/lwe-estimator. 21

[2] Martin Albrecht and Amit Deo. Large modulus Ring-LWE ≥ Module-LWE, 2017. To appear. https:
//eprint.iacr.org/2017/612. 22

[3] Martin R Albrecht, Florian Göpfert, Fernando Virdia, and Thomas Wunderer. Revisiting the expected
cost of solving uSVP and applications to LWE. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances
in Cryptology – ASIACRYPT 2017, volume 10211 of LNCS, pages 65–102. Springer, 2017. https:
//eprint.iacr.org/2017/815. 21

[4] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with errors.
J. Mathematical Cryptology, 9(3):169–203, 2015. https://eprint.iacr.org/2015/046. 19, 20

[5] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum key exchange
– a new hope. In Proceedings of the 25th USENIX Security Symposium, pages 327–343. USENIX
Association, 2016. http://cryptojedi.org/papers/#newhope. 6, 10, 11, 12, 13, 19, 20, 21, 25

[6] Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learning with rounding, revisited.
In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, volume 8042 of
LNCS, pages 57–74. Springer, 2013. https://eprint.iacr.org/2013/098. 18

[7] Yoshinori Aono, Yuntao Wang, Takuya Hayashi, and Tsuyoshi Takagi. Improved progressive BKZ
algorithms and their precise cost estimation by sharp simulator. In Marc Fischlin and Jean-Sébastien
Coron, editors, Advances in Cryptology – EUROCRYPT 2016, volume 9665 of LNCS, pages 789–819.
Springer, 2016. https://eprint.iacr.org/2016/146. 20

[8] Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors. In Luca Aceto, Monika
Henzingeri, and Ji°í Sgall, editors, Automata, Languages and Programming, volume 6755 of LNCS,
pages 403–415. Springer, 2011. https://www.cs.duke.edu/~rongge/LPSN.pdf. 19

[9] Wojciech Banaszczyk. New bounds in some transference theorems in the geometry of numbers. Math-
ematische Annalen, 296(1):625–635, 1993. 23

[10] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices. In David
Pointcheval and Thomas Johansson, editors, Advances in Cryptology – EUROCRYPT 2012, volume 7237
of LNCS, pages 719–737. Springer, 2012. http://www.iacr.org/archive/eurocrypt2012/72370713/
72370713.pdf. 6, 12, 18, 26

[11] Paul Barrett. Implementing the Rivest Shamir and Adleman public key encryption algorithm on a
standard digital signal processor. In Andrew M. Odlyzko, editor, Advances in Cryptology – CRYPTO
’86, volume 263 of Lecture Notes in Computer Science, pages 311–323. Springer-Verlag Berlin Heidelberg,
1987. https://link.springer.com/chapter/10.1007/3-540-47721-7_24. 18

[12] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest neighbor
searching with applications to lattice sieving. In SODA ’16 Proceedings of the twenty-seventh annual
ACM-SIAM symposium on Discrete Algorithms, pages 10–24. SIAM, 2016. https://eprint.iacr.
org/2015/1128. 20

[13] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. The security impact of a new cryptographic
library. In Alejandro Hevia and Gregory Neven, editors, Progress in Cryptology – LATINCRYPT 2012,
volume 7533 of LNCS, pages 159–176. Springer, 2012. http://cryptojedi.org/papers/#coolnacl.

[14] Daniel J. Bernstein, Peter Schwabe, and Gilles Van Assche. Tweetable FIPS 202, 2015. https://
keccak.team/2015/tweetfips202.html (accessed 2017-11-29). 12

27

13

184 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

[15] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. The Keccak reference. Submission
to the NIST SHA-3 competition, 2011. https://keccak.team/files/Keccak-reference-3.0.pdf. 12,
22

[16] Jean-François Biasse and Fang Song. Eÿcient quantum algorithms for computing class groups and
solving the principal ideal problem in arbitrary degree number felds. In SODA ’16 Proceedings of the
twenty-seventh annual ACM-SIAM symposium on Discrete Algorithms, pages 893–902. SIAM, 2016.
http://fangsong.info/files/pubs/BS_SODA16.pdf. 21, 26

[17] Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria Nikolaenko, Ananth
Raghunathan, and Douglas Stebila. Frodo: Take o˙ the ring! practical, quantum-secure key exchange
from LWE. In CCS ’16 Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 1006–1018. ACM, 2016. https://eprint.iacr.org/2016/659. 10, 11,
25

[18] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck, Peter
Schwabe, and Damien Stehlé. CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM. In
2018 IEEE European Symposium on Security and Privacy, EuroS&P 2018. IEEE, 2018. To appear.
https://eprint.iacr.org/2017/634. 3, 10, 19

[19] Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. In 2015 IEEE Symposium on Security
and Privacy, pages 553–570, 2015. https://eprint.iacr.org/2014/599. 11, 21

[20] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic encryption
without bootstrapping. In ITCS ’12 Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference, pages 309–325. ACM, 2012. https://eprint.iacr.org/2011/277. 16

[21] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical hardness
of learning with errors. In STOC ’13 Proceedings of the forty-ffth annual ACM symposium on Theory
of computing, pages 575–584. ACM, 2013. http://arxiv.org/pdf/1306.0281. 11

[22] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom. Flush, Gauss, and Reload –
a cache attack on the BLISS lattice-based signature scheme. In Benedikt Gierlichs and Axel Poschmann,
editors, Cryptographic Hardware and Embedded Systems – CHES 2016, volume 9813 of LNCS, pages
323–345. Springer, 2016. https://eprint.iacr.org/2016/300. 11

[23] Peter Campbell, Michael Groves, and Dan Shepherd. Soliloquy: A cautionary tale. In ETSI
2nd Quantum-Safe Crypto Workshop, pages 1–9, 2014. https://docbox.etsi.org/workshop/2014/
201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf. 21

[24] Yuanmi Chen. Lattice reduction and concrete security of fully homomorphic encryption. PhD thesis,
l’Université Paris Diderot, 2013. http://www.di.ens.fr/~ychen/research/these.pdf. 20

[25] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In Dong Hoon Lee
and Xiaoyun Wang, editors, Advances in Cryptology – ASIACRYPT 2011, volume 7073 of LNCS, pages
1–20. Springer, 2011. http://www.iacr.org/archive/asiacrypt2011/70730001/70730001.pdf. 19,
20

[26] Craig Costello, David Jao, Patrick Longa, Michael Naehrig, Joost Renes, and David Urbanik. Eÿcient
compression of SIDH public keys. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances
in Cryptology – EUROCRYPT 2017, volume 10210 of LNCS, pages 679–706. Springer, 2017. https:
//eprint.iacr.org/2016/963. 24

[27] Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering short generators of principal
ideals in cyclotomic rings. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology
– EUROCRYPT 2016, volume 9666 of LNCS, pages 559–585. Springer, 2016. https://eprint.iacr.
org/2015/313. 21, 26

28

— Internet: Portfolio 185

[28] Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Short Stickelberger class relations and ap-
plication to Ideal-SVP. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in
Cryptology – EUROCRYPT 2017, volume 10210 of LNCS, pages 324–348. Springer, 2017. https:
//eprint.iacr.org/2016/885. 21, 26

[29] The FPLLL development team. fplll, a lattice reduction library. Available at https://github.com/
fplll/fplll, 2017. 20

[30] Jintai Ding, Xiang Xie, and Xiaodong Lin. A simple provably secure key exchange scheme based on
the learning with errors problem. IACR Cryptology ePrint Archive report 2012/688, 2012. https:
//eprint.iacr.org/2012/688. 25

[31] Léo Ducas. Shortest vector from lattice sieving: a few dimensions for free. IACR Cryptology ePrint
Archive report 2017/999, 2017. https://eprint.iacr.org/2017/999. 20

[32] Kirsten Eisenträger, Sean Hallgren, Alexei Kitaev, and Fang Song. A quantum algorithm for computing
the unit group of an arbitrary degree number feld. In STOC ’14 Proceedings of the forty-sixth annual
ACM symposium on Theory of computing, pages 293–302. ACM, 2014. http://www.personal.psu.
edu/kxe8/unitgroup.pdf. 21

[33] Thomas Espitau, Pierre-Alain Fouque, Benoït Gérard, and Mehdi Tibouchi. Side-channel attacks on
BLISS lattice-based signatures: Exploiting branch tracing against strongswan and electromagnetic ema-
nations in microcontrollers. In CCS ’17 Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 1857–1874. ACM, 2017. https://eprint.iacr.org/2017/505.
11

[34] Scott Fluhrer. Cryptanalysis of ring-LWE based key exchange with key share reuse. IACR Cryptology
ePrint Archive report 2016/085, 2016. https://eprint.iacr.org/2016/085. 23

[35] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption
schemes. In Advances in Cryptology - CRYPTO ’99, pages 537–554, 1999. https://link.springer.
com/chapter/10.1007/3-540-48405-1_34. 3, 9, 16

[36] Nicolas Gama and Phong Nguyen. Predicting lattice reduction. In Nigel Smart, editor, Advances
in Cryptology – EUROCRYPT 2008, volume 4965 of LNCS, pages 31–51. Springer, 2008. https:
//www.iacr.org/archive/eurocrypt2008/49650031/49650031.pdf. 21

[37] Nicolas Gama, Phong Q Nguyen, and Oded Regev. Lattice enumeration using extreme pruning. In Henri
Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, volume 6110 of LNCS, pages 257–278.
Springer, 2010. http://www.iacr.org/archive/eurocrypt2010/66320257/66320257.pdf. 20

[38] Matthew Gretton-Dann. Introducing 2017’s extensions to the Arm architecture, 2017.
https://community.arm.com/processors/b/blog/posts/introducing-2017s-extensions-to-
the-arm-architecture. 13

[39] Tim Güneysu, Tobias Oder, Thomas Pöppelmann, and Peter Schwabe. Software speed records for
lattice-based signatures. In Philippe Gaborit, editor, Post-Quantum Cryptography, volume 7932 of
LNCS, pages 67–82. Springer, 2013. http://cryptojedi.org/papers/#lattisigns. 13

[40] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Terminating BKZ. IACR Cryptology ePrint
Archive report 2011/198, 2011. https://eprint.iacr.org/2011/198. 20

[41] Je˙rey Ho˙stein, Jull Pipher, and Joseph H. Silverman. NTRU: a ring-based public key cryptosystem.
In Joe P. Buhler, editor, Algorithmic number theory, volume 1423 of LNCS, pages 267–288. Springer,
1998. https://www.securityinnovation.com/uploads/Crypto/ANTS97.ps.gz. 6, 25

[42] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the Fujisaki-Okamoto
transformation. In Yael Kalai and Leonid Reyzin, editors, Theory of Cryptography, LNCS, pages 341–
371. Springer, 2017. https://eprint.iacr.org/2017/604. 13, 16, 17

29

186 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

[43] Nick Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack against NTRU. In
Alfred Menezes, editor, Advances in Cryptology – CRYPTO 2007, volume 4622 of LNCS, pages 150–169.
Springer, 2007. http://www.iacr.org/archive/crypto2007/46220150/46220150.pdf. 12

[44] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from supersingular elliptic
curve isogenies. In Bo-Yin Yang, editor, Post-Quantum Cryptography – PQCrypto 2011, volume 7071
of LNCS, pages 19–34. Springer, 2011. https://eprint.iacr.org/2011/506. 24

[45] Paul Kirchner and Pierre-Alain Fouque. An improved BKW algorithm for LWE with applications to
cryptography and lattices. In Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology
– CRYPTO 2015, volume 9215 of LNCS, pages 43–62. Springer, 2015. http://www.iacr.org/archive/
crypto2015/92160264/92160264.pdf. 19

[46] Paul Kirchner and Pierre-Alain Fouque. Revisiting lattice attacks on overstretched NTRU parameters.
In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology – EUROCRYPT
2017, volume 10210 of LNCS, pages 3–26. Springer, 2017. https://www.di.ens.fr/~fouque/euro17a.
pdf. 26

[47] Thijs Laarhoven. Search problems in cryptography. PhD thesis, Eindhoven University of Technology,
2015. http://www.thijs.com/docs/phd-final.pdf. 20

[48] Thijs Laarhoven. Sieving for shortest vectors in lattices using angular locality-sensitive hashing. In
Rosiario Gennaro and Matthew Robshaw, editors, Advances in Cryptology – CRYPTO 2015, volume
9216 of LNCS, pages 3–22. Springer, 2015. http://www.iacr.org/archive/crypto2015/92160123/
92160123.pdf. 20

[49] Thijs Laarhoven, Michele Mosca, and Joop van de Pol. Finding shortest lattice vectors faster using
quantum search. Designs, Codes and Cryptography, 77(2):375–400, 2015. https://eprint.iacr.org/
2014/907. 20

[50] Adam Langley. Maybe skip SHA-3. Blog post on ImperialViolet, 2017. https://www.imperialviolet.
org/2017/05/31/skipsha3.html. 13

[51] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module lattices. Designs,
Codes and Cryptography, 75(3):565–599, 2015. https://eprint.iacr.org/2012/090. 3, 10, 16

[52] Vadim Lyubashevsky. Standardizing lattice crypto and beyond. Slides of the talk given by Vadim
Lyubashevsky at PQCrypto 2017, 2017. https://2017.pqcrypto.org/conference/slides/pqc_
2017_lattice.pdf. 25

[53] Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen. SWIFFT: A modest proposal
for FFT hashing. In Kaisa Nyberg, editor, Fast Software Encryption – FSE 2008,, volume 5086 of LNCS,
pages 54–72. Springer, 2008. https://www.eecs.harvard.edu/~alon/PAPERS/lattices/swifft.pdf.
11, 26

[54] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
rings. In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, volume 6110 of LNCS,
pages 1–23. Springer, 2010. http://www.iacr.org/archive/eurocrypt2010/66320288/66320288.
pdf. 6, 10, 25, 26

[55] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors
over rings. Slides of the talk given by Chris Peikert at Eurocrypt 2010, 2010. http://crypto.rd.
francetelecom.com/events/eurocrypt2010/talks/slides-ideal-lwe.pdf. 6

[56] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors
over rings. Journal of the ACM, 60(6):43:1–43:35, 2013. http://www.cims.nyu.edu/~regev/papers/
ideal-lwe.pdf. 6

30

— Internet: Portfolio 187

20

[57] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for Ring-LWE cryptography. In Thomas
Johansson and Phong Q. Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013, volume 7881
of LNCS, pages 35–54. Springer, 2013. http://www.iacr.org/archive/eurocrypt2013/78810035/
78810035.pdf. 25

[58] Daniele Micciancio and Panagiotis Voulgaris. Faster exponential time algorithms for the shortest vector
problem. In SODA ’10 Proceedings of the twenty-frst annual ACM-SIAM symposium on Discrete
Algorithms, pages 1468–1480. SIAM, 2010. https://cseweb.ucsd.edu/~daniele/papers/Sieve.pdf.

[59] Peter L. Montgomery. Modular multiplication without trial division. Mathematics of Computa-
tion, 44(170):519–521, 1985. http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-
0777282-X/S0025-5718-1985-0777282-X.pdf. 18

[60] National Institute of Standards and Technology. FIPS PUB 202 – SHA-3 standard: Permutation-based
hash and extendable-output functions, 2015. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.
202.pdf. 10, 12

[61] Phong Q. Nguyen and Thomas Vidick. Sieve algorithms for the shortest vector problem are practical.
Journal of Mathematical Cryptology, 2(2):181–207, 2008. ftp://ftp.di.ens.fr/pub/users/pnguyen/
JoMC08.pdf. 20

[62] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu. Practical CCA2-secure and
masked Ring-LWE implementation. IACR Cryptology ePrint Archive report 2016/1109, 2016. https:
//eprint.iacr.org/2016/1109. 18

[63] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem, 2009. https:
//web.eecs.umich.edu/~cpeikert/pubs/svpcrypto.pdf (full version of [64]). 6, 10, 31

[64] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended abstract.
In STOC ’09 Proceedings of the forty-frst annual ACM symposium on Theory of computing, pages 333–
342. ACM, 2009. See also full version [63]. 31

[65] Chris Peikert. Lattice cryptography for the Internet. In Michele Mosca, editor, Post-Quantum Cryptog-
raphy, volume 8772 of LNCS, pages 197–219. Springer, 2014. http://web.eecs.umich.edu/~cpeikert/
pubs/suite.pdf. 25

[66] Chris Peikert. How (not) to instantiate Ring-LWE. In Vassilis Zikas and Roberto De Prisco, editors,
Security and Cryptography for Networks, volume 9841 of LNCS, pages 411–430. Springer, 2016. https:
//web.eecs.umich.edu/~cpeikert/pubs/instantiate-rlwe.pdf. 26

[67] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for eÿcient and composable
oblivious transfer. In David A. Wagner, editor, Advances in Cryptology – CRYPTO 2008, volume 5157
of LNCS, pages 554–571. Springer, 2008. https://www.iacr.org/archive/crypto2008/51570556/
51570556.pdf. 25

[68] Peter Pessl, Leon Groot Bruinderink, and Yuval Yarom. To BLISS-B or not to be – attack-
ing strongSwan’s implementation of post-quantum signatures. In CCS ’17 Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, pages 1843–1855. ACM, 2017.
https://eprint.iacr.org/2017/490. 11

[69] Thomas Pöppelmann and Tim Güneysu. Towards practical lattice-based public-key encryption on
reconfgurable hardware. In Tanja Lange, Kristin Lauter, and Petr Lison¥k, editors, Selected Areas in
Cryptography – SAC 2013, volume 8282 of LNCS, pages 68–85. Springer, 2013. https://www.ei.rub.
de/media/sh/veroeffentlichungen/2013/08/14/lwe_encrypt.pdf. 6, 10, 11

[70] Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel attacks on masked lattice-
based encryption. In Wieland Fischer and Naofumi Homma, editors, Cryptographic Hardware and
Embedded Systems – CHES 2017, volume 10529 of LNCS, pages 513–533. Springer, 2017. https:
//eprint.iacr.org/2017/594. 18

31

188 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

[71] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC ’05
Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages 84–93. ACM,
2005. Preliminary version of [72]. 6, 11, 25

[72] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal of the
ACM, 56(6):34, 2009. http://www.cims.nyu.edu/~regev/papers/qcrypto.pdf. 6, 32

[73] Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong Chen, and Ingrid Verbauwhede.
Compact Ring-LWE cryptoprocessor. In Lejla Batina and Matthew Robshaw, editors, Cryptographic
Hardware and Embedded Systems – CHES 2014, volume 8731 of LNCS, pages 371–391. Springer, 2014.
http://www.iacr.org/archive/ches2014/87310183/87310183.pdf. 11

[74] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure key-encapsulation mechanism
in the quantum random oracle model. IACR Cryptology ePrint Archive report 2017/1005, 2017. https:
//eprint.iacr.org/2017/1005. 16, 17

[75] Claus-Peter Schnorr and Martin Euchner. Lattice basis reduction: improved practi-
cal algorithms and solving subset sum problems. Mathematical programming, 66(1-3):181–
199, 1994. http://www.csie.nuk.edu.tw/~cychen/Lattices/Lattice%20Basis%20Reduction_
%20Improved%20Practical%20Algorithms%20and%20Solving%20Subset%20Sum%20Problems.pdf. 19

32

— Internet: Portfolio 189

DAGS:
Key Encapsulation from Dyadic GS Codes

Gustavo Banegas1, Paulo S. L. M. Barreto2, Brice Odilon Boidje3, Pierre-Louis Cayrel4 ,
Gilbert Ndollane Dione3, Kris Gaj7, Cheikh Thiécoumba Gueye3, Richard Haeussler7 ,
Jean Belo Klamti3, Ousmane N’diaye3, Duc Tri Nguyen7, Edoardo Persichetti5, and

Jefferson E. Ricardini6

1Technische Universiteit Eindhoven, The Netherlands
2University of Washington Tacoma, USA

3Université Cheikh Anta Diop, Dakar, Senegal.
4Laboratoire Hubert Curien, Saint-Etienne, France

5Florida Atlantic University, USA
6Universidade de São Paulo, Brazil
7George Mason University, USA

The team listed above is the principal submitter; there are no auxiliary submitters.

Owner, inventors and developers of this submission are the same as the principal
submitter. Relevant prior work is credited where appropriate.

Email Address (preferred): epersichetti@fau.edu

Postal Address and Telephone (if absolutely necessary):
Edoardo Persichetti, Department of Mathematical Sciences, 777 Glades Rd, Boca Raton,
FL, 33431, +1 561 297 4136.

Signature: x. See also printed version of “Statement by Each Submitter”.

190 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Contents

1 Introduction 2

2 Notation 2
2.1 Formats and Conventions . 3

3 Full Protocol Specification (2.B.1) 3
3.1 Design Rationale . 3

3.1.1 Key Generation . 4
3.1.2 Encapsulation . 5
3.1.3 Decapsulation . 6

4 Security (2.B.4) 6

5 Known Attacks and Parameters (2.B.5/2.B.1) 9
5.1 Hard Problems from Coding Theory 9
5.2 Decoding Attacks . 9
5.3 FOPT . 10
5.4 Parameter Selection . 12

6 Implementation and Performance Analysis (2.B.2) 13
6.1 Components . 13
6.2 Time and Space Requirements . 14

7 Advantages and Limitations (2.B.6) 16

8 Acknowledgments 18

A Note on the choice of ω 21

1

— Internet: Portfolio 191

1 Introduction

Code-based cryptography is one of the main candidates for post-quantum cryptog-
raphy standardization. The area is largely based on the Syndrome Decoding Prob-
lem [8], which shows to be strong against quantum attacks. Over the years, since
McEliece’s seminal work [27], many cryptosystems have been proposed, trying to
balance security and efficiency. In particular dealing with inherent flaws such as the
large size of the public keys. In fact, while McEliece’s cryptosystem, which is based
binary Goppa codes, is still unbroken, it features a key of several kilobytes, which
has effectively prevented its use in many applications.

There are currently two main trends to deal with this issue, and they both involve
structured matrices: the first, is based on “traditional” algebraic codes such as Goppa
or Srivastava codes; the second suggests to use sparse matrices as in LDPC/MDPC
codes. This work builds on the former approach, initiated in 2009 by Berger et
al. [7], who proposed Quasi-Cyclic (QC) codes, and Misoczki and Barreto [28], sug-
gesting Quasi-Dyadic (QD) codes instead (later generalized to Quasi-Monoidic (QM)
codes [6]). Both proposals feature very compact public keys due to the introduction
of the extra algebraic structure, but unfortunately this also leads to a vulnerability.
Indeed, Faugère, Otmani, Perret and Tillich [17] devised a clever attack (known sim-
ply as FOPT) which exploits the algebraic structure to build a system of equations,
which can successively be solved using Gröbner bases techniques. As a result, the QC
proposal is definitely compromised, while the QD/QM approach needs to be treated
with caution. In fact, for a proper choice of parameters, it is still possible to design
secure schemes using for instance binary Goppa codes, or Generalized Srivastava
(GS) codes as suggested by Persichetti in [32].

In this document, we present DAGS, a Key Encapsulation Mechanism (KEM)
that follows the QD approach using GS codes. To the best of our knowledge, this is
the first code-based KEM that uses structured algebraic codes. The KEM achieves
IND-CCA security following the recent framework by Kiltz et al. [23], and features
compact public keys and efficient encapsulation and decapsulation algorithms. We
modulate our parameters to achieve the most efficient scheme, while at the same
time avoiding the FOPT attack.

2

192 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

2 Notation

This section describes the notation used in this document.

a a constant
a a vector
A a matrix
A an algorithm or hash function
A a set

Diag(a) the diagonal matrix formed by the vector a
In the n × n identity matrix
$← choosing a random element from a set or distribution

2.1 Formats and Conventions

DAGS operates on vectors of elements of the finite field Fq, where q is a power of 2
as specified by the choice of parameters.

1. Finite field elements are represented as bit strings using standard log/antilog
tables (see for instance [26, Ch. 4, §5]) which are stored in the memory.

2. Field operations are performed using the log/antilog tables, and implemented
in an isochronous way.

3. Every vector or matrix defined over an extension field Fqm can be projected onto
the base field Fq by replacing each element with the (column) vector formed
by the coefficients of its representation over Fq.

4. We use the hash function SHA3-512 with 256 bits input for the random oracles
G, H and K (see Section 3.1).

3 Full Protocol Specification (2.B.1)

3.1 Design Rationale

In this section we introduce the three algorithms that form DAGS. System param-
eters are the code length n and dimension k, the values s and t which define a GS
code, the cardinality of the base field q and the degree of the field extension m. In
addition, we have k = k0 + k00, where k0 is set to be “small”. In practice, k0 is such
that a vector of length k0 can be efficiently stored in 256 bits, depending on the base

3

— Internet: Portfolio 193

field. This makes the hash functions (see below) easy to compute, and minimizes the
overhead due to the IND-CCA2 security in the QROM.

The key generation process uses the following fundamental equation

1 1 1 1
= + + . (1)

hi⊕j hi hj h0

to build the vector h = (h0, . . . , hn−1) of elements of Fqm , which is known as signature
of a dyadic matrix. This is then used to form a Cauchy matrix, i.e. a matrix C(u, v)
with components Cij = 1 . The matrix is then successively powered (element by

ui−vj

element) forming several blocks which are superimposed and then multiplied by a
random diagonal matrix. Finally, the resulting matrix is projected onto the base
field and row-reduced to systematic form. The overall process is described below.

3.1.1 Key Generation

1. Generate dyadic signature h. To do this:

mi. Choose random non-zero distinct h0 and hj for j = 2l, l = 0, . . . , blog q c.
ii. Form the remaining elements using (1).

iii. Return a selection1 of blocks of dimension s up to length n.

2. Build the Cauchy support. To do this:

i. Choose a random2 offset ω ←$ Fqm .

ii. Set ui = 1/hi + ω and vj = 1/hj + 1/h0 + ω for i = 0, . . . , s − 1 and
j = 0, . . . , n − 1.

iii. Set u = (u0, . . . , us−1) and v = (v0, . . . , vn−1).

ˆ3. Form Cauchy matrix H1 = C(u, v).

ˆ ˆ4. Build blocks Hi, i = 2, . . . t, by raising each element of H1 to the power of i.

ˆ5. Superimpose blocks to form matrix H.

6. Choose random elements zi ←$ Fqm such that zis+j = zis for i = 0, . . . , n0 − 1,
j = 0, . . . , s − 1.

1Making sure to exclude any block containing an undefined entry.
2See Appendix A for restrictions about the choice of the offset.

4

194 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

ˆ7. Form H = H · Diag(z).

8. Transform H into alternant form3: call this H 0 .

9. Project H onto Fq using the co-trace function: call this Hbase.

10. Write Hbase in systematic form (M | In−k).

11. The public key is the generator matrix G = (Ik | MT).

12. The private key is the alternant matrix H 0 .

The encapsulation and decapsulation algorithms make use of two hash functions4

G : Fk0 → Fk and H : Fk0 → Fk0 , the former with the task of generating randomness q q q q

for the scheme, the latter to provide “plaintext confirmation” as in [23]. The shared
symmetric key is obtained via another hash function K : {0, 1}∗ → {0, 1}` , where `
is the desired key length.

3.1.2 Encapsulation

← Fk0 1. Choose m $
.q

2. Compute r = G(m) and d = H(m).

3. Parse r as (ρ k σ) then set µ = (ρ k m).

4. Generate error vector e of length n and weight w from σ.

5. Compute c = µG + e.

6. Compute k = K(m).

7. Output ciphertext (c, d); the encapsulated key is k.

The decapsulation algorithm consists mainly of decoding the noisy codeword
received as part of the ciphertext. This is done using the alternant decoding algorithm
described in [26, Ch. 12, §9] and requires the parity-check matrix to be in alternant
form (hence the nature of the private key).

3See §2 and §6 of [26, Ch. 12].
4As specified in Section 2.1

5

— Internet: Portfolio 195

3.1.3 Decapsulation

1. Input private key, i.e. parity-check matrix H 0 in alternant form.

2. Use H 0 to decode c and obtain codeword µ0G and error e0 .

3. Output ⊥ if decoding fails or wt(e0) =6 w

4. Recover µ0 and parse it as (ρ0 k m0).

5. Compute r0 = G(m0) and d0 = H(m0).

6. Parse r0 as (ρ00 k σ0).

7. Generate error vector e00 of length n and weight w from σ0 .

0 00 ∨ ρ0 = ρ00 ∨ d8. If e 6 6 = d0 output ⊥.= e 6

9. Else compute k = K(m0).

10. The decapsulated key is k.

DAGS is built upon the McEliece encryption framework, with a notable exception.
In fact, we incorporate the “randomized” version of McEliece by Nojima et al. [31]
into our scheme. This is extremely beneficial for two distinct aspects: first of all, it
allows us to use a much shorter vector m to generate the remaining components of
the scheme, greatly improving efficiency. Secondly, it allows us to get tighter security
bounds. Note that our protocol differs slightly from the paradigm presented in [23],
in the fact that we don’t perform a full re-encryption in the decapsulation algorithm.
Instead, we simply re-generate the randomness and compare it with the one obtained
after decoding. This is possible since, unlike a generic PKE, McEliece decryption
reveals the randomness used, in our case e (and ρ). It is clear that if the re-generated
randomness is equal to the retrieved one, the resulting encryption will also be equal.
This allows us to further decrease computation time.

4 Security (2.B.4)

In this section, we discuss some aspects of provable security, and in particular we show
that DAGS satisfies the notion of IND-CCA security for KEMs. Before discussing
the IND-CCA security of DAGS, we show that the underlying PKE (i.e. Randomized
McEliece) satisfies the γ-spread property. This will allow us to get better security
bounds in our reduction.

6

196 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Definition 1 Consider a probabilistic PKE with randomness set R. We say that
PKE is γ-spread if for a given key pair (sk, pk), a plaintext m and an element y in
the ciphertext domain, we have

Pr[r ←$ R | y = Encpk(m, r)] ≤ 2−γ ,

for a certain γ ∈ R.

The definition above is presented as in [23], but note that in fact this corresponds
to the notion of γ-uniformity given by Fujisaki and Okamoto in [20], except for a
change of constants. In other words, a scheme is γ-spread if it is 2−γ -uniform.

It was proved in [14] that a simple variant of the (classic) McEliece PKE is
γ-uniform for γ = 2−k, where k is the code dimension as usual (more in general,
γ = q−k for a cryptosystem defined over Fq). We can extend this result to our
scheme as follows.

−k00 q
Lemma 1 Randomized McEliece is γ-uniform for γ = � � . n

w

Proof Let y be a generic vector of Fn
q . Then either y is a word at distance w from

the code, or it isn’t. If it isn’t, the probability of y being a valid ciphertext is clearly
exactly 0. On the other hand, suppose y is at distance w from the code; then there
is only one choice of ρ and one choice of e that satisfy the equation (since w is
below the GV bound), i.e. the probability of y being a valid ciphertext is exactly
1/qk

00 � �
n · 1/
w , which concludes the proof. �

We are now ready to present the security results.

Theorem 1 Let A be an IND-CCA adversary against DAGS that makes at most
qRO = qG + qK total random oracle queries5 and qD decryption queries. Then there
exists an IND-CPA adversary B against PKE, running in approximately the same
time as A, such that

AdvIND−CCA · 2−γ + 3 · AdvIND−CP A (B).KEM (A) ≤ qRO PKE

5Respectively qG queries to the random oracle G and qK queries to the random oracle K.

7

— Internet: Portfolio 197

Proof The thesis is a consequence of the results presented in Section 3.3 of [23]. In
fact, our scheme follows the KEM⊥ framework that consists of applying two generic m

transformations to a public-key encryption scheme. The first step consists of trans-
forming the IND-CPA encryption scheme into a OW-PCVA (i.e. Plaintext and Va-
lidity Checking) scheme. Then, the resulting scheme is transformed into a KEM in a
“standard” way. Both proofs are obtained via a sequence of games, and the combina-
tion of them shows that breaking IND-CCA security of the KEM would lead to break
the IND-CPA security of the underlying encryption scheme. Note that Randomized
McEliece, instantiated with Quasi-Dyadic GS codes, presents no correctness error
(the value δ in [23]), which greatly simplifies the resulting bound. �

The value d included in the KEM ciphertext does not contribute to the security
result above, but it is a crucial factor to provide security in the Quantum Random
Oracle Model (QROM). We present this in the next theorem.

Theorem 2 Let A be a quantum IND-CCA adversary against DAGS that makes
at most qRO = qG + qK total quantum random oracle queries6 and qD (classical)
decryption queries. Then there exists a OW-CPA adversary B against PKE, running
in approximately the same time as A, such that

r q
AdvIND−CCA AdvOW −CPA

KEM (A) ≤ 8qRO · qRO · PKE (B).

Proof The thesis is a consequence of the results presented in Section 4.4 of [23].
In fact, our scheme follows the QKEM⊥ framework that consists of applying two m

generic transformations to a public-key encryption scheme. The first step transform-
ing the IND-CPA encryption scheme into a OW-PCVA (i.e. Plaintext and Validity
Checking) scheme, is the same as in the previous case. Now, the resulting scheme is
transformed into a KEM with techniques suitable for the QROM. The combination
of the two proofs shows that breaking IND-CCA security of the KEM would lead to
break the OW-CPA security of the underlying encryption scheme. Note, therefore,
that the IND-CPA security of the underlying PKE has in this case no further effect
on the final result, and can be considered instead just a guarantee that the scheme
is indeed OW-CPA secure. The bound obtained is a “simplified” and “concrete”
version (as presented by the authors) and, in particular, it is easy to notice that it
does not depend on the number of queries qH presented to the random oracle H.
The bound is further simplified since, as above, the underlying PKE presents no
correctness error. �

6Same as above.

8

198 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

5 Known Attacks and Parameters (2.B.5/2.B.1)

We start by briefly presenting the hard problem on which DAGS is based, and then
discuss the main attacks on the scheme and related security concerns.

5.1 Hard Problems from Coding Theory

Most of the code-based cryptographic constructions are based on the hardness of the
following problem, known as the (q-ary) Syndrome Decoding Problem (SDP).

Problem 1 Given an (n − k) × n full-rank matrix H and a vector y, both defined
over Fq, and a non-negative integer w, find a vector e ∈ Fn

q of weight w such that
HeT = y.

The corresponding decision problem was proved to be NP-complete in 1978 [8],
but only for binary codes. In 1994, A. Barg proved that this result holds for codes
over all finite fields ([3], in Russian, and [4, Theorem 4.1]).

In addition, many schemes (including the original McEliece proposal) require the
following computational assumption.

Assumption 1 The public matrix output by the key generation algorithm is compu-
tationally indistinguishable from a uniformly chosen matrix of the same size.

The assumption above is historically believed to be true, except for very partic-
ular cases. For instance, there exists a distinguisher (Faugère et al. [16]) for crypto-
graphic protocols that make use of high-rate Goppa codes (like the CFS signature
scheme [15]). Moreover, it is worth mentioning that the “classical” methods for ob-
taining an indistinguishable public matrix, such as the use of scrambling matrices S
and P , are rather outdated and unpractical and can introduce vulnerabilities to the
scheme as per the work of Strenzke et al. ([36, 37]). Thus, traditionally, the safest
method (Biswas and Sendrier, [11]) to obtain the public matrix is simply to compute
the systematic form of the private matrix.

5.2 Decoding Attacks

The main approach for solving SDP is the technique known as Information Set
Decoding (ISD), first introduced by Prange [35]. Among several variants and gen-
eralizations, Peters showed [34] that it is possible to apply Prange’s approach to

9

— Internet: Portfolio 199

generic q-ary codes. Other approaches such as Statistical Decoding [24, 29] are usu-
ally considered less efficient. Thus, when choosing parameters, we will focus mainly
on defeating attacks of the ISD family.

Hamdaoui and Sendrier in [22] provide non-asymptotic complexity estimates for
ISD in the binary case. For codes over Fq, instead, a bound is given in [30], which
extends the work of Peters. For a practical evaluation of the ISD running times and
corresponding security level, we used Peters’s ISDFQ script[1].

Quantum Speedup. Bernstein in [9] shows that Grover’s algorithm applies to
ISD-like algorithms, effectively halving the asymptotic exponent in the complexity
estimates. Later, it was proven in [25] that several variants of ISD have the potential
to achieve a better exponent, however the improvement was disappointingly away
from the factor of 2 that could be expected. For this reason, we simply treat the
best quantum attack on our scheme to be “traditional” ISD (Prange) combined with
Grover search.

5.3 FOPT

While, as we discussed above, recovering a private matrix from a public one can
be in general a very difficult problem, the presence of extra structure in the code
properties can have a considerable effect in lowering this difficulty.

A very effective structural attack was introduced by Faugère, Otmani, Perret and
Tillich in [17]. The attack (for convenience referred to as FOPT) relies on the simple
property (valid for every linear code) H · GT = 0 to build an algebraic system, using
then Gröbner bases techniques to solve it. The special properties of alternant codes
are fundamental, as they contribute to considerably reduce the number of unknowns
of the system.

The attack was originally aimed at two variants of McEliece, introduced respec-
tively in [7] and [28]. The first variant, using quasi-cyclic codes, was completely
broken, and falls out of the scope of this paper. The second variant, instead, only
considered quasi-dyadic Goppa codes. In this case, most of the parameters proposed
have also been broken very easily, except for the binary case (i.e. base field F2). This
was, in truth, not connected to the base field per se, but rather depended on the
fact that, with a smaller base field, the authors provided a much higher extension

m 216degree m, as they were keeping constant the value q = . As it turns out, the
extension degree m plays a key role in the attack, as it defines the dimension of the

10

200 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

solution space, which is equal, in fact, exactly to m − 1. In a successive paper [18],
the authors provide a theoretical complexity bound for the attack, and point out
that any scheme for which this dimension is less or equal to 20 should be within the
scope of the attack.

Since GS codes are also alternant codes, the attack can be applied to our proposal
as well. In the case of GS codes, though, there is one important difference to keep
in mind. In fact, as shown in [32], the dimension of the solution space is defined by
mt − 1, rather than m − 1 as for Goppa codes. This provides greater flexibility when
designing parameters for the code, and it allows, for example, to keep the extension
degree m small.

Recently, an extension of the FOPT attack appeared in [19]. The authors in-
troduce a new technique called “folding”, and show that it is possible to reduce the
complexity of the FOPT attack to the complexity of attacking a much smaller code
(the “folded” code), thanks to the strong properties of the automorphism group of
the alternant codes in use. The attack turns out to be very efficient against Goppa
codes, as it is possible to recover a folded code which is also a Goppa code. The
paper features two tables with several sets of parameters, respectively for signature
schemes, and encryption schemes. The parameters are either taken from the original
papers, or generated ad hoc. While codes designed to work for signature schemes
turn out to be very easy to attack (due to their particular nature), the situation for
encryption is more complex. Despite a refinement in the techniques used to solve the
algebraic system, some of the parameters could not be solved in practice, and even
the binary Goppa codes of [28], with their relatively low dimension of 15, require a
considerably high computational effort (at least 2150 operations).

It is not clear how the attack performs against GS codes, since the authors didn’t
present any explicit result against this particular family of codes, nor attempted to
decode GS codes specifically. Thus, an attack against GS codes would use generic
techniques for Alternant codes, and wouldn’t benefit from the speedups which are
specific to (binary) Goppa codes. Furthermore, the authors do not propose a con-
crete bound, but only provide experimental results. For these reasons, and until an
accurate complexity analysis for an attack on GS codes is available, we choose to
attain to the latest measurable guidelines (those suggested in [18]) and choose our
parameters such that the dimension of the solution space for the algebraic system is
strictly greater than 20.

11

— Internet: Portfolio 201

5.4 Parameter Selection

To choose our parameters, we have to first keep in mind all of the remarks from the
previous sections about decoding and structural attacks. For FOPT, we have the
condition mt ≥ 21. This guarantees at least 128 bits of security according to the
bound presented in [18]. On the other hand, for ISD to be computationally intensive
we require a sufficiently large number w of errors to decode: this is given by st/2
according to the minimum distance of GS codes.

In addition, we tune our parameters to optimize performance. In this regard, the
best results are obtained when the extension degree m is as small as possible. This,
however, requires the base field to be large enough to accommodate sufficiently big
codes (against ISD attacks), since the maximum size for the code length n is capped

mby qm − s. Realistically, this means we want q to be at least 212, and an optimal
choice in this sense seems to be q = 26,m = 2. Finally, note that s is constrained to
be a power of 2, and that odd values of t seem to offer best performance.

Putting all the pieces together, we are able to present three set of parameters, in
the following table. These correspond to three of the security levels indicated by NIST
(first column), which are related to the hardness of performing a key search attack on
three different variants of a block cipher, such as AES (with key-length respectively
128, 192 and 256). As far as quantum attacks are concerned, we claim that ISD
with Grover (see above) will usually require more resources than a Grover search
attack on AES for the circuit depths suggested by NIST (parameter MAXDEPTH).
Thus, classical security bits are the bottleneck in our case, and as such we choose our
parameters to provide 128, 192 and 256 bits of classical security for security levels 1,
3 and 5 respectively.

We also included the estimated complexity of the structural attack (column
FOPT), which is at least greater than 128 bits in all cases.

Table 1: Suggested DAGS Parameters.

Security Level FOPT q m n k k0 s t w

1 ≥ 128 25 2 832 416 32 24 13 104
3 ≥ 128 26 2 1216 512 32 25 11 176
5 ≥ 128 26 2 2112 704 32 26 11 352

For practical reasons, during the rest of the paper we will refer to these parameters
respectively as DAGS 1, DAGS 3 and DAGS 5.

12

202 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

6 Implementation and Performance Analysis (2.B.2)

6.1 Components

DAGS computations are detailed as follows:

Key generation:

1. Two polynomial multiplications in Fqm and two in Fq.

2. Six polynomial inversions in Fqm and four in Fq.

3. Two polynomial squarings in Fqm and two in Fq.

4. Two polynomial additions in Fqm and two in Fq.

5. One random generation of a polynomial in Fqm .

Encapsulation:

1. One polynomial multiplication in Fq.

2. One polynomial addition in Fq.

3. One random generation of a polynomial in Fq.

4. One hash function computation.

Decapsulation:

1. Three polynomial multiplications in Fqm .

2. One polynomial power in Fqm .

3. One polynomial addition in Fqm .

4. One random generation of a polynomial in Fq.

5. One hash function computation.

For DAGS 3 and DAGS 5, the finite field F26 is built using the polynomial x6 +x+1
and then extended to F212 using x2 + x + α34, where α is a primitive element of F26 .
For DAGS 1, we build F25 using x5 +x2 +1 and then extend it to F210 via x2 +α4x+α.

The three main functions from DAGS are defined as:

13

— Internet: Portfolio 203

Key generation: the key generation algorithm key gen is composed by three main
functions: binary quasi dyadique sig, cauchy support and key pair. The first two
first functions are in charge of generating the signature and the Cauchy matrix
respectively. The key pair function generates public key and private key which is
stored in memory for a better performance.

Encapsulation: the encapsulation algorithm is essentially composed of the function
encapsulation in the file encapsulation.c, where it computes the expansion of the
message and the McEliece-like encryption. In the end, the function computes the
hash function K to get the shared secret.

Decapsulation: the decapsulation algorithm consists mainly of the function decap-
sulation in the file decapsulation.c, where we essentially run the decoding algorithm
plus a few comparisons. In the end, we compute the hash function K to get the
shared secret.

6.2 Time and Space Requirements

The implementation is in ANSI C. For the measurements we used a processor x64
Intel core i5-5300U@2.30GHz with 16GiB of RAM compiled with GCC version
6.3.020170516 without any optimization and running on Debian 9.2.

We start by considering space requirements. In Table 2 we recall the flow between
two parties P1 and P2 in a standard Key Exchange protocol derived from a KEM.

Table 2: KEM-based Key Exchange flow

P1 P2

(pk, sk) ← KEM.KeyGen
pk−−−−−−−−−−−−→

(k, c) ← KEM.Encaps(pk)
C←−−−−−−−−−−−−

k/⊥ ←
KEM.Decaps(c, sk)

Shared Key := k

14

204 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

When instantiated with DAGS, the public key is given by the generator matrix
G. The non-identity block MT is k × (n − k) = k × mst and is dyadic of order s,
thus requires only kmst/s = kmt elements of the base field for storage. The private
key is given by the alternant matrix H 0 which is composed of stn elements of Fqm .
Finally, the ciphertext C is the pair (c, d), that is, a q-ary vector of length n plus
256 bits. This leads to the following measurements (in bytes).

Table 3: Memory Requirements.

Parameter Set Public Key Private Key Ciphertext

DAGS 1 6760 432640 552

DAGS 3 8448 1284096 944

DAGS 5 11616 2230272 1616

Table 4: Communication Bandwidth.

Message Transmitted Size
Flow Message DAGS 1 DAGS 3 DAGS 5

P1 → P2

P2 → P1

G

(c, d)

6760

552

8448

944

11616

1616

Note that in our reference code, which is not optimized, we currently allocate a
full byte for each element of F26 and two bytes for each element of F212 thus effec-
tively wasting some memory. However, we expect to be able to represent elements
more efficiently, namely using three bytes to store either four elements of F26 or two
elements of F212 . The measurements in Tables 3 and 4, above, are taken with respect
to the latter method.

Furthermore, we would like to mention that the representation of the private key
offers a significant tradeoff between time and space. In fact, it would be possible to
store as private key the (quasi-dyadic) matrix H or even the defining vectors u, v
and z, and then compute the alternant form during decapsulation (following [26, Ch.
12, §2,6]); this, however, would significantly slow down the decapsulation algorithm.
Thus, we have opted to store H 0 instead and save computation time, although this
obviously results in a very large private key. It is debatable which of the two routes
is preferable, and we signal this as an implementor’s choice.

15

— Internet: Portfolio 205

We now move on to analyze time measurements. We are using x64 architecture
and our measurements use an assembly instruction to get the time counter. We do
this by calling “rdtsc” before and after the instruction, which gives us the cycles used
by each function. Table 5 gives the results of our measurements represented by the
mean after running the code 50 times.

Table 5: Timings.

Algorithm
Cycles

DAGS 1 DAGS 3 DAGS 5

Key Generation 49394032811 106876216775 136497712522

Encapsulation 20109354 26109354 49029613

Decapsulation 23639371 24639371 260829051

Note About Implementations. Our reference implementation and code have
been compiled for DAGS 5. However, it is possible to adapt both to run with any set
of parameters simply by editing the file param.h.

We would like to remark that our reference implementation is designed for clarity,
rather than performance. However, we found that, as a consequence of NIST’s
platform and language of choice, there wouldn’t be many significant performance
differences by presenting an optimized version of our reference code. Thus, our
Optimized Implementation is the same as the Reference Implementation, and all the
measurements presented in this section refer to the reference code.

Our team is currently at work to complete additional implementations that could
better showcase the potential of DAGS in terms of performance. These include code
prepared with x86 assembly instructions (AVX) as well as a hardware implementa-
tion (FPGA) etc. We plan to include such additional implementations in time for
the second evaluation period. A hint at the effectiveness of DAGS can be had by
looking at the performance of the scheme presented in [14], which also features an
implementation for embedded devices. In particular, we expect DAGS to perform
especially well in hardware, due to the nature of the computations of the McEliece
framework.

16

206 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

7 Advantages and Limitations (2.B.6)

We presented DAGS, a Key Encapsulation Mechanism based on Quasi-Dyadic Gen-
eralized Srivastava codes. We proved that DAGS is IND-CCA secure in the Random
Oracle Model, and in the Quantum Random Oracle Model. Thanks to this feature,
it is possible to employ DAGS not only as a key-exchange protocol (for which IND-
CPA would be a sufficient requirement), but also in other contexts such as Hybrid
Encryption, where IND-CCA is of paramount importance.

Like any scheme based on structured algebraic codes, DAGS is susceptible to the
FOPT attack and its successive improvements; this can be seen as a limitation of
the scheme. In fact, to defeat the attack, we need to respect stringent conditions
on the minimal choices of values for the scheme, in particular the extension degree
m and the value t. We remark that an accurate complexity analysis of the attack
is, to date, not available, and a version of the attack targeting GS codes hasn’t yet
been provided. This forces us to choose conservative parameters, according to the
theoretical bound of [18].

Nevertheless, DAGS is competitive and compares well with other other code-
based schemes. These include the well-known McBits [10], as well as more recent
proposals such as CAKE [5]. The former follows the work of Persichetti [33], and
is built using binary Goppa codes, thus benefiting from a well-understood security
assessment. The scheme however suffers from the same public key size issue as
“classic” McEliece-like cryptosystems. On the other hand, CAKE, a protocol based
on QC-MDPC codes, possesses some very nice features like compact keys and an
easy implementation approach, but the QC-MDPC encryption scheme on which it
is based suffers from a security-related drawback. This means that, in order to
circumvent the Guo-Johansson-Stankovski (GJS) attack [21], the protocol is forced
to employ ephemeral keys. While CAKE key generation is indeed very fast, this still
causes an increase in computation time. Moreover, due to its non-trivial Decoding
Failure Rate (DFR), achieving IND-CCA security becomes very hard, so that the
CAKE protocol only claims to be IND-CPA secure.

Indeed, another advantage of our proposal is that it doesn’t involve any decoding
error. This is particularly favorable in a comparison with some lattice-based schemes
like [13], [2] and [12], as well as CAKE. No decoding error allows for a simpler
formulation and better security bounds in the IND-CCA security proof.

Our public key is much smaller than the McBits family, and of the same order
of magnitude of CAKE. With respect to CAKE, it is possible to notice that, for the

17

— Internet: Portfolio 207

same security level, DAGS requires lower overall communication bandwidth. This is
because, while the size of a CAKE public key is slightly less than a DAGS key, DAGS
uses much shorter codes, and as a consequence the ciphertext is quite small compared
to a CAKE ciphertext. All the objects involved in the scheme are vectors of finite
fields elements, which in turn are represented as binary strings; thus computations
are very fast. The cost of computing the hash functions is minimized thanks to the
parameter choice that makes sure the input m is only 256 bits. As a result, we expect
that it will be possible to implement our scheme efficiently on multiple platforms.

Finally, we would like to highlight that a DAGS-based Key Exchange features
an “asymmetric” structure, where the bandwidth cost and computational effort of
the two parties are considerably different. In particular, in the flow described in
Table 2, the party P2 benefits from a much smaller message and faster computation
(the encapsulation operation), whereas P1 has to perform a key generation and a
decapsulation (the most expensive operations in the scheme), and transmit a larger
message (the public matrix). This is suitable for traditional client-server applications
where the server side is usually expected to respond to a large number of requests
and thus benefits from a lighter computational load. On the other hand, it is easy to
imagine an instantiation, with reversed roles, which could be suitable for example in
Internet-of-Things (IoT) applications, where it would be beneficial to lesser the bur-
den on the client side, due to its typical processing, memory and energy constraints.
All in all, our scheme offers great flexibility in key exchange applications, which is
not the case for traditional key exchange protocols like Diffie-Hellman.

8 Acknowledgments

Cheikh Thiecoumba Gueye, Brice Odilon Boidje, Jean Belo Klamti, Ousmane Ndiaye
and Gilbert Ndollane Dione were supported by the National Commission of Cryptol-
ogy via the ISPQ project and by the CEA-MITIC via the CBC project. Jefferson E.
Ricardini is Supported by the joint São Paulo Research Foundation (FAPESP)/Intel
Research grant 2015/50520-6 “Efficient Post-Quantum Cryptography for Building
Advanced Security”. Gustavo Banegas has received funding under the European
Union’s Horizon 2020 research and innovation program (Marie Sklodowska-Curie
grant agreement 643161 ECRYPT-NET).

18

208 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

References

[1] http://christianepeters.wordpress.com/publications/tools/.

[2] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange - a new hope. Cryptology ePrint Archive, Report
2015/1092, 2015. http://eprint.iacr.org/2015/1092.

[3] A. Barg. Some new NP-complete coding problems. Probl. Peredachi Inf., 30:23–
28, 1994. (in Russian).

[4] A. Barg. Complexity issues in coding theory. Electronic Colloquium on Com-
putational Complexity (ECCC), 4(46), 1997.

[5] Paulo SLM Barreto, Shay Gueron, Tim Gueneysu, Rafael Misoczki, Edoardo
Persichetti, Nicolas Sendrier, and Jean-Pierre Tillich. Cake: Code-based algo-
rithm for key encapsulation.

[6] Paulo SLM Barreto, Richard Lindner, and Rafael Misoczki. Monoidic codes in
cryptography. PQCrypto, 7071:179–199, 2011.

[7] T. P. Berger, P.-L. Cayrel, P. Gaborit, and A. Otmani. Reducing Key Length
of the McEliece Cryptosystem. In AFRICACRYPT, pages 77–97, 2009.

[8] E. Berlekamp, R. McEliece, and H. van Tilborg. On the inherent intractability
of certain coding problems (corresp.). Information Theory, IEEE Transactions
on, 24(3):384 – 386, may 1978.

[9] Daniel J. Bernstein. Grover vs. McEliece, pages 73–80. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2010.

[10] Daniel J. Bernstein, Tung Chou, and Peter Schwabe. Mcbits: Fast constant-
time code-based cryptography. In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), volume 8086 LNCS, pages 250–272, 12 2013.

[11] B. Biswas and N. Sendrier. Mceliece cryptosystem implementation: Theory and
practice. In PQCrypto, pages 47–62, 2008.

[12] Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria
Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the
ring! practical, quantum-secure key exchange from LWE. Cryptology ePrint
Archive, Report 2016/659, 2016. http://eprint.iacr.org/2016/659.

19

— Internet: Portfolio 209

[13] Joppe W Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-
quantum key exchange for the tls protocol from the ring learning with errors
problem. In Security and Privacy (SP), 2015 IEEE Symposium on, pages 553–
570. IEEE, 2015.

[14] Pierre-Louis Cayrel, Gerhard Hoffmann, and Edoardo Persichetti. Efficient im-
plementation of a cca2-secure variant of McEliece using generalized Srivastava
codes. In Proceedings of PKC 2012, LNCS 7293, Springer-Verlag, pages 138–
155, 2012.

[15] N. Courtois, M. Finiasz, and N. Sendrier. How to achieve a mceliece-based
digital signature scheme. In ASIACRYPT, pages 157–174, 2001.

[16] J.-C. Faugère, V. Gauthier-Umaña, A. Otmani, L. Perret, and J.-P. Tillich.
A distinguisher for high rate mceliece cryptosystems. In Information Theory
Workshop (ITW), 2011 IEEE, pages 282 –286, oct. 2011.

[17] J.-C. Faugère, A. Otmani, L. Perret, and J.-P. Tillich. Algebraic cryptanalysis
of mceliece variants with compact keys. In EUROCRYPT, pages 279–298, 2010.

[18] J.-C. Faugère, A. Otmani, L. Perret, and J.-P. Tillich. Algebraic Cryptanalysis
of McEliece Variants with Compact Keys – Towards a Complexity Analysis. In
SCC ’10: Proceedings of the 2nd International Conference on Symbolic Compu-
tation and Cryptography, pages 45–55, RHUL, June 2010.

[19] Jean-Charles Faugere, Ayoub Otmani, Ludovic Perret, Frédéric De Portzam-
parc, and Jean-Pierre Tillich. Structural cryptanalysis of mceliece schemes with
compact keys. Designs, Codes and Cryptography, 79(1):87–112, 2016.

[20] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In Michael J. Wiener, editor, Advances in Cryptology -
CRYPTO ’99, volume 1666 of LNCS, pages 537–554. Springer, 1999.

[21] Qian Guo, Thomas Johansson, and Paul Stankovski. A Key Recovery Attack
on MDPC with CCA Security Using Decoding Errors, pages 789–815. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2016.

[22] Yann Hamdaoui and Nicolas Sendrier. A non asymptotic analysis of information
set decoding. Cryptology ePrint Archive, Report 2013/162, 2013. http://
eprint.iacr.org/2013/162.

20

210 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

[23] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis
of the Fujisaki-Okamoto transformation. Cryptology ePrint Archive, Report
2017/604, 2017. http://eprint.iacr.org/2017/604.

[24] A. Al Jabri. A Statistical Decoding Algorithm for General Linear Block Codes,
pages 1–8. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[25] Ghazal Kachigar and Jean-Pierre Tillich. Quantum information set decoding
algorithms. In Tanja Lange and Tsuyoshi Takagi, editors, PQCrypto 2017,
volume 10346 of LNCS, pages 69–89. Springer, 2017.

[26] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes,
volume 16. North-Holland Mathematical Library, 1977.

[27] R. J. McEliece. A public-key cryptosystem based on algebraic coding theory.
Deep Space Network Progress Report, 44:114–116, January 1978.

[28] R. Misoczki and P. S. L. M. Barreto. Compact mceliece keys from goppa codes.
In Selected Areas in Cryptography, pages 376–392, 2009.

[29] R. Niebuhr. Statistical Decoding of Codes over Fq, pages 217–227. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011.

[30] R. Niebuhr, E. Persichetti, P.-L. Cayrel, S. Bulygin, and J. Buchmann. On
lower bounds for information set decoding over fq and on the effect of partial
knowledge. Int. J. Inf. Coding Theory, 4(1):47–78, January 2017.

[31] R. Nojima, H. Imai, K. Kobara, and K. Morozov. Semantic security for the
McEliece cryptosystem without random oracles. Des. Codes Cryptography, 49(1-
3):289–305, 2008.

[32] Edoardo Persichetti. Compact mceliece keys based on quasi-dyadic srivastava
codes. Journal of Mathematical Cryptology, 6(2):149–169, 2012.

[33] Edoardo Persichetti. Secure and anonymous hybrid encryption from coding
theory. In Philippe Gaborit, editor, Post-Quantum Cryptography: 5th Interna-
tional Workshop, PQCrypto 2013, Limoges, France, June 4-7, 2013. Proceed-
ings, pages 174–187, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[34] C. Peters. Information-set decoding for linear codes over Fq. In PQCrypto,
LNCS, pages 81–94, 2010.

21

— Internet: Portfolio 211

[35] E. Prange. The use of information sets in decoding cyclic codes. IRE Transac-
tions, IT-8:S5–S9, 1962.

[36] F. Strenzke. A timing attack against the secret permutation in the mceliece pkc.
In PQCrypto, pages 95–107, 2010.

[37] F. Strenzke, E. Tews, H. G. Molter, R. Overbeck, and A. Shoufan. Side channels
in the mceliece pkc. In PQCrypto, pages 216–229, 2008.

A Note on the choice of ω

In this section we point out some considerations about the choice of the offset ω
during the key generation process.

The usual decoding algorithm for alternant codes, for example as in [26], relies
on the special form of the parity-check matrix (Hij = yj x i−1). The first step is j

to recover the error locator polynomial σ(x), by means of the euclidean algorithm
for polynomial division; then it proceeds by finding the roots of σ. There is a 1-1
correspondence between these roots and the error positions: in fact, there is an error
in position i if and only if σ(1/xi) = 0.
Of course, if one of the xi’s is equal to 0, it is not possible to find the root, and to
detect the error.

Now, the generation of the error vector is random, hence we can assume the
probability of having an error in position i to be around st/2n; since the codes give
the best performance when mst is close to n/2, we can estimate this probability
as 1/4m, which is reasonably low for any nontrivial choice of m; however, we still
argue that the code is not fully decodable and we now explain how to adapt the key
generation algorithm to ensure that all the xi’s are nonzero.

As part of the key generation algorithm we assign to each xi the value Li, hence
it is enough to restrict the possible choices for ω to the set {α ∈ Fqm |α 6= 1/hi +1/h0,
i = 0, . . . , n − 1}. In doing so, we considerably restrict the possible choices for ω but
we ensure that the decoding algorithm works properly.

22

212 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

FrodoKEM
Learning With Errors Key Encapsulation

Algorithm Specifications And Supporting Documentation

November 30, 2017

1

— Internet: Portfolio 213

Contents

1 Introduction and design rationale 4
1.1 Pedigree . 4
1.2 Design overview and rationale . 5

1.2.1 Generic, algebraically unstructured lattices . 5
1.2.2 Parameters from worst-case reductions and conservative cryptanalysis 6
1.2.3 Simplicity of design and implementation . 7

1.3 Other features . 8

2 Written specification 9
2.1 Background . 9

2.1.1 Notation . 9
2.1.2 Cryptographic definitions . 9
2.1.3 Learning With Errors . 11
2.1.4 Gaussians . 12
2.1.5 Lattices . 12

2.2 Algorithm description . 13
2.2.1 Matrix encoding of bit strings . 13
2.2.2 Packing matrices modulo q . 13
2.2.3 Deterministic random bit generation . 14
2.2.4 Sampling from the error distribution . 14
2.2.5 Pseudorandom matrix generation . 15
2.2.6 FrodoPKE: IND-CPA-secure public key encryption scheme 16
2.2.7 Correctness of IND-CPA PKE . 17
2.2.8 Transform from IND-CPA PKE to IND-CCA KEM 18
2.2.9 FrodoKEM: IND-CCA-secure key encapsulation mechanism 19
2.2.10 Correctness of IND-CCA KEM . 20
2.2.11 Interconversion to IND-CCA PKE . 20

2.3 Cryptographic primitives . 21
2.4 Parameters . 21

2.4.1 High-level overview . 21
2.4.2 Parameter constraints . 21
2.4.3 Selected parameter sets . 22

2.5 Summary of parameters . 22
2.6 Provenance of constants and tables . 23

3 Performance analysis 24
3.1 Associated implementations . 24
3.2 Performance analysis on x64 Intel . 24

3.2.1 Performance using AES128 . 24
3.2.2 Performance using cSHAKE128 . 24
3.2.3 Memory analysis . 25

3.3 Performance analysis on ARM . 26

4 Known Answer Test (KAT) values 28

5 Justification of security strength 29
5.1 Security reductions . 29

5.1.1 IND-CCA Security of KEM . 29
5.1.2 IND-CPA Security of PKE . 30
5.1.3 Approximating the error distribution . 30
5.1.4 Deterministic generation of A . 31
5.1.5 Reductions from worst-case lattice problems . 32

5.2 Cryptanalytic attacks . 34

2

214 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

5.2.1 Methodology: the core-SVP hardness . 34
5.2.2 Primal attack . 36
5.2.3 Dual attack . 36

6 Advantages and limitations 37
6.1 Ease of implementation . 37
6.2 Compatibility with existing deployments and hybrid schemes 37
6.3 Hardware implementations . 38
6.4 Side-channel resistance . 38

3

— Internet: Portfolio 215

1 Introduction and design rationale

This submission defines a family of key-encapsulation mechanisms (KEMs), collectively called FrodoKEM.
The FrodoKEM schemes are designed to be conservative yet practical post-quantum constructions whose
security derives from cautious parameterizations of the well-studied learning with errors problem, which in
turn has close connections to conjectured-hard problems on generic, “algebraically unstructured” lattices.

Concretely, FrodoKEM is designed for IND-CCA security at two levels:

• FrodoKEM-640, which targets Level 1 in the NIST call for proposals (matching or exceeding the
brute-force security of AES-128), and

• FrodoKEM-976, which targets Level 3 in the NIST call for proposals (matching or exceeding the
brute-force security of AES-192).

Two variants of each of the above schemes are provided:

• FrodoKEM-640-AES and FrodoKEM-976-AES, which use AES128 to pseudorandomly generate a large
public matrix (called A).

• FrodoKEM-640-cSHAKE and FrodoKEM-976-cSHAKE, which use cSHAKE128 to pseudorandomly gen-
erate the matrix.

The AES variants are particularly suitable for devices having AES hardware acceleration (such as AES-NI
on Intel platforms), while the cSHAKE variants generally provide competitive or better performance in
comparison with the AES variants in the absence of hardware acceleration.

In the remainder of this section, we outline FrodoKEM’s scientific lineage, briefly explain our design choices
(with further details appearing in subsequent sections), and describe other features of our proposal beyond
those explicitly requested by NIST.

1.1 Pedigree
1The core of FrodoKEM is a public-key encryption scheme called FrodoPKE, whose IND-CPA security is

tightly related to the hardness of a corresponding learning with errors problem. Here we briefly recall the
scientific lineage of these systems. See the surveys [82, 103, 92] for further details.
The seminal works of Ajtai [3] (published in 1996) and Ajtai–Dwork [4] (published in 1997) gave the first

cryptographic constructions whose security properties followed from the conjectured worst-case hardness
of various problems on point lattices in Rn . In subsequent years, these works were substantially refined
and improved, e.g., in [57, 30, 81, 101, 84]. Notably, in work published in 2005, Regev [102] defined the
learning with errors (LWE) problem, proved the hardness of (certain parameterizations of) LWE assuming
the hardness of various worst-case lattice problems against quantum algorithms, and defined a public-key
encryption scheme whose IND-CPA security is tightly related to the hardness of LWE.2

Regev’s initial work on LWE was followed by much more, which, among other things:

• provided additional theoretical support for the hardness of various LWE parameterizations (e.g., [88,
13, 28, 48, 83, 94]),

• extensively analyzed the concrete security of LWE and closely related lattice problems (e.g., [85, 40, 76,
8, 39, 6, 7, 69, 65, 10, 11, 24, 5, 9], among countless others), and

• constructed LWE-based cryptosystems with improved efficiency or additional functionality (e.g., [96,
95, 55, 32, 29, 56, 22, 58]).

In particular, in work published in 2011, Lindner and Peikert [75] gave a more efficient LWE-based public-key
encryption scheme that uses a square public matrix A ∈ Zn×n instead of an oblong rectangular one. q
The FrodoPKE scheme from this submission is an instantiation and implementation of the Lindner–Peikert

scheme [75] with some modifications, such as: pseudorandom generation of the public matrix A from a small
seed, more balanced key and ciphertext sizes, and new LWE parameters.

1FrodoPKE is an intermediate building block used to create FrodoKEM, but is not a submission to the NIST competition.
2As pointed out in [89], Regev’s encryption scheme implicitly contains an (unauthenticated) “approximate” key-exchange

protocol analogous to the classic Diffie–Hellman protocol [46].

4

216 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Frodo. FrodoPKE is closely related to an earlier work [24], called “Frodo,” by a subset of the authors of this
submission, which appeared at the 2016 ACM CCS conference. For clarity, we refer to the conference version
as FrodoCCS, and the KEM defined in this submission as FrodoKEM. The main differences are as follows:

• FrodoCCS was described as an unauthenticated key-exchange protocol, which can equivalently be viewed
as an IND-CPA-secure KEM, whereas FrodoKEM is designed to be an IND-CCA-secure KEM.

• FrodoCCS used a “reconciliation mechanism” to extract shared-key bits from approximately equal values
(similarly to [47, 91, 25, 11]), whereas FrodoKEM uses simpler key transport via public-key encryption
(as in [102, 75]).

• FrodoKEM uses significantly “wider” LWE error distributions than FrodoCCS does, which conform to
certain worst-case hardness theorems (see below).

• FrodoKEM uses different symmetric-key primitives than FrodoCCS does.

Chosen-ciphertext security. FrodoKEM achieves IND-CCA security by way of a transformation of the
IND-CPA-secure FrodoPKE. In work published in 1999, Fujisaki and Okamoto [51] gave a generic transform
from an IND-CPA PKE to an IND-CCA PKE, in the random-oracle model. At a high level, the Fujisaki–
Okamoto transform derives encryption coins pseudorandomly, and decryption regenerates these coins to
re-encrypt and check that the ciphertext is well-formed. In 2016, Targhi and Unruh [111] gave a modification
of the Fujisaki–Okamoto transform that achieves IND-CCA security in the quantum random-oracle model. In
2017, Hofheinz, Hövelmanns, and Kiltz [61] gave several variants of the Fujisaki–Okamoto and Targhi–Unruh
transforms that in particular convert an IND-CPA-secure PKE into an IND-CCA-secure KEM, and analyzed
them in both the classical and quantum random-oracle models, even for PKEs with non-zero decryption error.
FrodoKEM is constructed from FrodoPKE using a slight variant of one of the constructions from [61], that
includes additional values in hash computations to avoid multi-target attacks.

1.2 Design overview and rationale

Given the high cost and slow deployment of entirely new cryptographic systems, the desired decades-long
lifetime of such systems, and the unpredictable trajectory of quantum computing technology and quantum
cryptanalysis over the coming years, we argue that any post-quantum standard should follow a conservative
approach that errs comfortably on the side of security and simplicity over performance and (premature)
optimization. This principle permeates the design choices behind FrodoKEM, as we now describe.

1.2.1 Generic, algebraically unstructured lattices

The security of every public-key cryptosystem depends on the presumed intractability of one or more
computational problems. In lattice-based cryptography, the (plain) LWE problem [102] relates to solving a
“noisy” linear system modulo a known integer; it can also be interpreted as the problem of decoding a random
“unstructured” lattice from a certain class. There are also “algebraically structured” variants, called Ring-
LWE [78, 94] and Module-LWE [27, 72], and problems associated with the classic NTRU cryptosystem [60],
which are more compact and computationally efficient, but also have the potential for weaknesses due to the
extra structure.
After a good deal of investigation, the state of the art for recommended parameterizations of algebraic

LWE variants does not indicate any particular weaknesses in comparison to plain LWE. However, at present
there appear to be some gaps between the (quantum) complexity of some related, seemingly weaker problems
on certain kinds of algebraic lattices and their counterparts on general lattices. (See below for details.) Of
course, this only represents our current understanding of these problems, which could potentially change with
further cryptanalytic effort.
Given the unpredictable long-term outlook for algebraically structured lattices, and because any post-

quantum standard should remain secure for decades into the future—including against new quantum
attacks—we have based our proposal on the algebraically unstructured, plain LWE problem with conservative
parameterizations (see Section 1.2.2). While this choice comes at some cost in efficiency versus algebraic
lattice problems, our proposal is still eminently practical for the vast majority of today’s devices, networks,
and applications, and will become only more so in the coming years.

5

— Internet: Portfolio 217

Algebraic lattices. Ring-LWE, Module-LWE, and NTRU-related problems can be viewed as decoding
(or in the case of NTRU, shortest vector) problems on random “algebraically structured” lattices over
certain polynomial rings. (Formally, the lattices are modules of a certain rank over the ring.) Similarly
to LWE, various parameterizations of Ring-LWE and Module-LWE, and even some non-standard versions
of NTRU [110], have been proven hard assuming the worst-case quantum hardness of certain problems on
lattices corresponding to ideals or modules over the ring [78, 72, 94].
For recommended parameterizations of Ring- and Module-LWE, the current best attacks perform essentially

the same as those for plain LWE, apart from some obvious linear-factor (in the ring dimension) savings
in time and memory; the same goes for the underlying worst-case problems on ideal and module lattices,
versus generic lattices [40, 107, 62, 26, 70].3 However, some conventional NTRU parameterizations admit
specialized attacks with significantly better asymptotic performance than on generic lattices with the same
parameters [65, 66]. In addition, a series of recent works [31, 42, 43] has yielded a quantum polynomial-time √˜
algorithm for very large but subexponential 2O(n) approximations to the worst-case Shortest Vector Problem
on ideal lattices over a widely used class of rings (in contrast to just slightly subexponential 2O(n log log n/ log n)

factors obtainable for general lattices [74, 108]). Note that these subexponential approximation factors are
still much larger than the small polynomial factors that are typically used in cryptography (so the reductions
have not been made vacuous), and the algorithms from [31, 42, 43] do not yet have any impact on Ring- or
Module-LWE themselves.

1.2.2 Parameters from worst-case reductions and conservative cryptanalysis

Like all cryptographic problems, LWE is an average-case problem, i.e., input instances are chosen at random
from a prescribed probability distribution. As already mentioned, some parameterizations of LWE admit
(quantum or classical) reductions from worst-case lattice problems. That is, any algorithm that solves
n-dimensional LWE (with some non-negligible advantage) can be converted with some polynomial overhead
into a (quantum) algorithm that solves certain short-vector problems on any n-dimensional lattice (with high
probability). Therefore, if the latter problems have some (quantumly) hard instances, then random instances
of LWE are also hard.
Worst-case/average-case reductions help guide the search for cryptographically hard problems in a

large design space, and offer (at minimum) evidence that the particular distribution of inputs does not
introduce any structural weaknesses. This is in contrast to several lattice-based proposals that lacked such
reductions, and turned out to be insecure because their distributions made “planted” secrets easy to recover,
e.g., [109, 86, 31, 42]. Indeed, Micciancio and Regev [85] argue that a reduction from a hard worst-case
problem

“. . . assures us that attacks on the cryptographic construction are likely to be effective only for
small choices of parameters and not asymptotically. In other words, it assures us that there are no
fundamental flaws in the design of our cryptographic construction. . . In principle the worst-case
security guarantee can help us in choosing concrete parameters for the cryptosystem, although in
practice this leads to what seems like overly conservative estimates, and . . . one often sets the
parameters based on the best known attacks.”

Not all LWE parameterizations admit reductions from worst-case lattice problems. For example, the
iterative quantum reductions from [102, 94] require the use of Gaussian error having standard deviation at √
least c n for an arbitrary constant c > 1/(2π), where n is the dimension of the LWE secret. In practice, a
drawback of using such “wide” error distributions for cryptography is the relatively large modulus required
to avoid decryption error, which leads to larger dimensions n and sizes of keys and ciphertexts for a desired
level of concrete security. Subsequent works like [48, 83] provided weaker reductions for “narrower” error
distributions, such as uniform over a small set (even {0, 1}), but only by restricting the number of LWE
samples available to the attacker—to fewer than the number exposed by LWE-based cryptosystems [102, 75],
in the case of moderately small errors. Note that some limitation on the number of samples is necessary,

3Some unconventional parameterizations of Ring-LWE were specifically devised to be breakable by certain algebraic attacks [50,
37, 33, 38]. However, it was later shown that their error distributions are insufficiently “wide” relative to the ring, so they
reveal errorless (or nearly so) linear equations and can therefore be broken even more efficiently using elementary, non-algebraic
means [33, 93].

6

218 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

because LWE with errors bounded by (say) a constant is solvable in polynomial time, given a large enough
polynomial number of samples [14, 6]. Currently, there is still a sizeable gap between small-error LWE
parameters that are known to be vulnerable, and those conforming to a worst-case reduction. Most proposed
implementations use parameters that lie within this gap.

Error width and an alternative worst-case reduction. In keeping with our philosophy of using
conservative choices of hard problems that still admit practical implementations, our proposal uses “moderately
wide” Gaussian error of standard deviation σ ≥ 2.3, and (automatically) limits the number of LWE samples
available to the adversary. Although such parameters do not conform to the full quantum reductions
from [102, 94] for our choices of n, we show that they do conform to an alternative, classical worst-case
reduction that can be extracted from those works. (We note that the original version of Frodo from [24] used
a smaller σ that is not compatible with any of these reductions.)
In a little more detail, the alternative reduction is from a worst-case lattice problem we call “Bounded

Distance Decoding with Discrete Gaussian Samples” (BDDwDGS), which has been closely investigated
(though not under that name) in several works [2, 77, 102, 45]. Along with being classical (non-quantum), a
main advantage of the alternative reduction is that it works for LWE with (1) Gaussian error whose width
only needs to exceed the “smoothing parameter” [84] of the integer lattice Z for tiny enough ε > 0, and
(2) a correspondingly bounded number of samples. We view this reduction as evidence that the smoothing
parameter of Z is an important qualitative threshold for LWE error, which is why we use a standard
deviation σ which is comfortably above it. We also view the reduction as narrowing the gap between the
known weakness of small-error LWE with a large number of samples, and its apparent hardness with a small
number of samples. See Section 5.1.5 for full details.
We stress that we use the worst-case reduction only for guidance in choosing a narrow enough error

distribution for practice that still has some theoretical support, and not for any concrete security claim. As
alluded to in the above quote from [85] (see also [36]), the known worst-case reduction does not yield any
meaningful “end-to-end” security guarantee for our concrete parameters based on the conjecture hardness
of a worst-case problem, because the reduction is non-tight : it has some significant polynomial overhead in
running time and number of discrete Gaussian samples used, versus the number of LWE samples it produces.
(Improving the tightness of worst-case reductions is an interesting problem.) Instead, as stated in the above
quote from [85], we choose concrete parameters using a conservative analysis of the best known cryptanalytic
attacks, as described next.

Concrete cryptanalysis using core-SVP hardness. Our concrete security estimates are based on a
conservative methodology, as previously used for NewHope [11] and Frodo [24] and detailed in Section 5.2.1,
that estimates the “core-SVP hardness” of solving the underlying LWE problem. This methodology builds
on the extensive prior cryptanalysis of LWE and related lattice problems, and was further validated by recent
work [9], which concluded that its experimental results “confirm that lattice-reduction largely follows the
behavior expected from the 2016 estimate [11].” The core-SVP methodology counts only the first-order
exponential cost of just one (quantum) shortest-vector computation on a lattice of appropriate dimension to
solve the relevant LWE problem. Because it ignores lower-order terms like the significant subexponential
factors in the runtime, as well as the large exponential memory requirements, it significantly underestimates
the actual cost of known attacks, and allows for significant future improvement in these attacks.

1.2.3 Simplicity of design and implementation

Using plain LWE allows us to construct encryption and key-encapsulation schemes that are simple and easy
to implement, reducing the potential for errors. Wherever possible, design decisions were made in favor of
simplicity over more sophisticated mechanisms.

Modular arithmetic. Our LWE parameters use an integer modulus q ≤ 216 that is always a power of two.
This ensures that only single-precision arithmetic is needed, and that reduction modulo q can be computed
almost for free by bit-masking. (Reduction modulo 216 is even entirely free when 16-bit data types are used.)
Modular arithmetic is thus easy to implement correctly and in a way that is resistant to cache and timing
side-channel attacks.

7

— Internet: Portfolio 219

Error sampling. Although our “ideal” LWE error distribution is a Gaussian with an appropriate standard
deviation, our implementation actually uses a distribution that is very close to it. Sampling from the
distribution is quite simple via a small lookup table and a few random bits, and is resistant to cache and
timing side-channels. (See Section 2.2.4 for details.) Using this alternative error distribution comes at very
little expense in the concrete security of FrodoKEM, which we show by analyzing the Rényi divergence between
the two distributions, following [15]. See Section 5.1.3 for full details.

Matrix-vector operations. Apart from error sampling and calls to symmetric primitives like AES or
cSHAKE, the main operations in our schemes are simple matrix-vector products. Compared to systems like
NewHope [11] or Kyber [23] that use algebraically structured LWE variants, our system has moderately
larger running times and bandwidth requirements, but is also significantly simpler, because there is no need
to implement fast polynomial multiplication algorithms (like the number-theoretic transform for a prime
modulus) to exploit the algebraic structure.

Encryption and key encapsulation without reconciliation. Our PKE and KEM use the original
method from Regev’s encryption scheme [102] of transmitting secret bits by simply adding their (q/2)-multiples
to pseudorandom values that the receiver can (approximately) subtract away. We do not need or use any of
the more complicated reconciliation mechanisms that were developed in the context of key-exchange protocols
(as mentioned above in Section 1.1).

In addition, unlike the Ring-LWE-based NewHope scheme [11], which transmits data using non-trivial
lattice codes to make up for bandwidth losses arising from a sparse set of friendly ring dimensions, plain-LWE-
based constructions do not have such bandwidth losses because the dimensions can be set freely. Therefore,
we also have no need for complex bandwidth-saving optimizations.

Simple and compact code base. Our focus on simplicity is manifested in the FrodoKEM code base. For
example, our x64 implementation of the full FrodoKEM scheme consists of only about 250 lines of plain C
code (not including header files and code for symmetric primitives). Moreover, the exact same code can be
used for other LWE parameters and security levels, solely by changing compile-time constants.

1.3 Other features

Flexible, fine-grained choice of parameters. The plain LWE problem imposes very few requirements
on its parameters, which makes it possible to rather tightly meet almost any desired security target in an
automated way, using the methodology described in Section 5.2.1. Alternative parameters can be selected
to reflect future advances in cryptanalysis, or to support other features beyond basic encryption and key

232encapsulation. For example, by using a larger LWE modulus (e.g., q = or q = 264) and appropriate
dimensions for a desired security level, FrodoPKE can easily support a large number of homomorphic additions,
or multiplications by (small) public scalars, on ciphertexts. Using even larger moduli, it can even be made
into a leveled or fully homomorphic encryption scheme, following [29].

Dynamically generated public matrices. To reduce the size of public keys and accelerate encryption,
the public matrix A ∈ Zn×n could potentially be a fixed value that is chosen in a “nothing-up-my-sleeve” q
fashion [18] and used for all keys (see [25] for an example of this in a Ring-LWE-based system). However, to
avoid the possibility of backdoors and all-for-the-price-of-one attacks [1], following prior work [11, 24] we
dynamically and pseudorandomly generate a fresh matrix A for every generated key. The pseudorandom
derivation is defined in a way that allows for fast generation of the entire matrix, or row-by-row generation
on devices that cannot store the entire matrix in memory. See Section 2.2.5 for details.

8

220 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

2 Written specification

2.1 Background

This defines the cryptographic primitives and security notions that are relevant to FrodoPKE and FrodoKEM,
as well as the mathematical background required to analyze their security.

2.1.1 Notation

We use the following notation throughout this document.

• Vectors are denoted with bold lower-case letters (e.g., a, b, v), and matrices are denoted with bold
upper-case letters (e.g., A, B, S). For a set D, the set of m-dimensional vectors with entries in D is
denoted by Dm, and the set of m-by-n matrices with entries in D is denoted by Dm×n .

• For an n-dimensional vector v, its ith entry for 0 ≤ i < n is denoted by vi.
• For an m-by-n matrix A, its (i, j)th entry (i.e., the entry in the ith row and jth column) for 0 ≤ i < m
and 0 ≤ j < n is denoted by Ai,j , and its ith row is denoted by Ai = (Ai,0, Ai,1, . . . , Ai,n−1).

• An m-bit string k ∈ {0, 1}m is written as a vector over the set {0, 1} and its ith bit for 0 ≤ i < m is
denoted by ki.

• The ring of integers is denoted by Z, and, for a positive integer q, the quotient ring of integers modulo q
is denoted by Zq = Z/qZ.

• For a probability distribution χ, the notation e ←$ χ denotes drawing a value e according to χ. The
n-fold product distribution of χ with itself is denoted by χn .

• For a finite set S, the uniform distribution on S is denoted by U(S).
• The floor of a real number a, i.e., the largest integer less than or equal to a, is denoted by bac.
• The closest integer to a real number a (with ties broken upward) is denoted by bae = ba + 1/2c.
• For a real vector v ∈ Rn, its Euclidean (i.e., ` 2) norm is denoted by kvk.
• For two n-dimensional vectors a, b over a common ring R, their inner product is denoted by ha, bi = Pn−1

i=0 aibi ∈ R.

2.1.2 Cryptographic definitions

This section states definitions of the cryptographic primitives that are specified in this document, along
with their correctness and security notions. This document specifies a key encapsulation mechanism (KEM),
formally defined by three algorithms as follows.

Definition 2.1 (Key encapsulation mechanism). A key encapsulation mechanism KEM is a tuple of
algorithms (KeyGen, Encaps, Decaps) along with a finite keyspace K:
• KeyGen() $→ (pk, sk): A probabilistic key generation algorithm that outputs a public key pk and a
secret key sk.

• Encaps(pk) $→ (c, ss): A probabilistic encapsulation algorithm that takes as input a public key pk,
and outputs an encapsulation c and a shared secret ss ∈ K. The encapsulation is sometimes called a
ciphertext.

• Decaps(c, sk) → ss0: A (usually deterministic) decapsulation algorithm that takes as input an encapsu-
lation c and a secret key sk, and outputs a shared secret ss0 ∈ K.

The notion of δ-correctness gives a bound on the probability of a legitimate protocol execution producing
different keys in encapsulation and decapsulation.

Definition 2.2 (δ-correctness for KEMs). A key encapsulation mechanism KEM is δ-correct if

0Pr [ss 6 0 ← KEM.Decaps(c, sk)] ≤ δ= ss : (pk, sk) ←$ KEM.KeyGen(); (c, ss) ←$ KEM.Encaps(pk); ss .

The following defines IND-CCA security for a key encapsulation mechanism.

Definition 2.3 (IND-CCA for KEMs). Let KEM be a key encapsulation mechanism with keyspace K, and
let A be an algorithm. The security experiment for indistinguishability under adaptive chosen ciphertext

9

— Internet: Portfolio 221

i

attack (IND-CCA2, or just IND-CCA) of KEM is Expind-cca(A) shown in Figure 1. The advantage of A in the KEM
experiment is

Advind-cca
KEM (A) :=

����Pr
h 1

���� .Expind-cca
KEM (A) ⇒ 1 −

2

Note that A can be a classical or quantum algorithm. If A is a quantum algorithm, then we only consider
the model in which the adversary makes classical queries to its ODecaps oracle.

Experiment Expind-cca(A): Oracle ODecaps(c):KEM

∗ 1: (pk, sk) ←$ KEM.KeyGen() 1: if c = c then
2: b ←$ {0, 1} 2: return ⊥

∗ 3: (c , ss0) ←$ KEM.Encaps(pk) 3: else
4: ss1 ←$ U(K) 4: return KEM.Decaps(c, sk)
b0 ←$ AODecaps (·)(pk, ssb, c ∗)5:

6: if b0 = b then
7: return 1
8: else
9: return 0

Figure 1: Security experiment for indistinguishability under adaptive chosen ciphertext attack (IND-CCA2, or
just IND-CCA) of a key encapsulation mechanism KEM for an adversary A.

The key encapsulation mechanism specified in this document is obtained by a transformation from a
public-key encryption (PKE) scheme; a PKE scheme is formally defined as follows.

Definition 2.4 (Public key encryption scheme). A public key encryption scheme PKE is a tuple of
algorithms (KeyGen, Enc, Dec) along with a message space M:

• KeyGen() $→ (pk, sk): A probabilistic key generation algorithm that outputs a public key pk and a
secret key sk.

• Enc(m, pk) $→ c: A probabilistic encryption algorithm that takes as input a message m ∈M and public
key pk, and outputs a ciphertext c. The deterministic form is denoted Enc(m, pk; r) → c, where the
randomness r ∈ R is passed as an explicit input; R is called the randomness space of the encryption
algorithm.

0• Dec(c, sk) → m or ⊥: A deterministic decryption algorithm that takes as input a ciphertext c and
secret key sk, and outputs a message m0 ∈M or a special error symbol ⊥ /∈M.

The notion of δ-correctness captures an upper bound on the probability of decryption failure in a legitimate
execution of the scheme.

Definition 2.5 (δ-correctness for PKEs [61]). A public key encryption scheme PKE with message space
M is δ-correct if

E

��

max Pr [PKE.Dec(c, sk) 6= m : c ←$ PKE.Enc(m, pk)] ≤ δ , (1)
m∈M

where the expectation is taken over (pk, sk) ←$ PKE.KeyGen().

In our PKE, the probability expression in Equation (1) has no dependence on m, so the condition simplifies
to

Pr [PKE.Dec(c, sk) 6 ,= m : (pk, sk) ← PKE.KeyGen(); c ←$ PKE.Enc(m, pk)] ≤ δ (2)

which is what we analyze when calculating the probability of decryption failure (see Section 2.2.7).
The PKE scheme we use as the basis for the KEM transformation in Section 2.2.8 is required to satisfy

the notion of IND-CPA security, which is defined as follows.

10

222 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Definition 2.6 (IND-CPA for PKE). Let PKE be a public key encryption scheme, and let A be an algo-
rithm. The security experiment for indistinguishability under chosen plaintext attack (IND-CPA) of PKE is

ind-cpaExp (A) shown in Figure 2. The advantage of A in the experiment is PKE

Advind-cpa
PKE (A) :=

����
ih

Pr Expind-cpa
PKE (A) ⇒ 1 −

1
2

���� .

Note that A can be a classical or quantum algorithm.

ind-cpaExperiment Exp (A):PKE

1: (pk, sk) ←$ PKE.KeyGen()
2: (m0, m1, st) ←$ A(pk)
3: b ←$ {0, 1}
4: c ∗ ←$ PKE.Enc(mb, pk)
5: b0 ←$ A(pk, c∗ , st)
6: if b0 = b then
7: return 1
8: else
9: return 0

Figure 2: Security experiment for indistinguishability under chosen plaintext attack (IND-CPA) of a public
key encryption scheme PKE against an adversary A.

2.1.3 Learning With Errors

The security of our proposed PKE and KEM relies on the hardness of the Learning With Errors (LWE)
problem, a generalization of the classic Learning Parities with Noise problem (see, e.g., [20]) first defined by
Regev [102]. This section defines the LWE probability distributions and computational problems.

Definition 2.7 (LWE distribution). Let n, q be positive integers, and let χ be a distribution over Z. For
an s ∈ Zn, the LWE distribution As,χ is the distribution over Zn × Zq obtained by choosing a ∈ Zn uniformlyq q q
at random and an integer error e ∈ Z from χ, and outputting the pair (a, ha, si + e mod q) ∈ Zn × Zq.q

There are two main kinds of computational LWE problem: search, which is to recover the secret s ∈ Zn
q

given a certain number of samples drawn from the LWE distribution As,χ; and decision, which is to distinguish
a certain number of samples drawn from the LWE distribution from uniformly random samples. For both
variants, one often considers two distributions of the secret s ∈ Zn: the uniform distribution, and the q
distribution χn mod q where each coordinate is drawn from the error distribution χ and reduced modulo q.
The latter is often called the “normal form” of LWE.

Definition 2.8 (LWE Search Problem). Let n, m, q be positive integers, and let χ be a distribution
over Z. The uniform-secret (respectively, normal-form) learning with errors search problem with parameters
(n, m, q, χ), denoted by SLWEn,m,q,χ (respectively, nf-SLWEn,m,q,χ), is as follows: given m samples from
the LWE distribution As,χ for uniformly random s (resp, s ←$ χn mod q), find s. More formally, for an
adversary A, define (for the uniform-secret case)

��
Advslwe

n,m,q,χ(A) = Pr A(((ai, bi))i=1,...,m) ⇒ s : s ←$ U(Zn), (ai, bi) ←$ As,χ for i = 1, . . . ,m .q

Similarly, define (for the normal-form case) Advnf-slwe
n,m,q,χ(A), where s ←$ χn mod q instead of s ←$ U(Zn).q

Definition 2.9 (LWE Decision Problem). Let n, m, q be positive integers, and let χ be a distribution
over Z. The uniform-secret (respectively, normal-form) learning with errors decision problem with parameters
(n, m, q, χ), denoted DLWEn,m,q,χ (respectively, nf-DLWEn,m,q,χ), is as follows: distinguish m samples drawn

11

— Internet: Portfolio 223

from the LWE distribution As,χ from m samples drawn from the uniform distribution U(Zn × Zq). More q
formally, for an adversary A, define (for the uniform-secret case)

�����Pr A((ai, bi)i=1,...,mAdvdlwe
n,m,q,χ(A) =) ⇒ 1 : s ←$ U(Zn

q), (ai, bi) ←$ As,χ for i = 1, . . . ,m
��� .

� �
− Pr A((ai, bi)i=1,...,m) ⇒ 1 : (ai, bi) ←$ U(Zn

q × Zq) for i = 1, . . . ,m

Similarly, define (for the normal-form case) Advnf-dlwe
n,m,q,χ(A), where s ←$ χn mod q instead of s ←$ U(Zn).q

For all of the above problems, when χ = Ψαq is the continuous Gaussian of parameter αq, rounded to the
nearest integer (see Definition 2.11 below), we sometimes replace the subscript χ by α.

2.1.4 Gaussians

For any real s > 0, the (one-dimensional) Gaussian function with parameter (or width) s is the function
ρs : R → R+, defined as

ρs(x) := exp(−πkxk2/s2) .

Definition 2.10 (Gaussian distribution). For any real s > 0, the (one-dimensional) Gaussian distribution
with parameter (or width) s, denoted Ds, is the distribution over R having probability density function
Ds(x) = ρs(x)/s.

√
Note that Ds has standard deviation σ = s/ 2π.

Definition 2.11 (Rounded Gaussian distribution). For any real s > 0, the rounded Gaussian distribu-
tion with parameter (or width) s, denoted Ψs, is the distribution over Z obtained by rounding a sample
from Ds to the nearest integer: Z

Ψs(x) = Ds(z) dz . (3)
{z:bze=x}

2.1.5 Lattices

Here we recall some background on lattices that will be used when relating LWE to lattice problems.

Definition 2.12 (Lattice). A (full-rank) n-dimensional lattice L is a discrete additive subset of Rn for
which spanR(L) = Rn . Any such lattice can be generated by a (non-unique) basis B = {b1, . . . , bn} ⊂ Rn of
linearly independent vectors, as

Xn
L = L(B) := B · Zn = zi · bi : zi ∈ Z .

i=1

The volume, or determinant, of L is defined as vol(L) := |det(B)|. An integer lattice is a lattice that is a
subset of Zn . For an integer q, a q-ary lattice is an integer lattice that contains qZn .

Definition 2.13 (Minimum distance). For a lattice L, its minimum distance is the length (in the Eu-
clidean norm) of a shortest non-zero lattice vector:

λ1(L) = min kvk .
v∈L\{0}

More generally, its ith successive minimum λi(L) is the smallest real r > 0 such that L has i linearly
independent vectors of length at most r.

Definition 2.14 (Discrete Gaussian). For a lattice L ⊂ Rn, the discrete Gaussian distribution over L

n o

Pwith parameter s, denoted DL,s
where ρs(L) = ρs(v) is a normalization factor. v∈L

12

, is defined as Ds(x) = ρs(x)/ρs(L) for x ∈ L (and Ds(x) = 0 otherwise),

224 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

We now recall various computational problems on lattices. We stress that these are worst-case problems,
i.e., to solve such a problem an algorithm must succeed on every input. The following two problems are
parameterized by an approximation factor γ = γ(n), which is a function of the lattice dimension n.

Definition 2.15 (Decisional approximate shortest vector problem (GapSVPγ)). Given a basis B of
an n-dimensional lattice L = L(B), where λ1(L) ≤ 1 or λ1(L) > γ(n), determine which is the case.

Definition 2.16 (Approximate shortest independent vectors problem (SIVPγ)). Given a basis B
of an n-dimensional lattice L = L(B), output a set {v1, . . . , vn} ⊂ L of n linearly independent lattice vectors
where kvik ≤ γ(n) · λn(L) for all i.
The following problem is parameterized by a function ϕ from lattices to positive real numbers.

Definition 2.17 (Discrete Gaussian Sampling (DGSϕ)). Given a basis B of an n-dimensional lattice
L = L(B) and a real number s ≥ ϕ(L), output a sample from the discrete Gaussian distribution DL,s.

2.2 Algorithm description

This section specifies the algorithms comprising the FrodoKEM key encapsulation mechanism. FrodoKEM is
built from a public key encryption scheme, FrodoPKE, as well as several other components.

Notation. The algorithms in this document are described in terms of the following parameters:

• χ, a probability distribution on Z;
• q = 2D, a power-of-two integer modulus with exponent D ≤ 16;
• n, m, n, integer matrix dimensions with n ≡ 0 (mod 8);
• B ≤ D, the number of bits encoded in each matrix entry;
• ` = B · m · n, the length of bit strings that are encoded as m-by-n matrices;
• lenA, the bit length of seeds used for pseudorandom matrix generation;
• lenE, the bit length of seeds used for pseudorandom bit generation for error sampling.

Additional parameters for specific algorithms accompany the algorithm description.

2.2.1 Matrix encoding of bit strings

This subsection describes how bit strings are encoded as mod-q integer matrices. Recall that 2B ≤ q. The
encoding function ec(·) encodes an integer 0 ≤ k < 2B as an element in Zq by multiplying it by q/2B = 2D−B :

ec(k) := k · q/2B .

Using this function, the function Frodo.Encode encodes bit strings of length ` = B · m · n as m-by-n-matrices
with entries in Zq by applying ec(·) to B-bit sub-strings sequentially and filling the matrix row by row
entry-wise. The function Frodo.Encode is shown in Algorithm 1. Each B-bit sub-string is interpreted as an
integer 0 ≤ k < 2B and then encoded by ec(k), which means that B-bit values are placed into the B most
significant bits of the corresponding entry modulo q.
The corresponding decoding function Frodo.Decode is defined as shown in Algorithm 2. It decodes the

m-by-n matrix K into a bit string of length ` = B · m · n. It extracts B bits from each entry by applying the
function dc(·):

dc(c) = bc · 2B /qe mod 2B .

That is, the Zq -entry is interpreted as an integer, then divided by q/2B and rounded. This amounts to
rounding to the B most significant bits of each entry. With these definitions, it is the case that dc(ec(k)) = k
for all 0 ≤ k < 2B .

2.2.2 Packing matrices modulo q

This section specifies packing and unpacking algorithms to transform matrices with entries in Zq to bit strings
and vice versa. The algorithm Frodo.Pack packs a matrix into a bit string by simply concatenating the D-bit
matrix coefficients, as shown in Algorithm 3. Note that in the software implementation, the resulting bit
string is stored as a byte array, padding with zero bits to make the length a multiple of 8. The reverse
operation Frodo.Unpack is shown in Algorithm 4.

13

— Internet: Portfolio 225

Algorithm 1 Frodo.Encode Algorithm 2 Frodo.Decode

Input: Bit string k ∈ {0, 1}` , ` = B · m · n. Input: Matrix K ∈ Zm×n .q

Output: Matrix K ∈ Zm×n . Output: Bit string k ∈ {0, 1}` , ` = B · m · n.q

1: for (i = 0; i < m; i ← i + 1) do 1: for (i = 0; i < m; i ← i + 1) do
2: for (j = 0; j < n; j ← j + 1) do 2: for (j = 0; j < n; j ← j + 1) doPB−1
3: k ← · 2l 3: k ← dc(Ki,j) = bKi,j · 2B /qe mod 2Bk(i·n+j)B+ll=0 PB−1
4: Ki,j ← ec(k) = k · q/2B 4: k = · 2l where kl ∈ {0, 1}l=0 kl
5: return K = (Ki,j)0≤i<m,0≤j<n 5: for (l = 0; l < B; l ← l + 1) do

6: k(i·n+j)B+l ← kl
7: return k

Algorithm 3 Frodo.Pack Algorithm 4 Frodo.Unpack

Input: Matrix C ∈ Zn1×n2 . Input: Bit string b ∈ {0, 1}D·n1 ·n2 , n1, n2.q

Output: Bit string b ∈ {0, 1}D·n1 ·n2 . Output: Matrix C ∈ Zn
q
1×n2 .

1: for (i = 0; i < n1; i ← i + 1) do 1: for (i = 0; i < n1; i ← i + 1) do
2: for (j = 0; j < n2; j ← j + 1) do 2: for (j = 0; j < n2; j ← j + 1) do PD−1 PD−1 · 2D−1−l
3: Ci,j = cl · 2l where cl ∈ {0, 1} 3: Ci,j ← l=0 b(i·n2+j)D+ll=0
4: for (l = 0; l < D; l ← l + 1) do 4: return C
5: b(i·n2+j)D+l ← cD−1−l

6: return b

2.2.3 Deterministic random bit generation

FrodoKEM requires the deterministic generation of random bit sequences from a random seed value. This is
done using the SHA-3-derived extendable output function cSHAKE [64]. The function cSHAKE is taken as
either cSHAKE128 or cSHAKE256 (indicated below for each parameter set of FrodoKEM), and takes as input
a bit string X, a requested output bit length L, and a 16-bit customization value c as a domain separator.
Interpreting c as a 16-bit integer, it is converted to an array of two bytes [c0, c1], where c = c0 + 2

8 · c1. The
call to the function on these inputs is written cSHAKE(X, L, c), and returns a string of L bits as output.

2.2.4 Sampling from the error distribution

The error distribution χ used in FrodoKEM is a discrete, symmetric distribution on Z, centered at zero and
with small support, which approximates a rounded continuous Gaussian distribution.

The support of χ is Sχ = {−s, −s + 1, . . . , −1, 0, 1, . . . , s − 1, s} for a positive integer s. The probabilities
χ(z) = χ(−z) for z ∈ Sχ are given by a discrete probability density function, which is described by a table

Tχ = (Tχ(0), Tχ(1), . . . , Tχ(s))

of s + 1 positive integers related to the cumulative distribution function. For a certain positive integer lenχ,
the table entries satisfy the following conditions:

zX
Tχ(0)/2

lenχ Tχ(z)/2
lenχ= χ(0)/2 and = χ(0)/2 + χ(i) for 1 ≤ z ≤ s .

i=1

Therefore, Tχ(s) = 2lenχ−1 .
Sampling from χ via inversion sampling is done as shown in Algorithm 5. Given a string of lenχ uniformly

random bits r ∈ {0, 1}lenχ and a distribution table Tχ, the algorithm Frodo.Sample returns a sample e from
the distribution χ. We emphasize that it is important to perform this sampling in constant time to avoid
exposing timing side-channels, which is why Step 3 of the algorithm does a complete loop through the entire
table Tχ. Note also that the comparison in Step 4 needs to be implemented in a constant-time manner.

14

226 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Algorithm 5 Frodo.Sample

Input: A (random) bit string r = (r0, r1, . . . , rlenχ−1) ∈ {0, 1}lenχ , the table Tχ = (Tχ(0), Tχ(1), . . . , Tχ(s)).
Output: A sample e ∈ Z.

Plenχ−1 · 2i−11: t ← rii=1
2: e ← 0
3: for (z = 0; z < s; z ← z + 1) do
4: if t > Tχ(z) then
5: e ← e + 1
6: e ← (−1)r0 · e
7: return e

An n1-by-n2 matrix of n1n2 samples from the error distribution is sampled by expanding a random
(0) (1)seed to an (n1n2 · lenχ)-bit string, here written as a sequence of n1n2 bit vectors (r , r , . . . , r(n1n2−1)) of

length lenχ, using the extendable output function cSHAKE, and then sampling n1n2 error terms by calling
Frodo.Sample on a corresponding lenχ-bit substring r(i·n2+j) and the distribution table Tχ to sample the
matrix entry Ei,j . The algorithm Frodo.SampleMatrix is shown in Algorithm 6.

Algorithm 6 Frodo.SampleMatrix

Input: Seed seedE ∈ {0, 1}lenE , dimensions n1, n2, the table Tχ, domain separator value c.
Output: A sample E ∈ Zn1×n2 .

(0) (1)1: (r , r , . . . , r(n1n2−1)) ← cSHAKE(seedE, n1n2 · lenχ, c) (here, each r(i) is a vector of lenχ bits)
2: for (i = 0; i < n1; i ← i + 1) do
3: for (j = 0; j < n2; j ← j + 1) do
4: Ei,j ← Frodo.Sample(r(i·n2+j), Tχ)
5: return E

2.2.5 Pseudorandom matrix generation

The algorithm Frodo.Gen takes as input a seed seedA ∈ {0, 1}lenA and a dimension n ∈ Z, and outputs a
pseudorandom matrix A ∈ Zn×n . There are two options for instantiating Frodo.Gen. The first one uses q
AES128 and is shown in Algorithm 7; the second uses cSHAKE128 and is shown in Algorithm 8.

Using AES128. Algorithm 7 generates a matrix A ∈ Zn×n as follows. For each row index i = 0, 1, . . . , n − 1q
and column index j = 0, 8, . . . , n − 8, the algorithm generates a 128-bit block, which it uses to set the
matrix entries Ai,j , Ai,j+1, . . . , Ai,j+7 as follows. It applies AES128 with key seedA to the input block
hiikhjik0 · · · 0 ∈ {0, 1}128, where i, j are encoded as 16-bit strings. It then splits the 128-bit AES output
block into eight 16-bit strings, which it interprets as nonnegative integers ci,j+k for k = 0, 1, . . . , 7. Finally, it
sets Ai,j+k = ci,j+k mod q for all k.

Algorithm 7 Frodo.Gen using AES128

Input: Seed seedA ∈ {0, 1}lenA .
Output: Matrix A ∈ Zn×n .q

1: for (i = 0; i < n; i ← i + 1) do
2: for (j = 0; j < n; j ← j + 8) do
3: b ← hiikhjik0 · · · 0 ∈ {0, 1}128 where hii, hji ∈ {0, 1}16

4: hci,j ikhci,j+1ik · · · khci,j+7i ← AES128seedA (b) where each hci,ki ∈ {0, 1}16 .
5: for (k = 0; k < 8; k ← k + 1) do
6: Ai,j+k ← ci,j+k mod q
7: return A

15

— Internet: Portfolio 227

Using cSHAKE128. Algorithm 8 generates a matrix A ∈ Zn×n as follows. For each row index i = q
0, 1, . . . , n − 1, it calls cSHAKE128 with a main input of seedA and customization value 28 + i to produce
a 16n-bit output string. It splits this output into 16-bit integers ci,j for j = 0, 1, . . . , n − 1, and sets
Ai,j = ci,j mod q for all j. Note that the offset of 28 in the customization value is used for domain separation
between the generation of A and other uses of cSHAKE128 in the key encapsulation functions below, which
have customization values smaller than 28 .

Algorithm 8 Frodo.Gen using cSHAKE128

Input: Seed seedA ∈ {0, 1}lenA .
Output: Pseudorandom matrix A ∈ Zn×n .q

1: for (i = 0; i < n; i ← i + 1) do
2: hci,0ikhci,1ik · · · khci,n−1i ← cSHAKE128(seedA, 16n, 28 + i) where each hci,j i ∈ {0, 1}16 .
3: for (j = 0; j < n; j ← j + 1) do
4: Ai,j ← ci,j mod q
5: return A

2.2.6 FrodoPKE: IND-CPA-secure public key encryption scheme

This section describes FrodoPKE, a public-key encryption scheme with fixed-length message space, targeting
IND-CPA security, that will be used as a building block for FrodoKEM. FrodoPKE is based on the public-key
encryption scheme presented by Lindner and Peikert in [75], with the following adaptations and specializations:

• The matrix A is generated from a seed using the function Gen specified in Section 2.2.5.
• Several (m) ciphertexts are generated at once.
• The same Gaussian-derived error distribution is used for both key generation and encryption.

The PKE scheme is given by three algorithms (FrodoPKE.KeyGen, FrodoPKE.Enc, FrodoPKE.Dec), defined
respectively in Algorithm 9, Algorithm 10, and Algorithm 11. FrodoPKE is parameterized by the following
parameters:

• q = 2D, a power-of-two integer modulus with exponent D ≤ 16;
• n, m, n, integer matrix dimensions with n ≡ 0 (mod 8);
• B ≤ D, the number of bits encoded in each matrix entry;
• ` = B · m · n, the length of bit strings that are encoded as m-by-n matrices;
• lenµ = `, the bit length of messages;
• M = {0, 1}lenµ , the message space;
• lenA, the bit length of seeds used for pseudorandom matrix generation;
• lenE, the bit length of seeds used for pseudorandom bit generation for error sampling;
• Gen, the matrix-generation algorithm, either Algorithm 7 or Algorithm 8;
• Tχ, the distribution table for sampling.

In the notation of [75], their n1 and n2 both equal n here, and their dimension ` is n here.

Algorithm 9 FrodoPKE.KeyGen.
Input: None.
Output: Key pair (pk, sk) ∈ ({0, 1}lenA × Zn×n) × Zn×n .q q

1:

2:

Choose a uniformly random seed seedA ←$ U({0, 1}lenA)
Generate the matrix A ∈ Zn×n

q via A ← Frodo.Gen(seedA)
3:

4:

Choose a uniformly random seed seedE ←$ U({0, 1}lenE)
Sample error matrix S ← Frodo.SampleMatrix(seedE, n, n, Tχ, 1)

5: Sample error matrix E ← Frodo.SampleMatrix(seedE, n, n, Tχ, 2)
6: Compute B = AS + E
7: return public key pk ← (seedA, B) and secret key sk ← S

16

228 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Algorithm 10 FrodoPKE.Enc.

× Zn×nInput: Message µ ∈M and public key pk = (seedA, B) ∈ {0, 1}lenA .q

Output: Ciphertext c = (C1, C2) ∈ Zm×n × Zm×n .q q

1: Generate A ← Frodo.Gen(seedA)
2: Choose a uniformly random seed seedE ←$ U({0, 1}lenE)
3: Sample error matrix S0 ← Frodo.SampleMatrix(seedE, m, n, Tχ, 4)
4: Sample error matrix E0 ← Frodo.SampleMatrix(seedE, m, n, Tχ, 5)
5: Sample error matrix E00 ← Frodo.SampleMatrix(seedE, m, n, Tχ, 6)
6: Compute B0 = S0A + E0 and V = S0B + E00

7: return ciphertext c ← (C1, C2) = (B
0 , V + Frodo.Encode(µ))

Algorithm 11 FrodoPKE.Dec.

Input: Ciphertext c = (C1, C2) ∈ Zm×n × Zm×n and secret key sk = S ∈ Zn×n .q q q
Output: Decrypted message µ0 ∈M.

1: Compute M = C2 − C1S
2: return message µ0 ← Frodo.Decode(M)

2.2.7 Correctness of IND-CPA PKE

The next lemma states bounds on the size of errors that can be handled by the decoding algorithm.

Lemma 2.18. Let q = 2D , B ≤ D. Then dc(ec(k) + e) = k for any k, e ∈ Z such that 0 ≤ k < 2B and
−q/2B+1 ≤ e < q/2B+1 .

Proof. This follows directly from the fact that dc(ec(k) + e) = bk + e2B /qe mod 2B .

Correctness of decryption: The decryption algorithm FrodoPKE.Dec computes

M = C2 − C1S

= V + Frodo.Encode(µ) − (S0A + E0)S

= Frodo.Encode(µ) + S0B + E00 − S0AS − E0S

= Frodo.Encode(µ) + S0AS + S0E + E00 − S0AS − E0S

= Frodo.Encode(µ) + S0E + E00 − E0S

= Frodo.Encode(µ) + E000

= S0E + E00 − E0S.for some error matrix E000 Therefore, any B-bit substring of the message µ corresponding
to an entry of M will be decrypted correctly if the condition in Lemma 2.18 is satisfied for the corresponding
entry of E000 .

Failure probability. Each entry in the matrix E000 is the sum of 2n products of two independent samples
from χ, and one more independent sample from χ. Denote the distribution of this sum by χ0 . In the case of
a power-of-2 modulus q, the probability of decryption failure for any single symbol is therefore the sum

X
p = χ0(e) .

e/∈[−q/2B+1,q/2B+1)

The probability of decryption failure for the entire message can then be obtained using the union bound.
For the distributions χ we use, which have rather small support Sχ, the distribution χ0 can be efficiently

computed exactly. The probability that a product of two independent samples from χ equals e (modulo q) is
simply X

χ(a) · χ(b) .
(a,b)∈Sχ×Sχ : ab=e mod q

17

— Internet: Portfolio 229

Similarly, the probability that the sum of two entries assumes a certain value is given by the standard
convolution sum. Section 2.4.3 reports the failure probability for each of the selected parameter sets.

2.2.8 Transform from IND-CPA PKE to IND-CCA KEM

The Fujisaki–Okamoto transform [51] constructs an IND-CCA2-secure public key encryption scheme from a
one-way-secure public key encryption scheme in the classical random oracle model (with an assumption on
the distribution of ciphertexts for each plaintext being sufficiently close to uniform). Targhi and Unruh [111]
gave a variant of the Fujisaki–Okamoto transform and showed its IND-CCA2 security against a quantum
adversary in the quantum random oracle model under similar assumptions. The results of both FO and TU
proceed under the assumption that the public key encryption scheme has perfect correctness, which is not
the case for lattice-based schemes. Hofheinz, Hövelmanns, and Kiltz [61] gave a variety of constructions in a
modular fashion. We apply their QFO 6⊥ (“Quantum FO with implicit rejection and K being a hash of m”)m
transform which constructs an IND-CCA-secure key encapsulation mechanism from an IND-CPA public key
encryption scheme and three hash functions; following [23], we make the following modifications (see Figure 3
for notation), denoting the resulting transform QFO6⊥0:m

• A single hash function (with longer output) is used to compute r, k, and d.
• The computation of r, k, and d also takes the public key pk as input.
• The computation of the shared secret ss also takes the encapsulation c as input.

Definition 2.19 (QFO6⊥0 transform). Let PKE = (KeyGen, Enc, Dec) be a public key encryption scheme m
with message space M and ciphertext space C, where the randomness space of Enc is R. Let lens, lenk, lend, lenss

be parameters. Let G : {0, 1}∗ → R × {0, 1}lenk × {0, 1}lend and F : {0, 1}∗ → {0, 1}lenss be hash func-
tions. Define QKEM 6⊥0 = QFO 6⊥0[PKE, G, F] be the key encapsulation mechanism with QKEM 6⊥0 .KeyGen,m m m
QKEM 6⊥0 .Encaps and QKEM 6⊥0 .Decaps as shown in Figure 3.m m

QKEM 6⊥0 .KeyGen(): QKEM6⊥0 .Decaps((c, d), (sk, s, pk)):m m

1: (pk, sk) ←$ PKE.KeyGen() 1: µ0 ← PKE.Dec(c, sk)
s ←$ {0, 1}lens 0

2: 2: (r , k0 , d0) ← G(pkkµ0)
3: sk0 ← (sk, s) 3: if c = PKE.Enc(µ0, pk; r0) and d = d0 then
4: return (pk, sk0) 4: return ss0 ← F (ckk0kd)

5: else
QKEM 6⊥0 .Encaps(pk):m 6: return ss0 ← F (ckskd)
1: µ ←$ M
2: (r, k, d) ← G(pkkµ)
3: c ← PKE.Enc(µ, pk; r)
4: ss ← F (ckkkd)
5: return ((c, d), ss)

Figure 3: Construction of an IND-CCA-secure key encapsulation mechanism QKEM 6⊥0 = QFO 6⊥0[PKE, G, F]m m
from a public key encryption scheme PKE and hash functions G and F .

Remark. In October and November 2017, Jiang et al. posted an eprint giving a proof for two FO-like
transforms that yield an IND-CCA-secure KEM in the quantum random oracle model and do not require the
extra hash value d introduced by Targhi and Unruh [63]. As of this writing, it is too early to know if the
results in the Jiang et al. eprint are correct. If they are, then we can remove the d value in the QKEM 6⊥0 m
transform of Figure 3, and from the resulting FrodoKEM in Algorithm 13 and Algorithm 14. The transform
becomes sufficiently similar to Jiang et al.’s FO-I transform to have its security implied by their result; the
differences are: the computation of r and K also take the public key pk as input, and the value random coins
µ are hashed before they are input to the hash function that computes the shared secret.

18

230 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

2.2.9 FrodoKEM: IND-CCA-secure key encapsulation mechanism

This section describes FrodoKEM, a key encapsulation mechanism that is derived from FrodoPKE by applying
the QFO 6⊥0 transform. FrodoKEM is parameterized by the following parameters: m

• q = 2D, a power-of-two integer modulus with exponent D ≤ 16;
• n, m, n, integer matrix dimensions with n ≡ 0 (mod 8);
• B ≤ D, the number of bits encoded in each matrix entry;
• ` = B · m · n, the length of bit strings to be encoded in an m-by-n matrix;
• lenµ = `, the bit length of messages;
• M = {0, 1}lenµ , the message space;
• lenA, the bit length of seeds used for pseudorandom matrix generation;
• lenE, the bit length of seeds used for pseudorandom bit generation for error sampling;
• Gen, pseudorandom matrix generation algorithm, either Algorithm 7 or Algorithm 8;
• Tχ, distribution table for sampling;
• lens, the length of the bit vector s used for pseudorandom shared secret generation in the event of
decapsulation failure in the QFO 6⊥0 transform;m

• lenz, the bit length of seeds used for pseudorandom generation of seedA;
• lenk, the bit length of intermediate shared secret k in the QFO 6⊥0 transform;m
• lend, the bit length of check value d in the QFO 6⊥0 transform;m
• lenss, the bit length of shared secret ss in the QFO6⊥0 transform;m
• H : {0, 1}∗ → {0, 1}lenA , a hash function, either cSHAKE128(·, lenA, 0) or cSHAKE256(·, lenA, 0);
• G : {0, 1}∗ → {0, 1}lenE ×{0, 1}lenk ×{0, 1}lend , a hash function, either cSHAKE128(·, lenE +lenk +lend, 3)
or cSHAKE256(·, lenE + lenk + lend, 3);

• F : {0, 1}∗ → {0, 1}lenss , a hash function, either cSHAKE128(·, lenss, 7) or cSHAKE256(·, lenss, 7).

Algorithm 12 FrodoKEM.KeyGen.
Input: None.
Output: Key pair (pk, sk0) with pk ∈ {0, 1}lenA +D·n·n , sk0 ∈ {0, 1}lens+lenA +D·n·n × Zn×n .q

1:

2:

Choose uniformly random seeds skseedEkz ←$ U({0, 1}lens +lenE+lenz

Generate pseudorandom seed seedA ← H(z)
3: Generate the matrix A ∈ Zn×n

q via A ← Frodo.Gen(seedA)
4: Sample error matrix S ← Frodo.SampleMatrix(seedE, n, n, Tχ, 1)
5: Sample error matrix E ← Frodo.SampleMatrix(seedE, n, n, Tχ, 2)
6: Compute B ← AS + E
7: Compute b ← Frodo.Pack(B)
8: return public key pk ← seedAkb and secret key sk0 ← (skseedAkb, S)

19

— Internet: Portfolio 231

Algorithm 13 FrodoKEM.Encaps.

Input: Public key pk = seedAkb ∈ {0, 1}lenA +D·n·n .
Output: Ciphertext c1kc2kd ∈ {0, 1}(m·n+m·n)D+lend and shared secret ss ∈ {0, 1}lenss .

1: Choose a uniformly random key µ ←$ U({0, 1}lenµ

2: Generate pseudorandom values seedEkkkd ← G(pkkµ)
3: Sample error matrix S0 ← Frodo.SampleMatrix(seedE, m, n, Tχ, 4)
4: Sample error matrix E0 ← Frodo.SampleMatrix(seedE, m, n, Tχ, 5)
5: Generate A ← Frodo.Gen(seedA)
6: Compute B0 ← S0A + E0

7: Compute c1 ← Frodo.Pack(B0)
8: Sample error matrix E00 ← Frodo.SampleMatrix(seedE, m, n, Tχ, 6)
9: Compute B ← Frodo.Unpack(b, n, n)
10: Compute V ← S0B + E00

11: Compute C ← V + Frodo.Encode(µ)
12: Compute c2 ← Frodo.Pack(C)
13: Compute ss ← F (c1kc2kkkd)
14: return ciphertext c1kc2kd and shared secret ss

Algorithm 14 FrodoKEM.Decaps.

Input: Ciphertext c1kc2kd ∈ {0, 1}(m·n+m·n)D+lend , secret key sk0 = (skseedAkb, S) ∈ {0, 1}lens+lenA+D·n·n ×
Zn×n .q

Output: Shared secret ss ∈ {0, 1}lenss .

1: B0 ← Frodo.Unpack(c1)
2: C ← Frodo.Unpack(c2)
3: Compute M ← C − B0S
4: Compute µ0 ← Frodo.Decode(M)
5: Parse pk ← seedAkb
6: Generate pseudorandom values seed0 0)Ekk0kd0 ← G(pkkµ
7: Sample error matrix S0 ← Frodo.SampleMatrix(seed0 E, m, n, Tχ, 4)
8: Sample error matrix E0 ← Frodo.SampleMatrix(seed0 E, m, n, Tχ, 5)
9: Generate A ← Frodo.Gen(seedA)
10: Compute B00 ← S0A + E0

11: Sample error matrix E00 ← Frodo.SampleMatrix(seed0 E, m, n, Tχ, 6)
12: Compute B ← Frodo.Unpack(b, n, n)
13: Compute V ← S0B + E00

14: Compute C0 ← V + Frodo.Encode(µ0)
15: if B0kC = B00kC0 and d = d0 then
16: return shared secret ss ← F (c1kc2kk0kd)
17: else
18: return shared secret ss ← F (c1kc2kskd)

2.2.10 Correctness of IND-CCA KEM

The failure probability δ of FrodoKEM is the same as the failure probability of the underlying FrodoPKE as
computed in Section 2.2.7.

2.2.11 Interconversion to IND-CCA PKE

FrodoKEM can be converted to an IND-CCA-secure public key encryption scheme using standard conversion
techniques as specified by NIST. In particular, shared secret ss can be used as the encryption key in

20

232 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

an appropriate data encapsulation mechanism in the KEM/DEM (key encapsulation mechanism / data
encapsulation mechanism) framework [44].

2.3 Cryptographic primitives

In FrodoKEM we use the following generic cryptographic primitives. We describe their security requirements
and instantiations with NIST-approved cryptographic primitives. In what follows, we use cSHAKE128/256
to denote the use of either cSHAKE128 or cSHAKE256; which one is used with which parameter set for
FrodoKEM is indicated in Table 3. Every use of cSHAKE in different contexts listed below is performed with
a different domain separator.

• Gen: The security requirement on Gen is that it is a public random function that generates pseudorandom
matrices A. Gen is instantiated using either AES128 (as in Algorithm 7) or cSHAKE128 (as in
Algorithm 8).

• H: The security requirement on H is that it is a pseudorandom generator. H is instantiated using
cSHAKE128/256 with the input being a uniformly random seed z.

• G: The security requirement on G is that it is a pseudorandom function. G is instantiated using
cSHAKE128/256 with the input being the public key pk concatenated with a random key µ.

• F : The security requirement on F is that it is a pseudorandom function. F is instantiated using
cSHAKE128/256 with the input being the ciphertext components c1 and c2, concatenated (during
encapsulation and successful decapsulation) with the intermediate shared secret k or (during failed
decapsulation) the seed s.

• cSHAKE: We also use cSHAKE directly in the SampleMatrix algorithm as a pseudorandom function.
cSHAKE128/256 is used with the input being a seed seedE and distinct context strings for the different
matrices generated from the same seed.

2.4 Parameters

This section outlines our methodology for choosing tunable parameters of the proposed algorithms.

2.4.1 High-level overview

Recall the main FrodoPKE parameters defined in Section 2.2:

• χ, a probability distribution on Z;
• q = 2D, a power-of-two integer modulus with exponent D ≤ 16;
• n, m, n, integer matrix dimensions with n ≡ 0 mod 8;
• B ≤ D, the number of bits encoded in each matrix entry;
• ` = B · m · n the length of bit strings to be encoded in an m-by-n matrix.

The task of parameter selection is framed as a combinatorial optimization problem, where the objective func-
tion is the ciphertext’s size, and the constraints are dictated by the target security level, probability of decryp-
tion failure, and computational efficiency. The optimization problem is solved by sweeping the parameter space,
subject to simple pruning techniques. We perform this sweep of the parameter space using the Python scripts
that accompany the submission, in the folder Additional Implementations/Parameter Search Scripts.

2.4.2 Parameter constraints

Implementation considerations limit q to be at most 216 and n to be a multiple of 8. Our cost function is the
bit length of the FrodoPKE ciphertext, which is D · m · (n + n).
The standard deviation σ of the Gaussian error distribution is bounded from below by the constant 2.12.

This bound is chosen following the argument in Section 5.1.5, which demonstrates that σ > 2.12 conforms to
a reduction from the worst-case BDDwDGS problem to the LWE decision problem.
The complexity of the error-sampling algorithm (Section 2.2.4) depends on the support of the distribution

and the number of uniformly random bits per sample. We bound the number of bits per sample by 16.
Since the distribution is symmetric, the sample’s sign (r0 in Algorithm 5) can be chosen independently from
its magnitude e, which leaves 15 bits for sampling from the non-negative part of the support. For each

21

— Internet: Portfolio 233

setting of the variance σ2 we find a discrete distribution subject to the above constraints that minimizes
its Rényi divergence (for several integral orders) from the target “ideal” distribution, which is the rounded

√Gaussian Ψσ 2π.
We estimate the concrete security of parameters for our scheme based on cryptanalytic attacks (Section 5.2),

accounting for the loss due to substitution of a rounded Gaussian with its discrete approximation (Section 5.1.3).
The probability of decryption failure is computed according to the procedure outlined in Section 2.2.6.
In case of ties, i.e., when different parameter sets result in identical ciphertext sizes (i.e., the same q and

n), we chose the smaller σ for FrodoKEM-640 (minimizing the probability of decryption failure), and the
larger σ for FrodoKEM-976 (prioritizing security).

2.4.3 Selected parameter sets

We present two parameter sets for FrodoKEM. The first, denoted Frodo-640, targets Level 1 in the NIST call
for proposals (matching or exceeding the brute-force security of AES-128). The second, denoted Frodo-976,
targets Level 3 (matching or exceeding the brute-force security of AES-192). At present, we are not proposing
parameters for Level 5, the highest security target (matching or exceeding the brute-force security of AES-256).
In addition to targeting Level 5 and other security objectives, the procedures outlined in this section

can be adapted to support alternative cost functions and constraints. For instance, an objective function
that takes into account computational costs or penalizes the public key size would lead to a different set
of outcomes. For example, constraints can be also chosen to guarantee error-free decryption, or to select
parameters that allow for a bounded number of homomorphic operations.
The two parameter sets are given in Table 1. The corresponding error distributions are given in Table 2.

Security columns C and Q respectively denote security, in bits, for classical and quantum attacks as estimated
by the methodology of Section 5.2.

Table 1: Parameter sets

n q σ support B m̄ × n̄ failure c size Security
of χ prob. (bytes) C Q

Frodo-640 640 215 2.75 [−11 . . . 11] 2 8 × 8 2−148.8 9,736 143 103
Frodo-976 976 216 2.3 [−10 . . . 10] 3 8 × 8 2−199.6 15,768 209 150

Table 2: Error distributions

σ Probability of (in multiples of 2−15) Rényi
0 ±1 ±2 ±3 ±4 ±5 ±6 ±7 ±8 ±9 ±10 ±11 order divergence

χFrodo-640 2.75 9456 8857 7280 5249 3321 1844 898 384 144 47 13 3 500.0 0.72 × 10−4

χFrodo-976 2.3 11278 10277 7774 4882 2545 1101 396 118 29 6 1 500.0 0.14 × 10−4

2.5 Summary of parameters

Table 3 summarizes all cryptographic parameters for Frodo-640 and Frodo-976. FrodoKEM-640-AES and
FrodoKEM-976-AES use AES128 as Gen for generation of A; FrodoKEM-640-cSHAKE and FrodoKEM-976-
cSHAKE use cSHAKE as Gen for generation of A.
Table 4 summarizes the sizes, in bytes, of the different inputs and outputs required by FrodoKEM. Note

that we also include the size of the public key in the secret key sizes, in order to comply with NIST’s API
guidelines. Specifically, since NIST’s decapsulation API does not include an input for the public key, it needs
to be included as part of the secret key.

22

234 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Table 3: Cryptographic parameters for Frodo-640 and Frodo-976

Frodo-640 Frodo-976

D 15 16
q 32768 65536
n 640 976
m = n 8 8
B 2 3
lenA 128 128
lenµ = ` 128 192
lenE 128 192
lenz 128 192
lens 128 192
lenk 128 192
lend 128 192
lenss 128 192
lenχ 16 16
χ χFrodo-640 χFrodo-976

H cSHAKE128(·, 128, 0) cSHAKE256(·, 128, 0)
G cSHAKE128(·, 384, 3) cSHAKE256(·, 576, 3)
F cSHAKE128(·, 128, 7) cSHAKE256(·, 192, 7)

Table 4: Size (in bytes) of inputs and outputs of FrodoKEM. Secret key size is the sum of the sizes of
the actual secret value and of the public key (the NIST API does not include the public key as explicit input
to decapsulation).

secret key public key ciphertext shared secret
Scheme

sk pk c ss

FrodoKEM-640 19,872 9,616 9,736 16
(10,256 + 9,616)

FrodoKEM-976 31,272 15,632 15,768 24
(15,640 + 15,632)

2.6 Provenance of constants and tables

Constants used as domain separators in calls to cSHAKE are integers selected incrementally starting at 0.
The constants in Table 2 and Table 1 were generated by search scripts following the methodology described

in Section 2.4.

23

— Internet: Portfolio 235

3 Performance analysis

3.1 Associated implementations

The submission package includes:

• a reference implementation written exclusively in portable C,
• an optimized implementation written exclusively in portable C that includes efficient algorithms to
generate the matrix A and to compute the matrix operations AS + E and S0A + E0, and

• an additional, optimized implementation for x64 platforms that exploits Advanced Vector Extensions 2
(AVX2) intrinsic instructions.

The implementations in the submission package support all four schemes: FrodoKEM-640-AES, FrodoKEM-
640-cSHAKE, FrodoKEM-976-AES, and FrodoKEM-976-cSHAKE. The only difference between the reference
and the optimized implementation is that the latter includes two efficient functions to generate the public
matrix A and to compute the matrix operations AS + E and S0A + E0 . Similarly, the only difference between
the optimized and the additional implementation is that the latter uses AVX2 intrinsic instructions to speed
up the implementation of the aforementioned functions. Hence, the different implementations share most of
their codebase: this illustrates the simplicity of software based on FrodoKEM.
All our implementations avoid the use of secret address accesses and secret branches and, hence, are

protected against timing and cache attacks.

3.2 Performance analysis on x64 Intel

In this section, we summarize results of our performance evaluation using a machine equipped with a 3.4GHz
Intel Core i7-6700 (Skylake) processor and running Ubuntu 16.04.3 LTS. As standard practice, TurboBoost
was disabled during the tests. For compilation we used GNU GCC version 7.2.0 with the command gcc -O3
-march=native. The generation of the matrix A is the most expensive part of the computation. As described
in Section 2.2.5, we support two ways of generating A: one using AES128 and one using cSHAKE128.

3.2.1 Performance using AES128

Table 5 details the performance of the optimized implementations and the additional x64 implementations
when using AES128 for the generation of the matrix A. The top two sets of results correspond to performance
when using OpenSSL’s AES implementation4 and the bottom set presents the results when using a standalone
AES implementation using Intel’s Advanced Encryption Standard New Instructions (AES-NI).
As can be observed, the different implementation variants have similar performance, even when using

hand-optimized AVX2 intrinsic instructions. This illustrates that FrodoKEM’s algorithms, which are mainly
based on matrix operations, facilitate automatic parallelization using vector instructions. Hence, the compiler
is able to achieve close to “optimal” performance with little intervention from the programmer. The best
results for FrodoKEM-640-AES and FrodoKEM-976-AES (i.e., 1.1 ms and 2.1 ms, respectively, obtained by
adding the times for encapsulation and decapsulation) are achieved by the optimized implementation using C
only and by the additional implementation using AVX2 intrinsic instructions, respectively. However, the
difference in performance between the different implementations reported in Table 5 is, in all the cases, less
than 1%.
We note that the performance of FrodoKEM using AES on Intel platforms greatly depends on AES-NI

instructions. For example, when turning off the use of these instructions the computing cost of the optimized
implementation of FrodoKEM-640-AES (resp. FrodoKEM-976-AES) is 26.4 ms (resp. 61.2 ms), which is roughly
a 24-fold (resp. 29-fold) degradation in performance.

3.2.2 Performance using cSHAKE128

Table 6 outlines the performance figures of the optimized implementations and the additional x64 imple-
mentations when using cSHAKE128 for the generation of the matrix A. The top set of results shows the
performance of the optimized implementation written in C only, while the bottom set presents the results

4Note that in order to enable AES-NI instructions in OpenSSL, we use the EVP aes 128 ecb interface in OpenSSL.

24

236 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Table 5: Performance (in thousands of cycles) of FrodoKEM on a 3.4GHz Intel Core i7-6700
(Skylake) processor with matrix A generated using AES128. Results are reported using OpenSSL’s
AES implementation and using a standalone AES implementation, all of which exploit AES-NI instructions.
Cycle counts are rounded to the nearest 103 cycles.

Total
Scheme KeyGen Encaps Decaps

(Encaps + Decaps)

Optimized Implementation (AES from OpenSSL)

FrodoKEM-640-AES 1,287 1,810 1,811 3,621
FrodoKEM-976-AES 2,715 3,572 3,588 7,160

Additional implementation using AVX2 intrinsic instructions (AES from OpenSSL)

FrodoKEM-640-AES 1,293 1,828 1,829 3,657
FrodoKEM-976-AES 2,663 3,565 3,580 7,145

Additional implementation using AVX2 intrinsic instructions (standalone AES)

FrodoKEM-640-AES 1,288 1,834 1,837 3,671
FrodoKEM-976-AES 2,677 3,577 3,580 7,157

Table 6: Performance (in thousands of cycles) of FrodoKEM on a 3.4GHz Intel Core i7-6700
(Skylake) processor with matrix A generated using cSHAKE128. Results are reported for two test
cases: (i) using a cSHAKE implementation written in plain C and, (ii) using a 4-way implementation of
cSHAKE using AVX2 instructions. Cycle counts are rounded to the nearest 103 cycles.

Total
Scheme KeyGen Encaps Decaps

(Encaps + Decaps)

Optimized Implementation (plain C cSHAKE)

FrodoKEM-640-cSHAKE 8,297 9,082 9,077 18,159
FrodoKEM-976-cSHAKE 17,798 19,285 19,299 38,584

Additional implementation using AVX2 intrinsics (cSHAKE4x using AVX2)

FrodoKEM-640-cSHAKE 4,212 4,671 4,672 9,343
FrodoKEM-976-cSHAKE 8,822 9,749 9,720 19,469

when using a 4-way implementation of cSHAKE using AVX2 instructions (“cSHAKE4x using AVX2”). Note
that the use of such vectorized implementation of cSHAKE is necessary to boost the practical performance.
In our use-case, the usage of such a vectorized implementation results in a two-fold speedup when compared
to the version using a cSHAKE implementation written in plain C.
Comparing Table 5 and Table 6, FrodoKEM using AES, when implemented with AES-NI instructions, is

around 2.6–2.7× faster than the vectorized cSHAKE implementation. Nevertheless, this comparative result
could change drastically if hardware-accelerated instructions such as AES-NI are not available on the targeted
platform, or if support for hardware-accelerated instructions for SHA-3 is added in the future.

3.2.3 Memory analysis

Table 7 shows the peak usage of stack memory per function. In addition, in the right-most column we show
the size of the produced static libraries.
In order to determine the memory usage we ran valgrind (http://valgrind.org/) to obtain “memory

use snapshots” during execution of the test program:

25

— Internet: Portfolio 237

$ valgrind --tool=massif --stacks=yes --detailed-freq=1 ./frodo/test_KEM

This command produces a file of the form massif.out.xxxxx. We then ran massif-cherrypick
(https://github.com/lnishan/massif-cherrypick), which is an extension that outputs memory usage
per function:

$./massif-cherrypick massif.out.xxxxx kem_function

The results are summarized in Table 7. Note that in our implementations the use of cSHAKE for
generating A reduces peak memory usage in up to 26%. However, the vectorized AVX2 implementation of
cSHAKE increases the size of the produced static libraries significantly (implementations based on AES-NI
instructions are indeed very compact).

Table 7: Peak usage of stack memory (in bytes) and static library size (in bytes) of the optimized
and additional implementations of FrodoKEM on a 3.4GHz Intel Core i7-6700 (Skylake) processor. Compilation
with GNU GCC version 7.2.0 using flags -O3 -march=native. Matrix A is generated with either cSHAKE128
or AES128 (using OpenSSL’s AES implementation or the standalone AES implementation).

Scheme
Peak stack memory usage Static library size

KeyGen Encaps Decaps

Optimized Implementation (AES from OpenSSL)

FrodoKEM-640-AES 72,192 103,072 123,968 81,836
FrodoKEM-976-AES 111,424 159,136 189,176 79,700

Additional implementation using AVX2 intrinsics (standalone AES)

FrodoKEM-640-AES 72,192 103,088 124,016 81,184
FrodoKEM-976-AES 111,424 157,832 189,176 79,048

Additional implementation using AVX2 intrinsics (cSHAKE4x using AVX2)

FrodoKEM-640-cSHAKE 70,184 81,832 101,016 257,654
FrodoKEM-976-cSHAKE 105,560 124,856 156,248 255,398

3.3 Performance analysis on ARM

In this section, we summarize results of our performance evaluation using a device powered by a 1.992GHz
64-bit ARM Cortex-A72 (ARMv8) processor and running Ubuntu 16.04.2 LTS. For compilation we used
GNU GCC version 5.4.0 with the command gcc -O3 -march=native.
Table 8 details the performance of the optimized implementations when using AES128 and cSHAKE128.

Similar to the case of the x64 Intel platform, the overall performance of FrodoKEM is highly dependent on the
performance of the primitive that is used for the generation of the matrix A. Hence, the best performance
in this case is achieved when using OpenSSL’s AES implementation, which exploits the efficient NEON
engine. On the other hand, cSHAKE performs significantly better when there is no support for specialized
instructions in the targeted platform: using a plain C version of cSHAKE is more than 3 times faster than
using a plain C version of AES.

26

238 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Table 8: Performance (in thousands of cycles) of the optimized implementations of FrodoKEM
on a 1.992GHz 64-bit ARM Cortex-A72 (ARMv8) processor. Results are reported for three test
cases: (i) using OpenSSL’s AES implementation, (ii) using an AES implementation written in plain C, and
(iii) using a cSHAKE implementation written in plain C. Results have been scaled to cycles using the nominal
processor frequency. Cycle counts are rounded to the nearest 103 cycles.

Total
Scheme KeyGen Encaps Decaps

(Encaps + Decaps)

Optimized Implementation (AES from OpenSSL)

FrodoKEM-640-AES 3,343 4,082 4,082 8,164
FrodoKEM-976-AES 7,056 8,428 8,382 16,810

Optimized implementation (plain C AES)

FrodoKEM-640-AES 44,007 45,013 44,967 89,980
FrodoKEM-976-AES 100,996 102,074 102,323 204,397

Optimized implementation (plain C cSHAKE)

FrodoKEM-640-AES 12,081 13,458 13,446 26,904
FrodoKEM-976-AES 26,125 28,735 28,506 57,241

27

— Internet: Portfolio 239

4 Known Answer Test (KAT) values

The submission includes KAT values with tuples containing secret key (sk), public key (pk), ciphertext (c)
and shared secret (ss) values for the proposed KEM schemes. The KAT files can be found in the KAT folder
of the submission:

Scheme KAT file

FrodoKEM-640-AES
FrodoKEM-976-AES
FrodoKEM-640-cSHAKE
FrodoKEM-976-cSHAKE

\KAT\PQCkemKAT_19872.rsp
\KAT\PQCkemKAT_31272.rsp
\KAT\PQCkemKAT_19872_cshake.rsp
\KAT\PQCkemKAT_31272_cshake.rsp

In addition, we provide a test suite that can be used to verify the KAT values against any of the
implementations. Instructions to compile and run the KAT test suite can be found in the README file (see
Section 2, “Quick Instructions”).

28

240 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

5 Justification of security strength

The security of FrodoKEM is supported both by security reductions and by analysis of the best known
cryptanalytic attacks.

5.1 Security reductions

A summary of the reductions supporting the security of FrodoKEM is as follows:

1. FrodoKEM is an IND-CCA-secure KEM under the assumption that FrodoPKE is an IND-CPA-secure
public-key encryption scheme, and where G and F are modeled as random oracles. Theorem 5.1 gives a
tight, classical reduction against classical adversaries in the classical random oracle model. Theorem 5.2
gives a non-tight, classical reduction against quantum adversaries in the quantum random oracle model.

2. FrodoPKE is an IND-CPA secure public key encryption scheme under the assumption that the corre-
sponding normal-form learning with errors decision problem is hard. Theorem 5.3 gives a tight, classical
reduction against classical or quantum adversaries in the standard model.

3. Section 5.1.3 provides justification and bounds exact security loss for substituting exact rounded
Gaussian distributions with distributions from Table 2.

4. Section 5.1.4 provides an overview of the security reduction when replacing A sampled from a truly
uniform distribution with one generated in a pseudorandom fashion from a seed. The reduction models
AES128 as an ideal cipher when considering Frodo.Gen with AES128 (Algorithm 7) and cSHAKE128
as a random oracle when considering Frodo.Gen with cSHAKE128 (Algorithm 8) and preserve the
security up to a small multiplicative loss in the number of samples of the underlying LWE problem.

5. The normal-form learning with errors decision problem is hard under the assumption that the uniform-
secret learning with errors decision problem is hard for the same parameters, except for a small additive
loss in the number of samples. Theorem 5.4 gives a tight, classical reduction against classical or quantum
adversaries (in the standard model).

6. The (average-case) uniform-secret learning with errors decision problem, with the particular values of σ
from Table 1 and an appropriate bound on the number of samples, is hard under the assumption that
the worst-case bounded distance decoding problem with discrete Gaussian samples problem (BDDwDGS,
Definition 5.7) is hard for related parameters. Theorem 5.8 gives a non-tight classical reduction against
classical or quantum adversaries (in the standard model).

5.1.1 IND-CCA Security of KEM

Theorem 5.1 (IND-CPA PKE =⇒ IND-CCA KEM in classical ROM). Let PKE be a public key en-
cryption scheme with algorithms (KeyGen, Enc, Dec), message space M, and which is δ-correct. Let G and
F be independent random oracles. Let QKEM 6⊥0 = QFO 6⊥0[PKE, G, F] be the KEM obtained by applying the m m
QFO 6⊥0 transform as in Definition 2.19. For any classical algorithm A against the IND-CCA security of m
QKEM 6⊥0 that makes qG and qF queries to its G and F oracles, there exists a classical algorithm B againstm
the IND-CPA security of PKE such that

4 · qRO + 1
Advind-cca ind-cpa

6⊥0 (A) ≤ · δ + 3 · Adv (B)
QKEMm

+ qRO PKE|M|
where qRO = qG + qF . Moreover, the running time of B is about that of A.

Theorem 5.1 follows from Theorems 3.2 and 3.4 of Hofheinz, Hövelmanns, and Kiltz (HHK) [61], with the
following modifications. In the application of HHK’s Theorem 3.2, we take qV = 0. Note that Theorems 3.2
and 3.4 of HHK are about the FO 6⊥ transform, which differs from the QFO 6⊥0 in the following ways. m

1. QFO 6⊥0 uses a single hash function (with longer output) to compute r and K whereas FO 6⊥ uses two; m
but this is equivalent in the random oracle model with appropriate output lengths.

2. QFO 6⊥0’s computation of r and K also takes the public key pk as input whereas FO 6⊥ does not; this does m
not negatively affect any of the theorems, and has the potential to provide multi-target security.

3. QFO 6⊥0 includes the d value in the ciphertext, whereas FO 6⊥ does not; since d is computed by applying a m
random oracle G to the secret µ ∈M, taking advantage of d requires querying G on µ, which occurs
with the additional qRO/|M| probability term added in the theorem.

29

— Internet: Portfolio 241

Theorem 5.2 (IND-CPA PKE =⇒ IND-CCA KEM in quantum ROM). Let PKE be a public key en-
cryption scheme with algorithms (KeyGen, Enc, Dec), message space M, and which is δ-correct. Let G and
F be independent random oracles. Let QKEM 6⊥0 = QFO 6⊥0[PKE, G, F] be the KEM obtained by applying the m m
QFO 6⊥0 transform as in Definition 2.19. For any quantum algorithm A against the IND-CCA security of m
QKEM 6⊥0 that makes qG and qF queries to its quantum G and F oracles, there exists a quantum algorithm Bm
against the IND-CPA security of PKE such that

vuut
s

1ind-cpaAdvind-cca
6⊥0 (A) ≤ 9 · qRO · 2 · δ + qRO · Adv (B) + qRO PKE |M|QKEMm

where qRO = qG + qF . Moreover, the running time of B is about that of A.

Theorem 5.2 follows from Lemma 2.3 and Theorems 4.4 and 4.6 of Hofheinz, Hövelmanns, and Kiltz [61],
with the following modifications. Note that Theorems 4.4 and 4.6 of HHK are about the QFO 6⊥ transform,m
which differs from the QFO 6⊥0 in the following ways. 1) QFO 6⊥0 uses a single hash function (with longer output) m m
to compute r, K, and d whereas FO 6⊥ uses two; but this is equivalent in the random oracle model with
appropriate output lengths. 2) QFO 6⊥0’s computation of r, K, and d also takes the public key pk as input m
whereas FO 6⊥ does not; this does not negatively affect any of the theorems, and has the potential to provide
multi-target security. 3) QFO 6⊥0’s computation of the shared secret k also takes the encapsulation c as input; m
this does not negatively affect any of the theorems, and provides robustness against ciphertext modification.

ind-cpaNote that Theorem 5.2 is far from being tight due to the fourth-root between the Adv (B) term and PKE

the Advind-cca (A) term. As of writing there is no known attack that takes advantage of the tightness gap, 6⊥0QKEMm

and so it seems to be an artifact of the proof technique. As noted in Section 2.2.8, a recent eprint of Jiang et
al. [63] presents an alternative transform from IND-CPA PKE to IND-CCA KEM in the quantum random
oracle model, and their theorems give only a square-root gap between the advantages; our IND-CPA PKE
satisfies the conditions needed for their Theorem 1 to yield IND-CCA security of the resulting KEM. In our
parameter selection, we ignore the tightness gap arising from Theorem 5.2.

5.1.2 IND-CPA Security of PKE

Theorem 5.3 (Normal Form DLWE =⇒ IND-CPA security of FrodoPKE). Let n, q, m, n be positive
integers, and χ be a probability distribution on Z. For any quantum algorithm A against the IND-CPA
security of FrodoPKE (with a uniformly random A), there exist quantum algorithms B1 and B2 against the
normal-form LWE decision problem such that

Advind-cpa (A) ≤ n · Advnf-dlwe
n,n,q,χ(B1) + m · Advnf-dlwe .FrodoKEM n,n+n,q,χ(B2)

Moreover, the running times of B1 and B2 are approximately that of A.

The proof of Theorem 5.3 is the same as that of [75, Theorem 3.2] or [24, Theorem 5.1].

Theorem 5.4 (uniform-secret DLWE =⇒ normal-form DLWE). Let n, q, m be integers, and χ be a
probability distribution on Z. For any quantum algorithm A against the normal-form LWE decision problem,
there exists a quantum algorithm B against the uniform-secret LWE decision problem such that

Advnf-dlwe .n,m,q,χ(A) ≤ Advdlwe
n,m+O(n),q,χ(B)

Moreover, the running time of B is about that of A.

The proof of Theorem 5.4 is the same as that of [13, Lemma 2].

5.1.3 Approximating the error distribution

The discrete Gaussian distribution (Definition 2.14), whose properties are key to the worst-to-average-case
reduction, is difficult to sample from on a finite computer (and impossible to do so in constant time). Following
Langlois et al. [73], we replace an infinite-precision distribution with its discrete approximation and quantify
the loss of security by computing the Rényi divergence between the two distributions.

30

242 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Definition 5.5 (Rényi divergence). Rényi divergence of order α between two discrete distributions P
and Q is defined as � �α−1X1 P (x)

Dα(P kQ) = ln P (x) .
α − 1 Q(x)

x∈supp P

(Note that our definition differs from Langlois et al. in that we take the logarithm of the sum.)
The following theorem relates probabilities of observing a certain event under two distributions as a

function of their Rényi divergence.

Theorem 5.6 ([73, Lemma 4.1]). If there is an event S defined in a game GQ where n samples are drawn
from distribution Q, the probability of S in the same game where Q is replaced with P is bounded as follows:

Pr[GP (S)] ≤ (Pr[GQ(S)] · exp(n · Dα(P kQ)))1−1/α. (4)

Reduction to any search problem, such as the ones that appear in the proof of Theorem 5.3 (specifically,
winning in the OW-PCVA game as defined in [61]) are preserved subject to the relaxation (4). For each exact
security argument, and any concrete choice of the two distributions P and Q, the bound can be minimized
by choosing an optimal value of the Rényi order α.
For a concrete example of application of Theorem 5.6 consider the distribution χFrodo-640 specified according

to Table 2. The distribution approximates the rounded Gaussian Ψ √ as defined in Section 2.1.4. During2.75/ 2π

a single run of FrodoKEM the parties sample from the distribution (8+8)×640+64 = 10,304 times. Assume that
the adversary attacking the underlying search problem (of recovering the shared secret key before applying the

√random oracle) has probability of winning 2−145 when the parties sample from Ψ According to Table 2 2.75/ 2π.
√the Rényi divergence between the two distributions is D500(χFrodo-640kΨ) = .000074. Substituting the 2.75/ 2π

rounded Gaussian distribution with χFrodo-640 and applying Theorem 5.6 will lead to the following bound on
classical security of the resulting protocol (cf. Table 1): (2−145 · exp(10304 · .000074)).998 ≈ 2−143.6 .

5.1.4 Deterministic generation of A

The matrix A in FrodoKEM is deterministically expanded from a short random seed in the function Frodo.Gen
either using AES128 or cSHAKE128. In order to relate FrodoKEM’s security to the hardness of the learning
with errors problem, we argue that we can replace a uniformly sampled A ∈ Zn×n with matrices sampled q
according to Frodo.Gen. Although the matrix appears pseudorandom under standard security assumptions to
an adversary without access to the seed, we argue security of this step against a stronger (and more realistic)
adversary via the indifferentiability framework [80, 41].
Informally, a construction C with access to an ideal primitive G is said to be ε-indifferentiable from an

ideal primitive F if there exists a simulator S such that for any polynomial time distinguisher D it holds that � � � � �� �Pr DC,G = 1 − Pr DF,S = 1 � < ε. An indifferentiability argument implies that any cryptosystem secure
in the F-model remains secure (in a tight sense) in the G-model with F instantiated as CG [80]. In what
follows, we consider the ideal primitive F to be an ideal “domain expansion” function expanding a small seed
to a matrix A. Criticially, the security of the step depends on the properties of G rather than randomness of
the seed. The construction C and primitive G depend on whether we use AES128 or cSHAKE128, modeled
below as an ideal cipher and an ideal extendable-output function (XOF) respectively.

Using AES128 to generate A. Algorithm 7 generates the entries of A as 16-bit values and then reduces
each one modulo q. For simplicity, we assume that A consists of N = 16n2 bits and we set M = N/128. This
means that A consists of M 128-bit AES128 blocks. The pseudorandom bits in the ith block are generated
by encrypting a fixed index idxi with a uniformly random seedA ∈ {0, 1}128 as the key. Throughout, we refer
to the set Idx := {idx1, . . . , idxM } as the set of indices used in the pseudorandom generation of A.
The ideal domain expansion primitive F expands a uniformly random seed seedA ∈ {0, 1}128 to a larger

bit string s1ks2k · · · ksM ∈ {0, 1}128M subject to the condition that si 6= sj for any distinct pair of i, j.
Observe that a uniformly sampled A satisfies this condition with probability at least 1 − M2/2128 . In our
security reductions, the matrix A is constructed through m = n calls to the LWE oracle (Definition 2.9).
By increasing the number of calls to this oracle marginally, by setting m = 1.01n > n · (1 − M2/2128)−1, we

31

— Internet: Portfolio 243

can construct an LWE matrix A sampled from the same distribution as the output of F with overwhelming
probability without affecting its underlying security.

When Frodo.Gen uses AES128, we consider a construction CG in the Ideal Cipher model implementing
F as AES128seedA (idx1)k · · · kAES128seedA (idxM). We show that CG is indifferentiable from F as follows.
Consider the two worlds with which D interacts to make queries on the construction C and G:
• REAL. In the real world, upon query C(k), D receives AES128k(idx1)k · · · kAES128k(idxM). Queries
to G are answered naturally with AES128(·)(·) or AES128−1(·) as required. (·)

• IDEAL. In the ideal world, upon query C(k), the simulator S simulates F as follows. S samples
M uniformly random strings s1, . . . , sM subject to no collisions and outputs F(k) = s1k · · · ksM . It
additionally stores a mapping Mk from {idx1, . . . , idxM } to S = {s1, . . . , sM }. These will be used to
answer G queries. Without loss of generality, we assume that whenever G is queried on a key k, S
pretends that C(k) has been queried and sets up Mk.
D can now effectively simulate an ideal cipher G as follows. For forward queries with an input in Idx
or backward queries with an input in Sk, S uses the mapping Mk to answer the query in a manner
consistent with C(·) simulation. For all other queries, the simulator maintains an on-the-fly table to
simulate an ideal cipher. It samples independent uniformly random responses for each input query
(forward or backward) subject to the fact that the resulting table of input/output pairs (x, y) combined
with (idxi, si) pairs remains a permutation over {0, 1}128 for every key k.

It is easy to see that the simulator is efficient. Indifferentiability of the two worlds follows by construction
as AES128(·, ·) is modeled as an ideal cipher. Thus, in generating A starting with a seed seedA using AES128,
we can effectively replace the ideal domain extension primitive F with our construction in the ideal cipher
model.

Using cSHAKE128 to generate A. An argument in using cSHAKE128 to expand seedA to the matrix A
is significantly simpler. In the random oracle model, cSHAKE128 is an ideal XOF [49]. In fact, for every
customization string str, we can model cSHAKE128(·, ̀ , str) as an independent hash function mapping
{0, 1}128 to {0, 1}` . The domain expansion step is constructed by computing cSHAKE128(seedA, 16n, 28 + i)
for 1 ≤ i ≤ n where each step fills up the ith row of the matrix A. As each row is independently constructed
via an ideal hash function, this construction maps a uniformly random seed seedA to a much larger uniformly
random matrix A thereby implementing the ideal functionality F perfectly.

Reusing A. Finally, we point out that generating A from seedA can be a significant computational burden,
but this cost can be amortized by relaxing the requirement that a fresh seedA be used for every instance
of key encapsulation, e.g., by caching and reusing A for a small period of time. In this case, we observe
that the cost of generating A represents roughly 40% of the cost of encapsulation and decapsulation on
the targeted x64 Intel machine used in Section 3. A straightforward argument shows that the amortization
above is compatible with all the security reductions in this section. But importantly, it now allows for an
all-for-the-price-of-one attack against those key encapsulations that share the same A. This can be mitigated
by making sure that we cache and reuse A only for a small number of uses, but we need to do this in a very
careful manner.

Generating A from joint randomness. It is also possible to generate A from joint randomness or
using protocol random nonces. For example, when integrating FrodoKEM into the TLS protocol, A could
be generated from a seed consisting of the random nonces client random and server random sent by the
client and server in their ClientHello and ServerHello messages in the TLS handshake protocol. This
functionality does not match the standard description of a KEM and the API provided by NIST, but is
possible in general. A design with both parties contributing entropy to the seed might better protect against
all-for-the-price-of-one attacks by being more robust to faulty random number generation at one of the parties.

5.1.5 Reductions from worst-case lattice problems

When choosing parameters for LWE, one needs to choose an error distribution, and in particular its “width.”
Certain choices (e.g., sufficiently wide Gaussians) are supported by reductions from worst-case lattice problems

32

244 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

to LWE; see, e.g., [102, 88, 28, 94]. At a high level, such a reduction transforms any algorithm that solves
LWE on the average—i.e., for random instances sampled according to the prescribed distribution—into an
algorithm of related efficiency that solves any instance of certain lattice problems (not just random instances).
The original work of [102] and a follow-up work [94] gave quantum polynomial-time reductions, from

the worst-case GapSVPγ (Definition 2.15), SIVPγ (Definition 2.16), and DGSϕ (Definition 2.17) problems
on n-dimensional lattices, to n-dimensional LWE (for an unbounded polynomial m = poly(n) number of √
samples) with Gaussian error of standard deviation σ ≥ c n. The constant factor c was originally stated as p
c = 2/π, but can easily be improved to any c > 1/(2π) via a tighter analysis of essentially the same proof.5

However, for efficiency reasons our choices of σ (see Table 2) are somewhat smaller than required by these
reductions.
Instead, following [102, Section 1.1], below we obtain an alternative classical (i.e., non-quantum) reduction

from a variant of the worst-case bounded-distance decoding (BDD) problem to our LWE parameterizations. In
contrast to the quantum reductions described above, which requires Gaussian error of standard deviation σ = √
Θ(n), the alternative reduction supports a smaller error width—as small as the “smoothing parameter” [84]
of the lattice of integers Z. For the BDD variant we consider, which we call “BDD with Discrete Gaussian
Samples” (BDDwDGS), the input additionally includes discrete Gaussian samples over the dual lattice, but
having a larger width than known algorithms are able to exploit [77, 45]. Details follow.

Bounded-distance decoding with discrete Gaussian samples. We first define a variant of the
bounded-distance decoding problem, which is implicit in prior works that consider “BDD with prepro-
cessing,” [2, 77, 45] and recall the relevant aspects of known algorithms for the problem.

Definition 5.7 (Bounded-distance decoding with discrete Gaussian samples). For a lattice L ⊂
Rn and positive reals d < λ1(L)/2 and r > 0, an instance of the bounded-distance decoding with discrete
Gaussian samples problem BDDwDGSL,d,r is a point t ∈ Rn such that dist(t, L) ≤ d, and access to an oracle
that samples from DL∗ ,s for any (adaptively) queried s ≥ r. The goal is to output the (unique) lattice point
v ∈ L closest to t.

Remark. For a given distance bound d, known BDDwDGS algorithms use discrete Gaussian samples that all
have the same width parameter s. However, the reduction to LWE will use the ability to vary s. Alternatively,
we mention that when r ≥ ηε(L∗) for some very small ε > 0 (which will always be the case in our setting),
we can replace the variable-width DGS oracle from Definition 5.7 with a fixed-width one that samples from
Dw+L∗ ,r for any queried coset w + L∗, always for the same width r. This is because we can use the latter
oracle to implement the former one (up to statistical distance 8ε), by sampling e from the continuous Gaussian √
of parameter s2 − r2 and then adding a sample from DL∗−e,r. See [90, Theorem 3.1] for further details.

The state-of-the-art algorithms for solving BDDwDGS [2, 77, 45] deal with a certain L-periodic function
fL,1/r : Rn → [0, 1], defined as

ρ1/r(x + L)
fL,1/r(x) := = E [cos(2πhw, xi)] , (5)

ρ1/r(L) w∼DL∗ ,r

where the equality on the right follows from the Fourier series of fL,1/r (see [2]). To solve BDDwDGS for
a target point t, the algorithms use several discrete Gaussian samples wi ∼ DL∗ ,r to estimate the value
of fL,1/r at t and nearby points via Equation (5), to “hill climb” from t to the nearest lattice point. For the
relevant points t we have the (very sharp) approximation

fL,1/r(t) ≈ exp(−πr2 · dist(t, L)2) ,

so by the Chernoff-Hoeffding bound, approximating fL,1/r(t) to within (say) a factor of two uses at least

1 ≈ exp(2πr2 · dist(t, L)2)
fL,1/r(t)2

5The approximation factor γ for GapSVP and SIVP is Õ(qn/σ) = (qn/σ) logO(1) n, and the parameter ϕ for DGS is Θ(q
√
n/σ)

times the “smoothing parameter” of the lattice.

33

— Internet: Portfolio 245

samples.6 Note that without enough samples, the “signal” of fL,1/r(t) is overwhelmed by measurement
“noise,” which prevents the hill-climbing from making progress toward the answer.

In summary, when limited to N discrete Gaussian samples, the known approaches to solving BDDwDGS
are limited to distance p−1dist(t, L) ≤ r ln(N)/(2π) , (6)

and having such samples does not seem to provide any speedup in decoding at somewhat distances that are √
larger by some constant factor greater than one. In particular, if d · r ≥ ω(log n) (which is the smoothing
parameter of the integer lattice Z for negligible error ε), then having N = poly(n) samples does not seem to
provide any help in solving BDDwDGSL,d,r (versus having no samples at all).

Reduction from BDDwDGS to LWE. We now recall the following result from [94], which generalizes a
key theorem from [102] to give a reduction from BDDwDGS to the LWE decision problem.

Theorem 5.8 (BDDwDGS hard =⇒ decision-LWE hard [94, Lemma 5.4]). Let ε = ε(n) be a negli-
gible function and let m = poly(n) and C = C(n) > 1 be arbitrary. There is a probabilistic polynomial-time
(classical) algorithm that, given access to an oracle that solves DLWEn,m,q,α with non-negligible advantage
and input a number α ∈ (0, 1), an integer q ≥ 2, a lattice L ⊂ Rn, and a parameter r ≥ Cq · ηε(L∗), solves p
BDDwDGSL,d,r using N = m · poly(n) samples, where d = 1 − 1/C2 · αq/r.

√
Remark. The above statement generalizes the fixed choice of C = 2 in the original statement (inherited
from [102, Section 3.2.1]), using [102, Corollary 3.10]. In particular, for any constant δ > 0 there is a constant
C > 1 such that d = (1 − δ) · αq/r.

In particular, by Equation (6), if the Gaussian parameter αq of the LWE error sufficiently exceeds p
ln(N)/(2π) (e.g., by a constant factor greater than one), then the BDDwDGSL,d,r problem is plausibly

hard in the worst case, hence so is the corresponding LWE problem from Theorem 5.8.
Concretely, if we use an extremely large bound N ≤ 2256 on the number of discrete Gaussian samples, p

then the threshold for Gaussian parameters αq that conform to Theorem 5.8 is ln(N)/(2π) ≈ 5.314, which p
corresponds to a standard deviation threshold of ln(N)/(2π) ≈ 2.120. Our FrodoPKE parameters, which
use standard deviation σ ≥ 2.3 (see Table 2), are above this threshold by a comfortable margin. (Note that a
standard deviation threshold of 2.3 corresponds to N ≈ 2300.)

5.2 Cryptanalytic attacks

In this section, we explain our methodology to estimate the security level of our proposed parameters. The
methodology is similar to the one proposed in [11], with slight modifications taking into account the fact that
some quasi-linear accelerations [107, 26] over sieving algorithms [16, 69] are not available without the ring
structure.
We also remark that this methodology is significantly more conservative than what is usually used in

the literature [10], at least since recently. Indeed, we must acknowledge that lattice cryptanalysis is far less
mature than that for factoring and computing discrete logarithms, for which the best-known attacks can
more safely be considered best-possible attacks.

5.2.1 Methodology: the core-SVP hardness

In this section, let msamp denote the number of LWE samples available to the attacker. Due to the small
number of samples (i.e., msamp ≈ n in our schemes) we are not concerned with either BKW types of attacks [65]
or linearization attacks [14]. This essentially leaves us with two BKZ [40] attacks, usually referred to as
primal and dual attacks that we will briefly recall below.
Formally, BKZ with block-size b requires up to polynomially many calls to an SVP oracle in dimension b,

but some heuristics allow to decrease the number of calls to be essentially linear [39]. To account for further
improvement, we shall count only the cost of one such call to the SVP oracle: the core-SVP hardness. Such

6In fact, the algorithms need approximation factors much better than two, so the required number of samples is even larger
by a sizable constant factor. However, the above crude bound will be sufficient for our purposes.

34

246 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

precaution is motivated by the fact that there are ways to amortize the cost of SVP calls inside BKZ, especially
when sieving is to be used as the SVP oracle. Such a strategy was suggested in a talk, but has so far not
been experimentally tested, as more implementation effort is required to integrate sieving within BKZ.
Even evaluating the concrete cost of one SVP oracle call in dimension b is difficult, because the numerically

optimized pruned enumeration strategy does not yield a closed formula [53, 40]. Yet, asymptotically,
enumeration is super-exponential (even with pruning), while sieving algorithms are exponential 2cb+o(b) with
a well understood constant c in the exponent. A sound and simple strategy is therefore to give a lower bound
for the cost of an attack by 2cb vector operations (i.e. about b2cb CPU cycles7), and to make sure that the
block-size b is in a range where enumeration costs more than 2cb . From the estimates of [40], it is argued
in [11] that this is the case both classically and quantumly whenever b ≥ 200. p
The best known constant in the exponent is for classical algorithms is cC = log2 3/2 ≈ 0.292, as provided p

by the sieve algorithm of [16]. For quantum algorithms it isq cQ = log2 13/9 ≈ 0.265 [69, Sec. 14.2.10]. p b
Because all variants of the sieve algorithm require building a list of 4/3 many vectors, the constant p
cP = log2 4/3 ≈ .2075 can plausibly serve as a “worst-possible” lower bound for sieving algorithm.

Conservatism: lower bounds vs. experiments. These estimates are very conservative compared to
the state of the art implementation of [79], which has practical complexity of about 20.405b+11 cycles in the
range b = 60 . . . 80. The classical lower bound of 20.292b corresponds to a margin factor of 220 at blocksize
b = 80, and this margin should continue increasing with the blocksize (abusing the linear fit suggests a margin
of 245 at blocksize b = 300).

Conservatism: future improvements. Of course, one could assume further improvements on known
techniques. At least asymptotically, it may be reasonable to assume that 20.292b+o(b) is optimal for SVP
considering that the underlying technique of [16] has been shown to reach lower bounds for the generic
nearest-neighbor search problem [12]. As for concrete improvements, we note that this algorithm has already
been subject to some fine-tuning in [79], so we may conclude that there is not much more to be gained without
introducing new ideas. We therefore consider our margin sufficient to absorb such future improvements.

Conservatism: cost models. The NIST call for proposals suggested a particular cost model, inspired
by the estimates of a Grover search attack on AES, essentially accounting for the quantum gate count. In
comparison, the literature on sieving algorithms mostly focuses on analysis in the RAM model and quantumly
accessible RAM models, and considers the amount of memory they use. Their cost in the area-time model
should be higher by polynomial, if not exponential, factors.
Firstly, our model accounts for arithmetic operations rather than gates (used to compute inner products

and evaluate norms of vectors). The conversion to gate count may not be trivial as it is unclear how many
bits of precision are required.
Secondly, even in the classical setting, the cost of sieving in large dimensions may not be accurately

captured by the count of elementary operations in the RAM model, as those algorithms use an exponential
amount of memory. Admittedly, the most basic sieve algorithm (with theoretical complexity 20.415b+o(b))
has sequential memory access, and can therefore be efficiently implemented by a large circuit without
memory access delays. But more advanced ones [16] have much less predictable memory access patterns,
and memory complexities as large as time complexities (20.292b+o(b)). It is unclear if they can be adapted to
reach a complexity 20.292b+o(b) in the area-time model; one might expect extra polynomial factors to appear.
(Following an idea of [17], Becker et al. [16] also claims a version that only requires 20.2015b+o(b) memory, but
we suspect this would come at some hidden cost on the running time.)

Moreover, the quantum versions of all sieving algorithms work in the quantumly accessible RAM model [71].
Again, the conversion to an efficient quantum circuit will induce extra costs—at least polynomial ones.

7Because of the additional ring-structure, [11] chooses to ignore this factor b to the advantage of the adversary, assuming the
techniques of [107, 26] can be adapted to more advanced sieve algorithms [11]. But for plain LWE, we can safely include this
factor.

35

— Internet: Portfolio 247

5.2.2 Primal attack

The primal attack consists of constructing a unique-SVP instance from the LWE problem and solving it using
BKZ. We examine how large the block dimension b is required to be for BKZ to find the unique solution. Given
the matrix LWE instance (A, b = As+e) one builds the lattice Λ = {x ∈ Zm+n+1 : (A|−Im|−b)x = 0 mod q}√
of dimension d = m + n + 1, volume qm, and with a unique-SVP solution v = (s, e, 1) of norm λ ≈ σ n + m.
The number of used samples m may be chosen between 0 and msamp in our case and we numerically optimize
this choice.
Using the typical models of BKZ (geometric series assumption, Gaussian heuristic [39, 10]) one concludes

that the primal attack is successful if and only if
√
b ≤ δ2b−d−1 m/dσ · q where δ = ((πb)1/b · b/2πe)1/2(b−1) . (7)

We note that this condition, introduced in [11], is substantially different from the one suggested in [52] and
is used in many previous security analyses, such as [10]. The recent study [9] showed that this new condition
predicts significantly smaller security levels than the older, and is corroborated by extensive experiments.

5.2.3 Dual attack

The dual attack searches for a short vector in the dual lattice w ∈ Λ̂ = {(x, y) ∈ Zm × Zn : Atx = y mod q}
and intends to use it as a distinguisher for LWE. The algorithm BKZ with block size b will output such a
vector of length ` = δd−1qn/d.

t t t tHaving found (x, y) ∈ Λ̂ of length `, an attacker computes z = v · b = vtAs + v e = w s + v e mod q
which is distributed as a Gaussian of standard deviation `σ if (A, b) is indeed an LWE sample (otherwise
it is uniform mod q). Those two distributions have maximal variation distance bounded by ε = exp(−πτ2)
where τ = `σ/q: given such a vector of length ` the attacker may distinguish LWE samples from random
with advantage at most ε.
Note that small advantages ε are not meaningful to attack a key exchange protocol: as the agreed key is

to be used as a symmetric cipher key, any advantage below 1/2 does not significantly decrease the search
space to bruteforce the symmetric cipher.8

We therefore require the attacker to amplify his success probability by building about 1/ε2 many such
short vectors. Because the sieve algorithms provide 2.2075b vectors, the attack must be repeated at least R
times where

R = max(1, 1/(2.2075bε2)).

This is again quite pessimistic, as the other vectors outputted by the sieving algorithm are a bit larger than
the shortest one.

8To make this more formal, one may simply hash the agreed key with a random oracle before using it for any other purposes.

36

248 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

6 Advantages and limitations

6.1 Ease of implementation

One of the features of FrodoKEM is that it is easy to implement and naturally facilitates writing implementa-
tions that are compact and run in constant-time. This latter feature aids to avoid common cryptographic
implementation mistakes which can lead to key-extraction based on, for instance, timing differences when
executing the code. For example, the additional x64 implementation of the full KEM scheme accompanying
this submission consists of slightly more than 250 lines of plain C code.9 This same code is used for the two
security levels FrodoKEM-640 and FrodoKEM-976, with parameters changed by a small number of macros at
compile-time.
Computing on matrices —the basic operation in FrodoKEM— allows for easy scaling to different dimensions

n. In addition, FrodoKEM uses a modulus q that is always equal or less than 216 . These two combined
aspects allow for the full reuse of the matrix functions for the different security levels by instantiating them
with the right parameters at build time. Since the modulus q used is always a power of two, implementing
arithmetic modulo q is simple, efficient and ease to do in constant-time in modern computer architectures:
for instance, computing modulo 216 comes for free when using 16-bit data-types. Moreover, the dimension
values were chosen to be divisible by 16 in order to facilitate vectorization optimizations and to simplify the
use of AES128 for the generation of the matrix A.
Also the error sampling is designed to be simple and facilitates code reuse: for any security level, FrodoKEM

requires 16 bits per sample, and the tables Tχ corresponding to the discrete cumulative density functions
always consist of values that are less than 215 . Hence, a simple function applying inversion sampling (see
Algorithm 5) can be instantiated using different precomputed tables Tχ. Moreover, due to the small sizes of
these pre-computed tables constant-time table lookups, needed to protect against attacks based on timing
differences, can be implemented almost for free in terms of effort and performance impact.

6.2 Compatibility with existing deployments and hybrid schemes

FrodoKEM does have larger public key / encapsulation sizes than traditional RSA and elliptic curve cryptosys-
tems, and some other post-quantum candidates such as ring-LWE-based schemes. Nonetheless, FrodoKEM’s
communication size is sufficiently small that it is still compatible with many existing deployments. In our
original research paper on FrodoCCS [24], we integrated FrodoCCS as well as several other key encapsulation
mechanisms into OpenSSL v1.0.1f and added ciphersuites, both hybrid and non-hybrid, to the TLS 1.2
implementation in OpenSSL. We compiled the Apache httpd v2.4.20 web server against our modified OpenSSL,
and tested compatibility and performance of the web server. We encountered no problems with existing clients
despite using larger ephemeral public keys / encapsulations, and did not need to make any modifications to
data structures (e.g., existing 16-bit length fields were large enough to hold our values).
We measured throughput (connections per second) for a variety of page sizes, and latency (connection

establishment time) for a server with or without heavy load, of both hybrid and non-hybrid ciphersuites.
Detailed results including the exact methodology can be found in [24]. To highlight a few results: the
connection time of an ECDHE (nistp256) ciphersuite with an RSA certificate on an unloaded server was 16.1
milliseconds (over a network with ping time 0.62 ms); it was 20.7 ms for FrodoCCS, and 24.5 ms for hybrid
FrodoCCS+ECDHE10. The number of connections (with 1 KiB HTTP payload) supported per second with
an ECDHE ciphersuite with an RSA certificate was 810, compared to 700 for FrodoCCS and 551 for hybrid
FrodoCCS+ECDHE. These results indicate that, despite its larger communication sizes, FrodoKEM remains
practical for Internet applications.
In our experience with testing the performance of the original Frodo construction in an end-to-end

testbed OpenSSL deployment, we observed a few trends that let us extrapolate these results to our current
proposal. First, we note that even with the significantly larger bandwidth of the original FrodoCCS proposal,
as compared to the original NewHope proposal, we observed a slowdown of less than 1.6× when comparing

9This count does not include header files and the additional symmetric primitives.
10Note that the results in [24] use a different parameter set than in this proposal which had slightly larger communication

(22.1 KiB in [24] versus 18.9 KiB for FrodoKEM-640 in this proposal; the IND-CCA-secure FrodoKEM-640 in this proposal has an
additional runtime cost in decapsulation due to the application of the FO transform compared to the IND-CPA-secure scheme in
[24]; and used somewhat different symmetric primitives. Nonetheless the results provide some indication of suitability.

37

— Internet: Portfolio 249

connection times for 1 KiB webpages. This slowdown factor only decreases with increasing sizes of webpages
and considering our smaller bandwidth (18.9 KiB for FrodoKEM-640 versus 22.1 KiB for the original FrodoCCS
construction) we expect to be competitive for typical connection sizes.
Moreover, we can state with some measure of confidence that the additional costs when applying the FO

transform will have a very small impact on the connection throughput as well as on the connection times. We
state this with two supporting arguments. First, with a microbenchmark a whole order of magnitude faster
than the original FrodoCCS construction, the original NewHope construction only improves connection times
and throughputs by 30–50% and we expect various other bottlenecks in the entire Web serving ecosystem to
have a larger impact. To compare, our FO-transformed implementations run in time a small constant factor
larger than the microbenchmarks of FrodoCCS. Second—and as stated previously to support the practical
application of the original FrodoCCS construction [24]—deployments in the near-term will necessarily involve
both a post-quantum and a traditional EC-based construction which would result in any drastic improvements
in post-quantum microbenchmarks having a small or even negligible impact in practical deployments. The
costs of these small impacts are well worth the long-term post-quantum security afforded by a conservative
scheme based only on generic lattices.

6.3 Hardware implementations

Hardware implementations of lattice-based cryptographic schemes have mainly considered the ring learning
with errors based schemes (see, e.g., [59, 97, 98, 106]) since these schemes allow to compute polynomial
multiplication with the number-theoretic transform, e.g. the discrete Fourier transform over a finite field.
Computing the fast Fourier transform (FFT) is a well-known primitive for hardware implementations.
Schemes based on the original learning with errors problem work with matrices instead. Fortunately, the

FPGA design and implementation of, for instance, matrix multiplication architectures is a well-studied area
and very efficient (in terms of either area, energy or performance) implementations are known (cf. [100] and
the related literature mentioned therein). Hence, the proposed schemes FrodoKEM-640 and FrodoKEM-976
are a natural fit for hardware implementations.

6.4 Side-channel resistance

Side-channel attacks are a family of attacks which use meta-information such as power consumption (e.g, in a
differential power analysis (DPA) attack [68]) or electromagnetic usage (e.g., in a differential electromagnetic
analysis (DEMA) attack [54]) in a statistical analysis by correlating this information obtained when executing
a cryptographic primitive to a key-dependent guess. Besides such passive side-channel attacks (cf. [67]) there
are also active attacks which might inject faults [21, 19] and use the potentially corrupted output to obtain
information about the secret key used.
This is a well-studied and active research area used to protect software and hardware implementations

where such attacks are realistic. In the setting of implementations based on the ring LWE problems not much
work has been done yet. For ring LWE masking techniques [34] have been studied to protect implementations
such as in [87, 104, 105].
In a more recent work [99] it is shown how to perform a single trace attack on ring LWE encryption using

side-channel template matching [35]. Hence, it can also be applied to attack masked implementations. This
single trace behaviour makes it immediately applicable to key-exchange algorithms.
No side-channel attacks nor countermeasures are currently known for LWE key encapsulation mechanisms

but the generic attacks methods as well as the countermeasures which apply to ring LWE also do apply
to LWE. However, since our LWE-based schemes FrodoKEM-640 and FrodoKEM-976 do not use FFT-based
multiplication techniques (the point of attack used in [99]), the attack surface against FrodoKEM is significantly
reduced. This might result in cheap and easy-to-apply countermeasures against a large set of the known
side-channel attacks applied in practice.

38

250 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

References

[1] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halderman, N. Heninger,
D. Springall, E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow, S. Z. Béguelin, and P. Zimmermann.
Imperfect forward secrecy: How Diffie-Hellman fails in practice. In I. Ray, N. Li, and C. Kruegel:,
editors, ACM CCS 15: 22nd Conference on Computer and Communications Security, pages 5–17. ACM
Press, Oct. 2015.

[2] D. Aharonov and O. Regev. Lattice problems in NP ∩ coNP. Journal of the ACM, 52(5):749–765, 2005.
Preliminary version in FOCS 2004.

[3] M. Ajtai. Generating hard instances of lattice problems (extended abstract). In 28th Annual ACM
Symposium on Theory of Computing, pages 99–108. ACM Press, May 1996.

[4] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case equivalence. In 29th
Annual ACM Symposium on Theory of Computing, pages 284–293. ACM Press, May 1997.

[5] M. R. Albrecht. On dual lattice attacks against small-secret LWE and parameter choices in HElib and
SEAL. In J. Coron and J. B. Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017, Part II,
volume 10211 of Lecture Notes in Computer Science, pages 103–129. Springer, Heidelberg, May 2017.

[6] M. R. Albrecht, C. Cid, J.-C. Faugère, and L. Perret. Algebraic algorithms for LWE. Cryptology ePrint
Archive, Report 2014/1018, 2014. http://eprint.iacr.org/2014/1018.

[7] M. R. Albrecht, J.-C. Faugère, R. Fitzpatrick, and L. Perret. Lazy modulus switching for the BKW
algorithm on LWE. In H. Krawczyk, editor, PKC 2014: 17th International Conference on Theory
and Practice of Public Key Cryptography, volume 8383 of Lecture Notes in Computer Science, pages
429–445. Springer, Heidelberg, Mar. 2014.

[8] M. R. Albrecht, R. Fitzpatrick, and F. Göpfert. On the efficacy of solving LWE by reduction to unique-
SVP. In H.-S. Lee and D.-G. Han, editors, ICISC 13: 16th International Conference on Information
Security and Cryptology, volume 8565 of Lecture Notes in Computer Science, pages 293–310. Springer,
Heidelberg, Nov. 2014.

[9] M. R. Albrecht, F. Göpfert, F. Virdia, and T. Wunderer. Revisiting the expected cost of solving uSVP
and applications to LWE. Cryptology ePrint Archive, Report 2017/815, 2017. http://eprint.iacr.
org/2017/815.

[10] M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of Learning with Errors. Journal of
Mathematical Cryptology, 9(3):169–203, Nov 2015.

[11] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum key exchange - a new hope. In
25th USENIX Security Symposium, pages 327–343, 2016.

[12] A. Andoni, T. Laarhoven, I. P. Razenshteyn, and E. Waingarten. Optimal hashing-based time-space
trade-offs for approximate near neighbors. In P. N. Klein, editor, 28th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 47–66. ACM-SIAM, Jan. 2017.

[13] B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives and circular-
secure encryption based on hard learning problems. In S. Halevi, editor, Advances in Cryptology –
CRYPTO 2009, volume 5677 of Lecture Notes in Computer Science, pages 595–618. Springer, Heidelberg,
Aug. 2009.

[14] S. Arora and R. Ge. New algorithms for learning in presence of errors. In L. Aceto, M. Henzinger,
and J. Sgall, editors, ICALP 2011: 38th International Colloquium on Automata, Languages and
Programming, Part I, volume 6755 of Lecture Notes in Computer Science, pages 403–415. Springer,
Heidelberg, July 2011.

39

— Internet: Portfolio 251

[15] S. Bai, A. Langlois, T. Lepoint, D. Stehlé, and R. Steinfeld. Improved security proofs in lattice-based
cryptography: Using the Rényi divergence rather than the statistical distance. In T. Iwata and J. H.
Cheon, editors, Advances in Cryptology – ASIACRYPT 2015, Part I, volume 9452 of Lecture Notes in
Computer Science, pages 3–24. Springer, Heidelberg, Nov. / Dec. 2015.

[16] A. Becker, L. Ducas, N. Gama, and T. Laarhoven. New directions in nearest neighbor searching with
applications to lattice sieving. In R. Krauthgamer, editor, 27th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 10–24. ACM-SIAM, Jan. 2016.

[17] A. Becker, N. Gama, and A. Joux. Speeding-up lattice sieving without increasing the memory,
using sub-quadratic nearest neighbor search. Cryptology ePrint Archive, Report 2015/522, 2015.
http://eprint.iacr.org/2015/522.

[18] D. J. Bernstein, T. Chou, C. Chuengsatiansup, A. Hülsing, E. Lambooij, T. Lange, R. Niederhagen,
and C. van Vredendaal. How to manipulate curve standards: A white paper for the black hat. In
L. Chen and S. Matsuo, editors, Security Standardisation Research (SSR) 2015, volume 9497 of Lecture
Notes in Computer Science, pages 109–139. Springer, 2015.

[19] E. Biham and A. Shamir. Differential fault analysis of secret key cryptosystems. In B. S. Kaliski Jr.,
editor, Advances in Cryptology – CRYPTO’97, volume 1294 of Lecture Notes in Computer Science,
pages 513–525. Springer, Heidelberg, Aug. 1997.

[20] A. Blum, M. L. Furst, M. J. Kearns, and R. J. Lipton. Cryptographic primitives based on hard learning
problems. In D. R. Stinson, editor, Advances in Cryptology – CRYPTO’93, volume 773 of Lecture Notes
in Computer Science, pages 278–291. Springer, Heidelberg, Aug. 1994.

[21] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of checking cryptographic protocols for
faults (extended abstract). In W. Fumy, editor, Advances in Cryptology – EUROCRYPT’97, volume
1233 of Lecture Notes in Computer Science, pages 37–51. Springer, Heidelberg, May 1997.

[22] D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev, V. Vaikuntanathan, and
D. Vinayagamurthy. Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled
circuits. In P. Q. Nguyen and E. Oswald, editors, Advances in Cryptology – EUROCRYPT 2014, volume
8441 of Lecture Notes in Computer Science, pages 533–556. Springer, Heidelberg, May 2014.

[23] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe, and D. Stehlé.
CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM. Cryptology ePrint Archive, Report
2017/634, 2017. http://eprint.iacr.org/2017/634.

[24] J. W. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko, A. Raghunathan, and
D. Stebila. Frodo: Take off the ring! Practical, quantum-secure key exchange from LWE. In E. R.
Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi, editors, ACM CCS 16: 23rd
Conference on Computer and Communications Security, pages 1006–1018. ACM Press, Oct. 2016.

[25] J. W. Bos, C. Costello, M. Naehrig, and D. Stebila. Post-quantum key exchange for the TLS protocol
from the ring learning with errors problem. In 2015 IEEE Symposium on Security and Privacy, pages
553–570. IEEE Computer Society Press, May 2015.

[26] J. W. Bos, M. Naehrig, and J. van de Pol. Sieving for shortest vectors in ideal lattices: a practical
perspective. International Journal of Applied Cryptography, 2016. to appear, http://eprint.iacr.
org/2014/880.

[27] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryption without
bootstrapping. ACM Transactions on Computer Theory, 6(3):13, 2014. Preliminary version in ITCS
2012.

[28] Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé. Classical hardness of learning with
errors. In D. Boneh, T. Roughgarden, and J. Feigenbaum, editors, 45th Annual ACM Symposium on
Theory of Computing, pages 575–584. ACM Press, June 2013.

40

252 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

[29] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard) LWE.
In R. Ostrovsky, editor, 52nd Annual Symposium on Foundations of Computer Science, pages 97–106.
IEEE Computer Society Press, Oct. 2011.

[30] J. Cai and A. Nerurkar. An improved worst-case to average-case connection for lattice problems. In
38th Annual Symposium on Foundations of Computer Science, pages 468–477. IEEE Computer Society
Press, Oct. 1997.

[31] P. Campbell, M. Groves, and D. Shepherd. Soliloquy: a cautionary tale. ETSI 2nd Quantum-Safe
Crypto Workshop, 2014. http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_
and_Attacks/S07_Groves_Annex.pdf.

[32] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate a lattice basis. Journal
of Cryptology, 25(4):601–639, Oct. 2012.

[33] W. Castryck, I. Iliashenko, and F. Vercauteren. Provably weak instances of ring-LWE revisited. In
M. Fischlin and J.-S. Coron, editors, Advances in Cryptology – EUROCRYPT 2016, Part I, volume
9665 of Lecture Notes in Computer Science, pages 147–167. Springer, Heidelberg, May 2016.

[34] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards sound approaches to counteract power-analysis
attacks. In M. J. Wiener, editor, Advances in Cryptology – CRYPTO’99, volume 1666 of Lecture Notes
in Computer Science, pages 398–412. Springer, Heidelberg, Aug. 1999.

[35] S. Chari, J. R. Rao, and P. Rohatgi. Template attacks. In B. S. Kaliski Jr., Ç etin Kaya. Koç, and
C. Paar, editors, Cryptographic Hardware and Embedded Systems – CHES 2002, volume 2523 of Lecture
Notes in Computer Science, pages 13–28. Springer, Heidelberg, Aug. 2003.

[36] S. Chatterjee, N. Koblitz, A. Menezes, and P. Sarkar. Another look at tightness II: Practical issues in
cryptography. In Paradigms in Cryptology – Mycrypt 2016, volume 10311 of Lecture Notes in Computer
Science, pages 21–25. Springer, Heidelberg, 2017.

[37] H. Chen, K. Lauter, and K. E. Stange. Attacks on search RLWE. Cryptology ePrint Archive, Report
2015/971, 2015. http://eprint.iacr.org/2015/971.

[38] H. Chen, K. Lauter, and K. E. Stange. Vulnerable Galois RLWE families and improved attacks.
Cryptology ePrint Archive, Report 2016/193, 2016. http://eprint.iacr.org/2016/193.

[39] Y. Chen. Lattice reduction and concrete security of fully homomorphic encryption. PhD thesis,
l’Université Paris Diderot, 2013. http://www.di.ens.fr/~ychen/research/these.pdf.

[40] Y. Chen and P. Q. Nguyen. BKZ 2.0: Better lattice security estimates. In D. H. Lee and X. Wang,
editors, Advances in Cryptology – ASIACRYPT 2011, volume 7073 of Lecture Notes in Computer
Science, pages 1–20. Springer, Heidelberg, Dec. 2011.

[41] J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damg̊ard revisited: How to construct a
hash function. In V. Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture
Notes in Computer Science, pages 430–448. Springer, Heidelberg, Aug. 2005.

[42] R. Cramer, L. Ducas, C. Peikert, and O. Regev. Recovering short generators of principal ideals in
cyclotomic rings. In M. Fischlin and J.-S. Coron, editors, Advances in Cryptology – EUROCRYPT 2016,
Part II, volume 9666 of Lecture Notes in Computer Science, pages 559–585. Springer, Heidelberg, May
2016.

[43] R. Cramer, L. Ducas, and B. Wesolowski. Short Stickelberger class relations and application to ideal-
SVP. In J. Coron and J. B. Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017, Part I,
volume 10210 of Lecture Notes in Computer Science, pages 324–348. Springer, Heidelberg, May 2017.

[44] R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes secure against
adaptive chosen ciphertext attack. SIAM Journal on Computing, 33(1):167–226, 2003.

41

— Internet: Portfolio 253

[45] D. Dadush, O. Regev, and N. Stephens-Davidowitz. On the closest vector problem with a distance
guarantee. In IEEE Conference on Computational Complexity, pages 98–109, 2014.

[46] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Information
Theory, 22(6):644–654, 1976.

[47] J. Ding, X. Xie, and X. Lin. A simple provably secure key exchange scheme based on the learning with
errors problem. Cryptology ePrint Archive, Report 2012/688, 2012. http://eprint.iacr.org/2012/
688.

[48] N. Döttling and J. Müller-Quade. Lossy codes and a new variant of the learning-with-errors problem.
In T. Johansson and P. Q. Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013, volume
7881 of Lecture Notes in Computer Science, pages 18–34. Springer, Heidelberg, May 2013.

[49] M. J. Dworkin. SHA-3 standard: Permutation-based hash and extendable-output functions. Federal
Information Processing Standards (FIPS) 202, National Institute of Standards and Technology, Aug.
2015.

[50] Y. Elias, K. E. Lauter, E. Ozman, and K. E. Stange. Provably weak instances of ring-LWE. In
R. Gennaro and M. J. B. Robshaw, editors, Advances in Cryptology – CRYPTO 2015, Part I, volume
9215 of Lecture Notes in Computer Science, pages 63–92. Springer, Heidelberg, Aug. 2015.

[51] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric encryption schemes.
In M. J. Wiener, editor, Advances in Cryptology – CRYPTO’99, volume 1666 of Lecture Notes in
Computer Science, pages 537–554. Springer, Heidelberg, Aug. 1999.

[52] N. Gama and P. Q. Nguyen. Predicting lattice reduction. In N. P. Smart, editor, Advances in Cryptology
– EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages 31–51. Springer,
Heidelberg, Apr. 2008.

[53] N. Gama, P. Q. Nguyen, and O. Regev. Lattice enumeration using extreme pruning. In H. Gilbert,
editor, Advances in Cryptology – EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer
Science, pages 257–278. Springer, Heidelberg, May 2010.

[54] K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic analysis: Concrete results. In Ç etin Kaya. Koç,
D. Naccache, and C. Paar, editors, Cryptographic Hardware and Embedded Systems – CHES 2001,
volume 2162 of Lecture Notes in Computer Science, pages 251–261. Springer, Heidelberg, May 2001.

[55] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic
constructions. In R. E. Ladner and C. Dwork, editors, 40th Annual ACM Symposium on Theory of
Computing, pages 197–206. ACM Press, May 2008.

[56] C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors: Conceptually-
simpler, asymptotically-faster, attribute-based. In R. Canetti and J. A. Garay, editors, Advances in
Cryptology – CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Computer Science, pages 75–92.
Springer, Heidelberg, Aug. 2013.

[57] O. Goldreich, S. Goldwasser, and S. Halevi. Collision-free hashing from lattice problems. Cryptology
ePrint Archive, Report 1996/009, 1996. http://eprint.iacr.org/1996/009.

[58] S. Gorbunov, V. Vaikuntanathan, and H. Wee. Predicate encryption for circuits from LWE. In
R. Gennaro and M. J. B. Robshaw, editors, Advances in Cryptology – CRYPTO 2015, Part II, volume
9216 of Lecture Notes in Computer Science, pages 503–523. Springer, Heidelberg, Aug. 2015.

[59] N. Göttert, T. Feller, M. Schneider, J. Buchmann, and S. A. Huss. On the design of hardware
building blocks for modern lattice-based encryption schemes. In E. Prouff and P. Schaumont, editors,
Cryptographic Hardware and Embedded Systems – CHES 2012, volume 7428 of Lecture Notes in
Computer Science, pages 512–529. Springer, Heidelberg, Sept. 2012.

42

254 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

[60] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public key cryptosystem. In ANTS,
pages 267–288, 1998.

[61] D. Hofheinz, K. Hövelmanns, and E. Kiltz. A modular analysis of the Fujisaki-Okamoto transformation.
In Y. Kalai and L. Reyzin, editors, TCC 2017: 15th Theory of Cryptography Conference, Part I, volume
10677 of Lecture Notes in Computer Science, pages 341–371. Springer, Heidelberg, Nov. 2017.

[62] T. Ishiguro, S. Kiyomoto, Y. Miyake, and T. Takagi. Parallel Gauss sieve algorithm: Solving the SVP
challenge over a 128-dimensional ideal lattice. In H. Krawczyk, editor, PKC 2014: 17th International
Conference on Theory and Practice of Public Key Cryptography, volume 8383 of Lecture Notes in
Computer Science, pages 411–428. Springer, Heidelberg, Mar. 2014.

[63] H. Jiang, Z. Zhang, L. Chen, H. Wang, and Z. Ma. Post-quantum IND-CCA-secure KEM without
additional hash. Cryptology ePrint Archive, Report 2017/1096, 2017. https://eprint.iacr.org/
2017/1096.

[64] J. Kelsey, S. Chang, and R. Perlner. SHA-3 derived functions: cSHAKE, KMAC, TupleHash
and ParallelHash, 2016. NIST Special Publication 800-185. http://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-185.pdf.

[65] P. Kirchner and P.-A. Fouque. An improved BKW algorithm for LWE with applications to cryptography
and lattices. In R. Gennaro and M. J. B. Robshaw, editors, Advances in Cryptology – CRYPTO 2015,
Part I, volume 9215 of Lecture Notes in Computer Science, pages 43–62. Springer, Heidelberg, Aug.
2015.

[66] P. Kirchner and P.-A. Fouque. Revisiting lattice attacks on overstretched NTRU parameters. In
J. Coron and J. B. Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017, Part I, volume
10210 of Lecture Notes in Computer Science, pages 3–26. Springer, Heidelberg, May 2017.

[67] P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In
N. Koblitz, editor, Advances in Cryptology – CRYPTO’96, volume 1109 of Lecture Notes in Computer
Science, pages 104–113. Springer, Heidelberg, Aug. 1996.

[68] P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. J. Wiener, editor, Advances in
Cryptology – CRYPTO’99, volume 1666 of Lecture Notes in Computer Science, pages 388–397. Springer,
Heidelberg, Aug. 1999.

[69] T. Laarhoven. Search problems in cryptography. PhD thesis, Eindhoven University of Technology, 2015.

[70] T. Laarhoven. Sieving for shortest vectors in lattices using angular locality-sensitive hashing. In
R. Gennaro and M. J. B. Robshaw, editors, Advances in Cryptology – CRYPTO 2015, Part I, volume
9215 of Lecture Notes in Computer Science, pages 3–22. Springer, Heidelberg, Aug. 2015.

[71] T. Laarhoven, M. Mosca, and J. van de Pol. Finding shortest lattice vectors faster using quantum
search. Designs, Codes and Cryptography, 77(2-3):375–400, 2015.

[72] A. Langlois and D. Stehlé. Worst-case to average-case reductions for module lattices. Designs, Codes
and Cryptography, 75(3):565–599, 2015.

[73] A. Langlois, D. Stehlé, and R. Steinfeld. GGHLite: More efficient multilinear maps from ideal lattices.
In P. Q. Nguyen and E. Oswald, editors, Advances in Cryptology – EUROCRYPT 2014, volume 8441
of Lecture Notes in Computer Science, pages 239–256. Springer, Heidelberg, May 2014.

[74] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational coefficients.
Mathematische Annalen, 261(4):515–534, December 1982.

[75] R. Lindner and C. Peikert. Better key sizes (and attacks) for LWE-based encryption. In A. Kiayias,
editor, Topics in Cryptology – CT-RSA 2011, volume 6558 of Lecture Notes in Computer Science, pages
319–339. Springer, Heidelberg, Feb. 2011.

43

— Internet: Portfolio 255

[76] M. Liu and P. Q. Nguyen. Solving BDD by enumeration: An update. In E. Dawson, editor, Topics
in Cryptology – CT-RSA 2013, volume 7779 of Lecture Notes in Computer Science, pages 293–309.
Springer, Heidelberg, Feb. / Mar. 2013.

[77] Y.-K. Liu, V. Lyubashevsky, and D. Micciancio. On bounded distance decoding for general lattices. In
APPROX-RANDOM, volume 4110 of Lecture Notes in Computer Science, pages 450–461. Springer,
Heidelberg, 2006.

[78] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over rings.
Journal of the ACM, 60(6):43:1–43:35, November 2013. Preliminary version in Eurocrypt 2010.

[79] A. Mariano, T. Laarhoven, and C. Bischof. A parallel variant of LDSieve for the SVP on lattices. In
25th Euromicro Int. Conf. on Parallel, Distributed and Network-based Processing (PDP), pages 23–30.
IEEE, 2017.

[80] U. M. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility results on reductions,
and applications to the random oracle methodology. In M. Naor, editor, TCC 2004: 1st Theory of
Cryptography Conference, volume 2951 of Lecture Notes in Computer Science, pages 21–39. Springer,
Heidelberg, Feb. 2004.

[81] D. Micciancio. Improved cryptographic hash functions with worst-case/average-case connection. In
34th Annual ACM Symposium on Theory of Computing, pages 609–618. ACM Press, May 2002.

[82] D. Micciancio. Cryptographic functions from worst-case complexity assumptions. Information Security
and Cryptography, pages 427–452. Springer, Heidelberg, 2010.

[83] D. Micciancio and C. Peikert. Hardness of SIS and LWE with small parameters. In R. Canetti and
J. A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part I, volume 8042 of Lecture Notes in
Computer Science, pages 21–39. Springer, Heidelberg, Aug. 2013.

[84] D. Micciancio and O. Regev. Worst-case to average-case reductions based on Gaussian measures. SIAM
J. Comput., 37(1):267–302, 2007. Preliminary version in FOCS 2004.

[85] D. Micciancio and O. Regev. Lattice-based cryptography. In Post Quantum Cryptography, pages
147–191. Springer, February 2009.

[86] P. Q. Nguyen and O. Regev. Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures.
Journal of Cryptology, 22(2):139–160, Apr. 2009.

[87] T. Oder, T. Schneider, T. Pöppelmann, and T. Güneysu. Practical CCA2-secure and masked ring-LWE
implementation. Cryptology ePrint Archive, Report 2016/1109, 2016. http://eprint.iacr.org/
2016/1109.

[88] C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended abstract.
In M. Mitzenmacher, editor, 41st Annual ACM Symposium on Theory of Computing, pages 333–342.
ACM Press, May / June 2009.

[89] C. Peikert. Some recent progress in lattice-based cryptography. In O. Reingold, editor, TCC 2009:
6th Theory of Cryptography Conference, volume 5444 of Lecture Notes in Computer Science, page 72.
Springer, Heidelberg, Mar. 2009. Invited talk. Slides available at http://web.eecs.umich.edu/
~cpeikert/pubs/slides-tcc09.pdf.

[90] C. Peikert. An efficient and parallel Gaussian sampler for lattices. In T. Rabin, editor, Advances in
Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages 80–97. Springer,
Heidelberg, Aug. 2010.

[91] C. Peikert. Lattice cryptography for the Internet. In M. Mosca, editor, PQCrypto 2014, volume 8772 of
Lecture Notes in Computer Science, pages 197–219. Springer, Heidelberg, 2014.

44

256 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

[92] C. Peikert. A decade of lattice cryptography. Foundations and Trends in Theoretical Computer Science,
10(4):283–424, 2016.

[93] C. Peikert. How (not) to instantiate ring-LWE. In V. Zikas and R. De Prisco, editors, SCN 16: 10th
International Conference on Security in Communication Networks, volume 9841 of Lecture Notes in
Computer Science, pages 411–430. Springer, Heidelberg, Aug. / Sept. 2016.

[94] C. Peikert, O. Regev, and N. Stephens-Davidowitz. Pseudorandomness of ring-LWE for any ring and
modulus. In H. Hatami, P. McKenzie, and V. King, editors, 49th Annual ACM Symposium on Theory
of Computing, pages 461–473. ACM Press, June 2017.

[95] C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and composable oblivious
transfer. In D. Wagner, editor, Advances in Cryptology – CRYPTO 2008, volume 5157 of Lecture Notes
in Computer Science, pages 554–571. Springer, Heidelberg, Aug. 2008.

[96] C. Peikert and B. Waters. Lossy trapdoor functions and their applications. In R. E. Ladner and
C. Dwork, editors, 40th Annual ACM Symposium on Theory of Computing, pages 187–196. ACM Press,
May 2008.

[97] T. Pöppelmann and T. Güneysu. Towards efficient arithmetic for lattice-based cryptography on recon-
figurable hardware. In A. Hevia and G. Neven, editors, Progress in Cryptology - LATINCRYPT 2012:
2nd International Conference on Cryptology and Information Security in Latin America, volume 7533
of Lecture Notes in Computer Science, pages 139–158. Springer, Heidelberg, Oct. 2012.

[98] T. Pöppelmann and T. Güneysu. Towards practical lattice-based public-key encryption on reconfigurable
hardware. In T. Lange, K. Lauter, and P. Lisonek, editors, SAC 2013: 20th Annual International
Workshop on Selected Areas in Cryptography, volume 8282 of Lecture Notes in Computer Science, pages
68–85. Springer, Heidelberg, Aug. 2014.

[99] R. Primas, P. Pessl, and S. Mangard. Single-trace side-channel attacks on masked lattice-based
encryption. In W. Fischer and N. Homma, editors, Cryptographic Hardware and Embedded Systems –
CHES 2017, volume 10529 of Lecture Notes in Computer Science, pages 513–533. Springer, Heidelberg,
Sept. 2017.

[100] S. M. Qasim, A. A. Telba, and A. Y. AlMazroo. FPGA design and implementation of matrix multiplier
architectures for image and signal processing applications. International Journal of Computer Science
and Network Security, 10(2):168–176, 2010.

[101] O. Regev. New lattice-based cryptographic constructions. J. ACM, 51(6):899–942, 2004. Preliminary
version in STOC 2003.

[102] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal of the
ACM, 56(6):34, 2009. Preliminary version in STOC 2005.

[103] O. Regev. The learning with errors problem (invited survey). In IEEE Conference on Computational
Complexity, pages 191–204, 2010.

[104] O. Reparaz, R. de Clercq, S. Sinha Roy, F. Vercauteren, and I. Verbauwhede. Additively homomorphic
ring-LWE masking. In T. Takagi, editor, PQCrypto 2016, volume 9606 of Lecture Notes in Computer
Science, pages 233–244. Springer, Heidelberg, 2016.

[105] O. Reparaz, S. Sinha Roy, R. de Clercq, F. Vercauteren, and I. Verbauwhede. Masking ring-LWE.
Journal of Cryptographic Engineering, 6(2):139–153, 2016.

[106] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede. Compact ring-LWE
cryptoprocessor. In L. Batina and M. Robshaw, editors, Cryptographic Hardware and Embedded Systems
– CHES 2014, volume 8731 of Lecture Notes in Computer Science, pages 371–391. Springer, Heidelberg,
Sept. 2014.

45

— Internet: Portfolio 257

[107] M. Schneider. Sieving for shortest vectors in ideal lattices. In A. Youssef, A. Nitaj, and A. E. Hassanien,
editors, AFRICACRYPT 13: 6th International Conference on Cryptology in Africa, volume 7918 of
Lecture Notes in Computer Science, pages 375–391. Springer, Heidelberg, June 2013.

[108] C.-P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theoretical Computer
Science, 53:201–224, 1987.

[109] A. Shamir. A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem. In
D. Chaum, R. L. Rivest, and A. T. Sherman, editors, Advances in Cryptology – CRYPTO’82, pages
279–288. Plenum Press, New York, USA, 1982.

[110] D. Stehlé and R. Steinfeld. Making NTRU as secure as worst-case problems over ideal lattices. In
K. G. Paterson, editor, Advances in Cryptology – EUROCRYPT 2011, volume 6632 of Lecture Notes in
Computer Science, pages 27–47. Springer, Heidelberg, May 2011.

[111] E. E. Targhi and D. Unruh. Post-quantum security of the Fujisaki-Okamoto and OAEP transforms.
In M. Hirt and A. D. Smith, editors, TCC 2016-B: 14th Theory of Cryptography Conference, Part II,
volume 9986 of Lecture Notes in Computer Science, pages 192–216. Springer, Heidelberg, Oct. / Nov.
2016.

46

258 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Name of Proposal:

Gui

Principal Submitter:

Jintai Ding

email: jintai.ding@gmail.com
phone: 513 556 - 4024

organization: University of Cincinnati
postal address: 4314 French Hall, OH 45221 Cincinnati, USA

Auxiliary Submitters: Ming-Shing Chen, Albrecht
Petzoldt, Dieter Schmidt, Bo-Yin Yang

Inventors: c.f. Submitters

Owners: c.f. Submitters

Jintai Ding (Signature)

Additional Point of Contact:
Bo-Yin Yang

email: by@crypto.tw
phone: 886-2-2788-3799
Fax: 886-2-2782-4814

organization: Academia Sinica
postal address: 128 Academia Road, Section 2

Nankang, Taipei 11529, Taiwan

1

— Internet: Portfolio 259

Gui - Algorithm Specification and Documentation

Type: Signature scheme

Family: Multivariate Cryptography, BigField schemes

The Gui signature scheme as described in this proposal is based on the HFEv-
signature scheme, which was first proposed by Patarin, Courtois and Goubin in
[12]. Similar to Gui, their QUARTZ scheme uses a specially designed signature
generation process which allows to reduce key and signature sizes compared to
the original HFEv- design. However, while QUARTZ uses an HFE polynomial
of high degree as well as small values for the numbers of minus equations and
vinegar variables, Gui follows another approach. By decreasing the degree of
the HFE polynomial in use while increasing the numbers of minus equations
and vinegar variables, we can speed up the signature generation process of the
scheme drastically without weakening its security.

1 Algorithm Specification

In this section we present the Gui signature scheme as proposed in [15].

1.1 Parameters

‹ F = Fq: finite field with q elements, q = 2e

‹ E = Fqn : degree n extension field of F

2

260 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

‹ φ : Fn → E: isomorphism between the vector space Fn and the extension
field E

‹ D: degree of the HFE polynomial, set r = blogq(D − 1)c + 1.

‹ a: number of minus equations

‹ v: number of vinegar variables

‹ k: repetition factor (used in signature generation)

‹ number of equations: n − a

‹ number of variables: n + v

1.2 Key Generation

Private Key. The private key consists of the three maps

‹ S : Fn → Fn−a: affine transformation of maximal rank

‹ : Fn+vT → Fn+v: invertible affine transformation

‹ central map F : E × Fv → E

q i+q qXj ≤D i ≤DX
F(X) = αi,j X

q i+qj

+ βi(v1, . . . , vv)·Xq i

+γ(v1, . . . , vv). (1)
0≤i≤j 0≤i

Here, the βi : Fv → E are linear (affine) functions in the vinegar variables
v1, . . . , vv, while γ : Fv → E is a quadratic function in v1, . . . , vv.

¯Due to the special structure of F , the map F = φ−1 ◦F ◦(φ× idv) is a quadratic
multivariate map from Fn+v to Fn .

The size of the private key is

(n − a) · (n + 1) + (n + v) · (n + v + 1) | {z } | {z }
affine map S affine map T � �

(v + 1) · (v + 2)
+ n · #α + (blogqDc + 1) · (v + 1) +

2 | {z }
central map F

Fq-elements. Here, #α denotes the number of non-zero coefficients α in equa-
r·(r+1)tion (1), which is upper bounded by .2

3

— Internet: Portfolio 261

Public Key. The public key of Gui is the composed map

P = S ◦ φ−1 ◦ F ◦ (φ × idv) ◦ T : Fn+v → Fn−a .

consisting of n − a quadratic poltynomials in n + v variables. The size of the
public key is

(n + v + 1) · (n + v + 2)
(n − a) ·

2
Fq-elements.

1.3 Signature Generation

Given a document d to be signed, we first compute hash values d1, . . . , dk ∈
Fn−a
q as follows. For a standard hash function H : {0, 1}? → {0, 1}n 0

we compute
a bitstring

h̃ = H(d)||H(H(d))|| . . . ||H ` (d)

of length k · log2q · (n − a) ≤ |h̃| < (k + 1) · log2q · (n − a). Here, H ` (d) denotes
the `-times repeated application of the hash function H. We set

di = (h̃(i−1)·log2q·(n−a)+1|| . . . ||h̃i·log2 q·(n−a)) (i = 1, . . . , k)

and transform each di into a vector of (n − a) Fq-elements.
The last ` · n0 − k · log2q · (n − a) bits of h̃ are skipped.

∈ Fn−aAfter having computed the hash values di (i = 1, . . . , k), we obtain
a Gui signature for the message d as follows.

= 0n−aWe set S0 and perform for i = 1 to k the following steps

1. Compute a preimage x ∈ Fn of di ⊕ Si−1 under the affine map S and lift
it to the extension field, obtaining X ∈ E.

2. Choose random values for the vinegar variables v1, . . . , vv and substitute
them into the central map to obtain the parametrized map FV : E → E.

3. Find a solution to the equation FV (Y) = X by performing the first step
of the Cantor-Zassenhaus algorithm, i.e. compute Ỹ = gcd(FV (Ŷ) −
Y 2

n
X, ˆ − Ŷ). For efficiency reasons, we repeat step 2 and 3 until the gcd
is a linear polynomial. Denote the unique root of Ỹ by Y ∈ E.

04. Move Y down to the vector space Fn, obtaining y = (y1, . . . , yn), and
append the vinegar variables of step 2, obtaining y = (y0||v1|| . . . ||vv) ∈
Fn+v .

5. Compute z = (z1, . . . , zn+v) = T −1(y) and set Si = (z1, . . . , zn−a), Xi =
(zn−a+1, . . . , zn+v).

The final Gui signature of the message d has the form σ = (Sk||Xk|| . . . ||X1) ∈
F(n−a)+k·(a+v).

4

262 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

1.4 Signature Verification

In order to check the authenticity of a signature σ = (Sk||Xk|| . . . ||X1) ∈
F(n−a)+k·(a+v), we first compute the hash values di (i = 1, . . . , k) as described
in the previous section.
After that, we perform for i = k − 1, . . . , 0 the two steps

1. Evaluate the public key at (Si+1||Xi+1). Denote the result by w ∈ Fn−a .

2. Set Si = w ⊕ di+1.

= 0n−aThe signature σ is accepted, if and only if S0 holds.

In order to find a good balance between security and efficiency, the Gui (and
HFEv-) signature scheme is mainly used over small finite fields. Since the com-
plexity of the signature generation process is O(n ·D3), one aims at choosing the
degree D of the HFE polynomial in use as small as possible. On the other hand,
for security reasons, the number of quadratic terms in the HFE polynomial (1)
and therefore the value r = blogq (D−1)c+1 should not be too small. For a fixed
D, we therefore can increase r and the number of quadratic terms in the HFEv-
polynomial by simply decreasing q. So, a small value of q allows to achieve both
good performance and high security. In order to reduce the number of equa-
tions in the public system and therefore key and signature sizes, one introduces
a repetition factor k. To reach a security level of ` bits under collision attacks,
one would need, for the pure HFEv- scheme (k = 1), 2 · `/log2(q) equations in
the public key, leading to a very large public key. By choosing k > 1, we can
omit this problem by using a hash of effective length k · |H|. However, choosing
k > 2 brings no advantage, but increases the signature size.

The following algorithms GuiKeyGen, GuiSign and GuiVer show the key gener-
ation, signature generation and signature verification processes of Gui in algo-
rithmic form.

5

— Internet: Portfolio 263

Algorithm 1 GuiKeyGen: Key Generation of Gui

Input: Gui parameters (q, n, D, a, v), isomorphism φ : Fn → Eq
Output: Gui key pair (sk, pk)
1: repeat
2: MS ← Matrix(q, n, n)
3: until IsInvertible(MS) == TRUE
4: cS ←R Fn

5: S ← Aff(MS , cS)
6: InvS ← M−1

S
7: repeat
8: MT ← Matrix(q, n + v, n + v)
9: until IsInvertible(MT) == TRUE

10: cT ←R Fn+v

11: T ← Aff(MT , cT)
12: InvT ← M−1

T
13: F ← HFEvmap(q, n, D, a, v)
14: P ← S ◦ φ−1 ◦ F ◦ (φ × idv) ◦ T
15: sk ← (InvS, cS , F , InvT, cT)
16: pk ← P
17: return (sk, pk)

The possible input values of algorithm GuiKeyGen are specified in Section 1.8.
The function Matrix(q, m, n) returns an m × n matrix with coefficients chosen
uniformly at random in Fq . Aff(M, c) returns the affine map M · x + c.
HFEvmap(q, D, a, v, βi, γ) outputs an HFEv central map (see equation (1)) with
randomly chosen coefficients α ∈ E and randomly chosen vinegar maps βi
(i = 0, . . . , blogqDc) and γ.

The algorithm GuiKeyGen makes use of

n · (n + 1) + (n + v) · (n + v + 1) | {z } | {z }
affine map S affine map T � �

(v + 1) · (v + 2)
+ n · #α + (blogqDc + 1) · (v + 1) +

2 | {z }
central map F

randomly generated field elements. Here, #α denotes the number of non-zero
r·(r+1)coefficients α in equation (1), which is upper bounded by . In contrast 2

to the description in Section 1.2, we use here and in our implementation an
invertible matrix MS ∈ Fn×n . While this increases the private key size slightly, q
it speeds up the signature generation significantly.

6

264 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Algorithm 2 GuiSign: Signature Generation Process of Gui

Input: Gui private key (InvS, cS , F , InvT , cT), message d,
repetition factor k

Output: signature σ ∈ F(n−a)+k·(a+v)

1: ` ← dk · log2q · (n − a)/|H|e
˜2: h ← H(d)||H(H(d))|| . . . ||H` (d)

3: S0 ← 0n−a

4: for i = 1 to k do
˜5: di ← Fn−a!(h̃(i−1)·log2q·(n−a)+1, . . . , hi·log2q·(n−a))

6: (Si, Xi) ← InvHFEv−(di ⊕ Si−1)
7: end for
8: σ ← (Sk||Xk|| . . . ||X1)
9: return σ

Algorithm 3 InvHFEv-: Inversion of the HFEv- public key
Input: Gui private key (InvS, cS , F , InvT , cT), isomorphism φ : Fn → E,q

vector w ∈ Fn−a ,
Output: vector z ∈ Fn+v such that P(z) = w
1: r1, . . . , ra ←R F
2: x ← InvS · ((w||r1|| . . . ||ra) − cS)
3: X ← φ(x)
4: repeat
5: v1, . . . , vv ←R F
6: FV ← F(v1, . . . , vv)

Y 2
n

7: Y ← gcd(FV (Ŷ) − X, ˆ − Ŷ)
8: until deg(Y) == 1
9: y ← φ−1(root(Y))

10: z ← InvT · ((y||v1|| . . . ||vv) − cT)
11: return z

In line 1 of Algorithm GuiSign, |H| denotes the output length of the hash
function in use. Fn−a!(h) coerces the binary vector h ∈ GF(2)log2q·(n−a) into a
vector in Fn−a . 1

In Algorithm InvHFEv-, we perform the loop (line 4 to 8) until the computed gcd
is a linear polynomial (i.e. if the equation FV (Ŷ) = X has a unique solution). In
this case, the function root(Y) returns the unique root of the linear polynomial
Y ∈ E[Ŷ]. Otherwise, we choose other values for the vinegar variables v1, . . . , vv

and try again. Though this check requires more gcd computations, it is still more
efficient than computing the roots of a polynomial Y of higher degree.
During the signature generation of Gui, we make use of approximately k·(a+e·v)
randomly chosen field elements (in line 2 and 6 of algorithm InvHFEv-). The
reason for this is that, in order to find a unique solution of FV (Ŷ) = X (see

1In the case of F = GF(2), this function does not do anything.

7

— Internet: Portfolio 265

line 8 of Algorithm InvHFEv-), we have to run the loop about e times, while
the whole algorithm is performed k times..

Algorithm 4 GuiVer: Signature Verification Process of Gui
Input: Gui public key P, message d, repetition factor k,

signature σ ∈ F(n−a)+k(a+v)

Output: boolean value TRUE or FALSE
1: ` ← dk · log2q · (n − a)/|H|e

˜2: h ← H(d)||H(H(d))|| . . . ||H` (d)
3: for i = 1 to k do do

˜4: di ← Fn−a!(h̃(i−1)·log2q·(n−a)+1, . . . , hi·log2q·(n−a))
5: end for
6: for i = k − 1 to 0 do
7: Si ← P(Si+1||Xi+1) ⊕ di+1

8: end for
9: if S0 = 0 then

10: return TRUE
11: else
12: return FALSE
13: end if

1.5 Remark on Correctness

In the signature generation process, we start with S0 = 0 and set recur-
sively (Si||Xi) = InvHFEv−(di ⊕ Si−1) until we finally obtain the signature
σ = (Sk||Xk|| . . . ||X1).
During the signature verification process, we start with S̃k = Sk and compute
recursively S̃i−1 ← HFEv−(S̃i||Xi) ⊕ di until we get S̃0. We find

S̃k−1 = HFEv−(Sk||Xk) ⊕ dk = HFEv−(InvHFEv−(dk ⊕ Sk−1)) ⊕ dk

= dk ⊕ Sk−1 ⊕ dk = Sk−1.

Analogously we obtain S̃k−2 = Sk−2, . . . , S̃0 = S0 = 0 ∈ Fn−a . Therefore, a
honestly generated signature will always be accepted.

1.6 Changes needed to achieve EUF-CMA Security

The standard Gui signature scheme as described above provides only universal
unforgeability. In order to obtain EUF-CMA security, we apply a transformation
similar to that in [16]. The main difference is the use of a random binary vector
r called salt. Instead of generating a signature for the hash value h = H(d),
we generate a signature for H(H(d)||r). The resulting signature has the form
σ? = (σ, r), where σ is a standard Gui signature. By doing so, we ensure that
an attacker is not able to forge any hash/signature pair.

8

266 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

In particular, we apply the following changes to the algorithms GuiKeyGen,
GuiSign and GuiVer.

‹ In the algorithm GuiKeyGen?, we choose an integer `̄ as the length of the
random salt; `̄ is appended both to the private and public key.

‹ In the algorithm GuiSign? , we choose first randomly the values of the
k · (a + v) random variables (the random values for the affine map S and
the vinegar variables of the central map); after that, we choose a random

¯̀ salt r ∈ {0, 1} and perfom the standard Gui signature generation process
to obtain a signature σ? = (Sk||Xk|| . . . ||X1||r) for the message H(d)||r.
If there appears an error (i.e. one of the equations FV (Ŷ) = X is not
uniquely solvable), we choose a new value for the salt r and try again.

‹ The verification algorithm GuiVer? returns TRUE if we obtain S0 =
0n−a, and FALSE otherwise

Algorithms GuiKeyGen? , GuiSign? and GuiVer? show the modified key genera-
tion, signing and verification algorithms.

Algorithm 5 KeyGen?: Modified Key Generation Algorithm for Gui

Input: Gui parameters (q, n, D, a, v), length `̄ of the random salt
Output: Gui key pair (sk, pk)
1: sk, pk ← GuiKeyGen(q, n, D, a, v)

¯2: sk ← sk, `
¯3: pk ← pk, `

4: return (sk, pk)

The value of `̄ is specified at the end of this section.

9

— Internet: Portfolio 267

Algorithm 6 GuiSign?: Modified signature generation process for Gui

Input: document d, Gui private key (InvS, cS , F , InvT, cT), length `̄ of salt
¯̀ Output: Gui signature σ = (Sk||Xk|| . . . ||X1||r) ∈ F(n−a)+k·(a+v) × {0, 1}

1: ` ← dk · log2q · (n − a)/|H|e
(1) (1) (2) (k) (1) (1) (2) (k)

2: r , . . . , ra , r , . . . , ra , v , . . . , vv , v , . . . , vv ←R F1 1 1 1
3: repeat
4: S0 ← 0

¯̀ 5: r ← {0, 1}
˜6: h ← H(H(d)||r)||H(H(H(d)||r))|| . . . ||H` (H(d)||r)

7: for i = 1 to k do do
˜8: di ← Fn−a!(h̃(i−1)·log2q·(n−a)+1, . . . , hi·log2q·(n−a))

(i) (i) (i)
9: t, Si, Xi ← InvHFEv−?(di ⊕ Si−1, r , . . . , ra , v1 1

10: if t == FALSE then
11: break and go to 4
12: end if
13: end for
14: until t == TRUE
15: σ? ← (Sk||Xk|| . . . ||X1||r)
16: return σ?

(i)
, . . . , vv)

Note that, in algorithm GuiSign? we do not generate a signature for H(d||r),
but for H(H(d)||r). In case we have to run the loop in the algorithm several
times, this speeds up the signature generation of our scheme significantly (at
least for long messages d).

¯In algorithm GuiSign?, we make use of approximately k · log2q · (a + v)+ e · k · ̀
random bits.

Algorithm 7 InvHFEv-?: Modified Inversion of the HFEv- public key
Input: Gui private key (InvS, cS , F , InvT, cT), isomorphism φ : Fn → E,

hash value w ∈ Fn−a, random values r1, . . . , ra, vinegar values v1, . . . , vv

Output: boolean value t, vector z ∈ Fn+v

1: ` → dk · log2 · (n − a)/|H|e
2: x ← InvS · ((w||r1|| . . . ||ra) − cS)
3: X ← φ(x)
4: FV ← F(v1, . . . , vv)

Y 2
n

5: Y ← gcd(FV (Ŷ) − X, ˆ − Ŷ)
6: if deg(Y) == 1 then
7: y ← φ−1(root(Y))
8: z ← InvT ((y||v1|| . . . ||vv) − cT)
9: return TRUE, z

10: else
11: return FALSE, 0n+v

12: end if

In line 6 of algorithm InvHFEv−? we check if the computed gcd is a linear

10

268 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

polynomial in Y ∈ E[Ŷ]. If so, the function root(Y) returns the unique root of
Y and the algorithm returns TRUE as well as the unique solution of P(z) = w.
Otherwise, the algorithm returns FALSE (and the zero vector 0 ∈ Fn+v).
Though this check makes it necessary to run algorithm InvHFEv−? more often,
it is still more efficient than computing the root of a polynomial Y of higher
degree.

Algorithm 8 GuiVer?: Modified signature verification process for Gui
Input: Gui public key P, document d, signature σ = (Sk||Xk|| . . . ||X1||r) ∈

¯̀F(n−a)+k·(a+v) × {0, 1}
Output: boolean value TRUE or FALSE
1: ` ← dk · log2q · (n − a)/|H|e

˜2: h ← H(H(d)||r)||H(H(H(d)||r))|| . . . ||H` (H(d)||r)
3: for i = 1 to k do do

˜4: di ← Fn−a!(h̃(i−1)·log2q·(n−a)+1, . . . , hi·log2q·(n−a))
5: end for
6: for i = k − 1 to 0 do
7: Si ← P(Si+1||Xi+1) ⊕ di+1

8: end for
9: if S0 = 0 then

10: return TRUE
11: else
12: return FALSE
13: end if

Similar to [16] we find that every attacker, who can break the EUF-CMA se-
curity of the modified scheme, can also break the standard Gui signature scheme.

In order to get a secure scheme, we must ensure that every signature is gen-
erated using a different random seed. Under the assumption of maximal 264

signatures being generated with the system [11], a random salt of length 128 bit
seems reasonable.

1.7 Note on the generation of random field elements

During the key and signature generation of Gui, we make use of a large number
of random field elements. These are obtained by calling a cryptographic random
number generator such as that from the OpenSSL library. In our implementa-
tion we use the AES CTR_DRBG function. In debug mode, our software can either
generate random bits and store them in a file, or read in the required random
bits from a file (for Known Answer Tests).

1.8 Parameter Choice

We choose GF(2) as the underlying finite field and choose the repetition factor
k to be 2. We propose the following three parameter sets for Gui

11

— Internet: Portfolio 269

Gui-184 Gui(GF(2),184,33,16,16,2) with 168 equations in 200 variables

Gui-312 Gui(GF(2),312,129,24,20,2) with 288 equations in 332 variables

Gui-448 Gui(GF(2),448,513,32,28,2) with 416 equations in 476 variables

The reason for restricting our scheme to the field GF(2) is to find a good balance
between security and efficiency. During the signature generation process, we
have to invert a univariate polynomial of degree D over the extension field E.
The complexity of this step can be estimated as

ComplexitySignGen = O(log (|E|) · D3) = O(n · D3).q

For efficiency reasons, we therefore aim at decreasing D as far as possible.
On the other hand we want, for security reasons, the HFE polynomial (1) to
contain not too few quadratic terms. Since this number directly depends on
r = blogq(D − 1)c + 1, we choose q as small as possible, i.e q = 2.
The idea behind the choice of D, a and v is that we want HFE, the minus
method and the vinegar modification to play a more or less equally important
role in enhancing the security of our scheme. Therefore, we choose D, a and v to
increase more or less proportionally with increasing security. By doing so, Gui
can be seen as balanced version of HFEv-, where HFE, the minus method and
the vinegar modification are equally important. Due to the vast improvements
in implementation efficiency, our solution comes without much sacrifice of effi-
ciency, but reduces the risk of possible future attacks against Gui significantly.
For ease of implementation, we furthermore choose the parameters n, a and v of
Gui in such a way that the lengths of the hash values di (i = 1, . . . , k) and the
resulting Gui signatures are multiples of 8 bit. Moreover, for efficiency reasons
(special processor instructions), the size n of the extension fields is chosen to be
close to multiples of 64.
The resulting key and signature sizes can be found in Section 4.1.

Additionally to the three parameter proposals Gui-184, Gui-312 and Gui-448, we
give here two more parameter sets to illustrate certain aspects of the parameter
choice.

Gui-160 Gui(GF(2),160,33,16,16,2) The value n = 160 is not large enough to
prevent quantum brute force attacks (see Section attacks 6.2) against the
scheme. While the complexity of a classical brute force attack of 2147 gates
is acceptable for NIST security category I, the complexity of a quantum
brute force attackagainst the scheme is only 294 (logical) quantum gates.

Gui-192 Gui(GF(2), 192,9,8,8,2) While the number of equations in the scheme
is large enough to prevent brute force attacks, the scheme is, due to the
small values of D, a and v, vulnerable by direct attacks (see Section 6.3).
The degree of regularity of a direct attack against this scheme can be
estimated as (4 + 8 + 8 + 7)/3 = 9, leading to a complexity of the direct
attack of about 2116 gates.

12

270 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

1.8.1 Note on the used hash functions

We use SHA-2 as the hash function underlying our Gui instances. The SHA-
2 hash function family comprises the four hash functions SHA224, SHA256,
SHA384 and SHA512 with output lengths of 224, 256, 384 and 512 bits respec-
tively. We use

‹ SHA256 for Gui-184

‹ SHA-384 for Gui-312 and

‹ SHA-512 for Gui-448.

An analysis of the security of the proposed Gui instances against collision attacks
can be found in Section 5.3.

2 Key Storage

2.1 Representation of Finite Field Elements

2.1.1 Elements of F2

The field of two elements, denoted as F2, is the set {0, 1}. The multiplication
of elements in F2 is a logic AND and addition is a logic XOR. Each element of F2

is stored in one bit.

2.1.2 Vectors over F2

A vector of l elements in F2 is represented as a bit sequence of length l. Vectors
are the basic building blocks of our implementations. All components in the
key file are in the form of vectors over F2 of different length.
Suppose v = (v0, . . . , vl−1) ∈ Fl

2 and vi ∈ F2.

‹ v0 corresponds to the least significant bit of the l bit sequence.

‹ If l is a multiple of 8, v is stored in l/8 bytes.

‹ If l is not a multiple of 8, v is stored in b(l + 7)/8c bytes and the bits with
index > l are padded with 0.

2.2 Public Key

The public key P of Gui is a set of m multivariate quadratic polynomials in n
variables (we write P := MQ(m, n)). The monomials are ordered according to
the “graded-reverse-lexicographic” order.
Therefore, the system P looks as follows.

13

— Internet: Portfolio 271

y1 = q2,1,1 · x2x1 + q3,1,1 · x3x1 + q3,2,1 · x3x2 + q4,1,1 · x4x1 + q4,2,1 · x4x2

+ q4,3,1 · x4x3 + · · · + qn,n−1,1 · xnxn−1 + l1,1x1 + l2,1x2 + · · · + ln,1xn + c1

y2 = q2,1,2 · x2x1 + q3,1,2 · x3x1 + q3,2,2 · x3x2 + q4,1,2 · x4x1 + q4,2,2 · x4x2

+ q4,3,2 · x4x3 + · · · + qn,n−1,2 · xnxn−1 + l1,2x1 + l2,2x2 + · · · + ln,2xn + c2

. . .

ym = q2,1,m · x2x1 + q3,1,m · x3x1 + q3,2,m · x3x2 + q4,1,m · x4x1 + q4,2,m · x4x2

+ q4,3,m · x4x3 + · · · + qn,n−1,m · xnxn−1 + l1,mx1 + l2,mx2 + · · · + ln,mxn + cm

Here, qi,j,k is the coefficient of the quadratic monomial xixj of the polynomial
yk, li,k the coefficient of the linear monomial xi in yk and ck the constant
coefficient of yk (1 ≤ j < i ≤ n, 1 ≤ k ≤ m). Note that there are no xixj terms
with i = j, since the polynomials are defined over F2.
We define the vectors qi,j = (qi,j,k)

m
2 , li = (li,k)

m
2 , and c =∈ Fm ∈ Fm

k=1 k=1
(c1, . . . , cm) ∈ Fm . Using this notation, the public key P is stored as a byte 2
sequence

[l1, . . . , ln, q2,1, q3,1, q3,2, . . . , qn,n−2, qn,n−1, c].

2.3 Secret Key

The secret key comprises the three components T , S, and F . These components
are stored in the order T , S, and F .

2.3.1 The affine maps T and S

Suppose the affine map T (x) : Fn+v → Fn+v is given by
⎤⎡⎤⎡⎤⎡

t1,1 t1,2 . . . t1,n+v x1 c1

T (x) = ⎢⎣
⎢⎣

⎥⎦
⎥⎦+ ⎢⎣

⎥⎦

X

tn+v,1 tn+v,2 . . . tn+v,n+v xn+v cn+v

We store the matrix in column-major form. Define, for i := 1, . . . , n + v, the
column vector ti = (t1,i, . . . , tn+v,i) ∈ Fn+v, as well as the vector of the constant 2
terms c = (c1, . . . , cn+v) ∈ Fn+v . With this, the affine map T is stored as the 2
sequence

[t1, t2, . . . , tn0 , c].

The affine map S is stored in the same manner.

2.3.2 The central map F

Recall that the central map of Gui is a map from E × Fv to E of the form
i q i≤D+qXj ≤Dq

i j i+qαi,j X
q βi(v1, . . . , vv)X

q + γ(v1, . . . , vv).F(X) = +
0≤i≤j 0≤i

14

272 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

An element in E := F2n is stored as an n dimensional vector in Fn
2 . The field

isomorphism φ : Fn → E is described in the next section. 2
The coefficients of F(X) are stored in the order αi,j , βi, and γ.

+2j ≤D +2j ≤Dαi,j : The coefficients (αi,j)0
2
≤
i

i≤j ∈ E are divided into 2 groups A : (αi,j)0
2
≤
i

i=j
2i+2j ≤Dand B : (αi,j) . These elements are stored in the order A, B. Within A0≤i<j

and B, the coefficients αi,j are stored in ascending order (with respect to the
exponent 2i + 2j).
The reason for partitioning the coefficients αi,j into the two groupt A and B
is that the elements of A a later combined with the maps βi to compute the
coefficients of the linear terms of the parametrized map FV .

βi(v1, . . . , vv) : Each βi contains v E-elements corresponding to the coefficients
of the linear monomials v1, . . . , vv . We denote the elements of the vector βi by
(βi,1, . . . , βi,v). The β part of F(X) is stored in the order

[β0,1, . . . , β0,v, β1,1, . . . , βblog2Dc,v].

γ(v1, . . . , vv) : The map γ : Fv → E is a multivariate quadratic polynomial in
2the n variables v1, . . . , vn. Using the field equations x = xi (i = q, . . . , v), we i

find that we can interpret the linear terms of γ as quadratic ones. Therefore,
we can consider γ as a homogeneous quadratic polynomial. We store the coef-
ficients of γ according to the graded-reverse-lexicographic order. Therefore we

2get γ(v1, . . . , vv) = γ1,1v1 + γ2,1 · v2 · v1 + γ2,2 · v2 · v2 + · · · + γv,v · vv · vv. The γ
part of F(X) stores the v(v + 1)/2 coefficients of γ(v1, . . . , vv) as a sequence

[γ1,1, γ2,1, γ2,2, γ3,1, . . . , γv,v)].

Note that each of the γi,j is a vector of n bits.

Example (central map of degree 17): The quadratic monomials in a
+20 +21 +21

degree-17 central map are {X2 = X20 , X3 = X20 , X4 = X21
, X5 =

X22 +20
X22+21

X22+22
X23+20

X23+21
, X6 = , X8 = , X9 = , X10 = , X12 =

X23 +22
, X16 = X23+23

, X17 = X24+20 }. These are divided into the sets A =
{X2, X4, X8, X16} and B = {X3, X5, X6, X9, X10, X12, X17}. We denote the
coefficient of Xq i+qj

by αi,j .
The set of linear monomials is given by {X, X2, X4, X8, X16} . Note that the
monomials X2, X4, X8 and X16 are also contained in the set A of quadratic
monomials. That is why we do not need constant terms in the linear functions
βi. We denote the linear function multiplied to Xq i

by βi and the coefficient of
vj in βi by βi,j .
Finally, we have to append the coefficients of the map γ.

15

— Internet: Portfolio 273

The coefficients of F(X) are therefore stored in the order

[α0,0, α1,1, α2,2, α3,3 , α0,1, α0,2, α1,2, α0,3, α1,3, α2,3, α0,4 ,{z } | {z
setA setB

|
| {z

}
}

coefficients αi,j of quadratic terms

β0,1, . . . , β0,v , β1,1 , . . . , β4,v , γ1,1, γ2,1, γ2,2, . . . , γv,v]. | {z } | {z }
coefficients of the linear maps βi coefficients of the quadratic map γ

2.4 The field isomorphism φ

We use the field of 256 elements, F256, each element occupying 1 byte, as a basic
operating unit. The larger extension fields are further extended from F256.

We first describe here the field isomorphism φ256 : F8 → F256 and then de-2
scribe the isomorphism φ mapping vectors over F2 to E.

2.4.1 The isomorphism φ256 : F8
2 → F256

We use the tower field representation of F256 which considers an element in
F256 as a linear polynomial over F16. Elements of GF(16) are viewed as linear
polynomials over GF(4) and so on. The sequence of tower fields from which we
build F256 looks like

2F4 := F2[e1]/(e1 + e1 + 1),
2F16 := F4[e2]/(e2 + e2 + e1),
2F256 := F16[e3]/(e3 + e3 + e2e1) .

We use b256 = (1, e1, e2, e1e2, e3, e1e3, e2e3, e1e2e3) ∈ F8
256 as a basis for F256.

Such, the F256-element encoded as 0x2 is e1, 0x4 is e2, 0x8 is e1e2, 0x16 is
e3 etc., and numbers up to 0xff are their combinations, for example 0x1d =
e3 + e1e2 + e2 + 1.

The field isomorphism φ256 maps a vector v = (v1, . . . , v8) ∈ F8 to the F2562
element v1 + v2 · e1 + · · · + v8 · e1e2e3.

2.4.2 The isomorphism φ : F2
n → E

A field element in F2184 is represented as a degree 22 polynomial in F256[X]. We
define

F2184 := F256[X]/X23 + X3 + X + 0x2 .

The isomorphism φ : F184 → F2184 is defined as2

φ : a =(a1, . . . , a184) ∈ F2184 7→

(b0, . . . , b22) = (φ256(a1, . . . , a8), . . . , φ256(a177, . . . , a184)) ∈ F22
256 7→

b0 + b1 · X + b2 · X2 . . . + b22 · X22 ∈ F256[X] .

16

274 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

The isomorphisms for the other extension fields used for Gui differ from the
above construction only by the use of different irreducible polynomials. We
define

F2184 := F256[X]/X23 + X3 + X + 0x2,

F2312 := F256[X]/X39 + X2 + X + 0x2,

F2448 := F256[X]/X56 + 0x2 · X3 + X + 0x10. (2)

3 Implementation Details

In this section we present the details of our implementation of the Gui signature
scheme.

3.1 Arithmetic Over Finite Fields

The first step in our implementation of the Gui signature scheme is to pro-
vide efficient arithmetic operations over the large binary fields in use. To do
this, we use a set of new processor instructions for carry-less multiplication:
PCLMULQDQ [18].
The instruction set PCLMULQDQ allows the efficient multiplication of two de-
gree 64 polynomials over GF(2), resulting in a polynomial of degree 128. The
PCLMULQDQ instructions are available on most new processors of Intel and
AMD. Performance data of PCLMULQDQ can be found in Table 1.

Processor type Latency (cycles) Throughput (cycles/multiplication)
Intel Sandy Bridge 14 8

Ivy Bridge 14 8
Haswell 7 2
Skylake 7 1

AMD Bulldozer 12 7
Piledriver 12 7
Steamroller 11 7

Table 1: Performance of PCLMULQDQ on different platforms [8]

In the case of Gui, we represent an element of the field E as a polynomial
over GF(2) of degree 184, 312 or 448. These polynomials can be divided into
3–7 polynomials of degree 64, which then can be used as input values for PC-
MULQDQ. A multiplication over the large field E is divided into two phases,
namely a multiplication and a reduction phase.

In the multiplication phase, the multiplication of two 184-bit polynomials can
be performed by 6 calls of PCLMULQDQ. With the help of the Karatsuba al-
gorithm, we can avoid 3 calls of PCLMULQDQ and therefore its long latency

17

— Internet: Portfolio 275

(see Table 1).
To square an element of E, we need only 3 calls of PCLMULQDQ since we are
operating over a field of characteristic 2.

The reduction phase of the field multiplication heavily depends on the rep-
resentation of the extension fields. The baseline for ths step is 9 calls of
PCLMULQDQ, since, after the multiplication phase, the degree of the poly-
nomial will be greater than 5 · 64.
The irreducible polynomials used to define the extension fields (see equation
(2)) are chosen to contain only few terms of low degree. With few terms in the
irreducible polynomials, we can replace the use of PCLMULQDQ by a few logic
shifts and XOR instructions.

Since, regardless of the input, the same operations are performed, our implemen-
tation provides time-constant multiplication for preventing side channel leakage.
The same strategy is also applied to the calculation of multiplicative inverses.
For example, for the sake of time-constant arithmetics, the inverse of an element
x ∈ GF(2184) is calculated by raising x to x2

184−2 instead of the faster extended
Euclidean algorithm.

3.2 Inverting the HFEv- Core

In this section we describe how we can perform the inversion of the central
HFEv- equation FV (Ŷ) = X efficiently. To invert the central HFEv- equation,
we have to run the Berlekamp or Cantor-Zassenhaus algorithms to find the
roots of the polynomial FV (Ŷ) − X. In order to speed up the computations,
we restrict to polynomials FV (Ŷ) − X having a unique solution (see Algorithms
GuiSign and GuiSign?). Therefore, we only have to perform the first step of
the algorithm, i.e. the computation of

Y 2
n

gcd(FV (Ŷ) − X, ˆ − Ŷ). (3)

In case that this gcd is not a linear polynomial, we choose another value for the
random seed r and try again. We have

Y 2
n

gcd(FV (Ŷ) − X, ˆ − Ŷ)Y Y
= gcd(FV (Ŷ) − X, (Ŷ − i)) = (Ŷ − i).

i∈F2n i∈F2n :FV (i)=X

Therefore the most costly step in generating a signature consists in computing
Y 2

n
gcd(FV (Ŷ) − X, ˆ − Ŷ). The number of roots of FV (Ŷ) − X (as well as the
only solution when that happens) can obviously be read off from the result.

Probability of a Unique Root. Every time we choose the values of Minus
equations and Vinegar variables (respectively, when we pick a salt), we basi-
cally pick a random central equation FV (Ŷ) − X = 0. The probability of this

18

276 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

equation having a unique solution is about 1/e. Therefore, in order to invert
the HFEv- central equation k times successfully, we have to perform the gcd

kcomputation about e times.
The repeated computation of the gcd is probably the most detectable side chan-
nel leakage of our scheme. However, there are no known side channel attacks
on big field schemes or HFEv- which use the information that one particular
equation in the big field has no, respectively two or more solutions.

How Do We Optimize the Computation of the GCD? The most costly
step in the computation of the gcd is the division of the extreme high power

Y 2
n

polynomial ˆ − Ŷ mod FV (Ŷ). A naive long division is unacceptable for this
purpose due to its slow reduction phase. Instead of this, we choose to recursively

Y 2
m

raise the lower degree polynomial ˆ to the power of 2.

� �2
Y 2

mˆ mod FV (Ŷ)
⎛ ⎞ ⎛ ⎞2

X X
= ⎝ biŶ

i⎠ mod FV (Ŷ) = ⎝ b2Ŷ 2i⎠ mod FV (Ŷ)i
i≤D i≤D

By multiplying Ŷ to the naive relation
X

Ŷ D Ŷ 2i+2j

= αij ,
0≤i≤j,2i +2j <D

Y 2
i

we can prepare a table for ˆ mod FV (Ŷ) first. The remaining computation of
Y 2

m
the raising process consists in squaring all the coefficients bi in ˆ mod FV (Ŷ)
and multiply them to the Ŷ 2i’s in the table.
Although the starting relation

X
Y 2

i+2jFV (Ŷ) = Ŷ D + αij
ˆ

0≤i≤j, 2i+2j <D

is a sparse polynomial, the polynomials become dense quickly in the course of
the raising process. However, the number of terms in the polynomials is re-
stricted by D because of mod FV (Ŷ). We expect the number of terms to be in
average D during the computation.

We implemented the simplified Cantor-Zassenhaus algorithm in such a way that
it takes, independently of the input, always the same number of iterations in the
main gcd loop and the same number of operations in the big field. Therefore
the algorithm runs, independently from the input, at constant time.

Y 2
i

The number of field multiplications needed to compute the ˆ table is O(2·D2).
To raise Ŷ 2m

to Ŷ 2n
, we need O((n − m) · D) squarings and O((n − m) · D2)

19

— Internet: Portfolio 277

multiplications.
It is possible to reduce the number of computations needed for computing Ŷ 2m

Ŷ i Ŷ 2m
further by using a higher degree table. For example, if one raises to
Y 2

4mˆ in one step, one only needs O((n−m) ·D) squarings and O((n−m) ·2 ·D2)
Y 2

i
multiplications. However, the computational effort of preparing the ˆ table
increases.

4 Performance Analysis

4.1 Key and Signature Sizes

The following table shows the key and signature sizes of our proposed Gui-
instances.

parameters
(n, D, a, v, k)

public key
size (kB)

private key
size (kB)

signature
size (bit)1

Gui-184 (184, 33, 16, 16, 2) 416.3 19.1 360
Gui-312 (312, 129, 24, 20, 2) 1,955.1 59.3 504
Gui-448 (448, 513, 32, 28, 2) 5,789.2 155.9 664
1 including 128 bit salt

Table 2: Key and Signature sizes of the proposed Gui instances

4.2 Performance on the NIST Reference Platform

Processor: Intel(R) Xeon(R) CPU E3-1225 v5 @ 3.30GHz (Skylake)
Clock Speed: 3.30GHz
Memory: 64GB (4x16) ECC DIMM DDR4 Synchronous 2133 MHz (0.5 ns)
Operating System: Linux 4.8.5, GCC compiler version 6.4
No use of special processor instructions

scheme
parameters
(n, D, a, v, k)

key
generation

signature
generation

signature
verification

Gui-184 (184, 33, 16, 16, 2)
cycles 2,408M 1,910M 152k

time (ms) 213 10.4 0.051
memory 3.5MB 3.4MB 3.3MB

Gui-312 (312, 129, 24, 20, 2)
cycles 43,817M 25,436M 846k

time (ms) 13,227 7,707 0.256
memory 5.4MB 3.8MB 5.0MB

Gui-448 (448, 513, 32, 28, 2)
cycles 239,502M 872,949M 1,787k

time (ms) 71,485 264,530 0.542
memory 17.7MB 10.7MB 8.7MB

Table 3: Performance of Gui on the NIST Reference Platform (Linux/Skylake)

20

278 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

4.3 Performance on Other Platforms

Processor: Intel(R) Xeon(R) CPU E3-1225 v5 @ 3.30GHz (Skylake)
Clock Speed: 3.30GHz
Memory: 64GB (4x16) ECC DIMM DDR4 Synchronous 2,133 MHz (0.5 ns)
Operating System: Linux 4.8.5, GCC compiler version 6.4
Use of PCLMULQDQ instructions

scheme
parameters
(n, D, a, v, k)

key
generation

signature
generation

signature
verification

Gui-184 (184, 33, 16, 16, 2)
cycles 704M 34M 169k

time (ms) 213 10.4 0.051
memory 3.5MB 3.4MB 3.3MB

Gui-312 (312, 129, 24, 20, 2)
cycles 4,790M 1,757M 595k

time (ms) 1,452 532 0.181
memory 5.4MB 3.6MB 5.0MB

Gui-448 (448, 513, 32, 28, 2)
cycles 32,247M 86,086M 3,385k

time (ms) 9,772 26,086 1.025
memory 9.2MB 10.7MB 8.7MB

Table 4: Performance of Gui on Linux/Skylake (PCLMULQDQ)

Processor: Intel(R) Xeon(R) CPU D-1541 @ 2.10GHz (Broadwell)
Clock Speed: 2.1GHz
Memory: 64GB (4x16) ECC DIMM DDR4 Synchronous 2133 MHz (0.5 ns)
Operating System: Linux 4.8.5, GCC compiler version 6.4
Use of PCLMULQDQ instructions

21

— Internet: Portfolio 279

scheme
parameters
(n, D, a, v, k)

key
generation

signature
generation

signature
verification

Gui-184 (184, 33, 16, 16, 2)
cycles 721M 34M 141k

time (ms) 343 16.3 0.067
memory 3.7MB 3.2MB 3.2MB

Gui-312 (312, 129, 24, 20, 2)
cycles 4,955M 1,815M 371k

time (ms) 2,360 864 0.018
memory 5.3MB 3.5MB 4.8MB

Gui-448 (448, 513, 32, 28, 2)
cycles 30,025M 88,528M 3,307k

time (ms) 71,485 42,156 1.575
memory 17.5MB 10.7MB 8.6MB

Table 5: Performance of Gui on Linux/Broadwell (PCLMULQDQ)

4.4 Note about the measurements

Turboboost is disabled on our platforms. The main compilation flags are gcc
-O3 -std=c99 -Wall -Wextra (-mclmul). The used memory is measured dur-
ing an actual run using /usr/bin/time -f "%M" (average of 10 runs). For key
generation, signatures and verification we take the average of 10 runs.

4.5 Trends as the number n of variables increases

Key Generation: Like other large field multivariate schemes, HFEv-/Gui
2uses interpolation to generate the keys, which takes about n times the time

needed to evaluate the central map once. This is often said to be an O(n6)
operation. In practice, the HFE polynomial has O((log D)2) terms, each of q
which takes O(log D) square-and multiplies in the big field, so the complexity q
is closer to O(n4 log D3) in our range. q

Verification/Public Map: This is a straightforward MQ evaluation and is
O(n3),

Signature/Secret Map: The simplified Cantor-Zassenhaus algorithm takes
O(nD) big field multiplications, but is in our implementation in practice closer
to O(nD2). Similarly, the big field multiplication is O(n log n) but is in practice
is closer to O(n2), so in our range the time used increase more like O(n3D2).

22

280 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

5 Expected Security Strength

In the NIST call for proposals [11], the security of a scheme is measured in
the number of classical or quantum gates that an attack against the scheme
requires. Hereby, the number of quantum gates contains a factor MAXDEPTH,
which, according to [11], can take the values 240, 264, or 296 . According to this,
the proposed 6 NIST security categories are defined as shown in Table 6.

category log2 classical gates log2 (logical) quantum gates
I 143 130 / 106 / 74
II 146
III 207 193 / 169 / 137
IV 210
V 272 258 / 234 / 202
VI 274

Table 6: NIST security categories

In this proposal, we use a value of MAXDEPTH of 264 . This seems plausible to us
since, in a quantum setting, the best known attack against our scheme is the
quantum brute force attack, for which we assume MAXDEPTH to be more or less
in the middle of the given extremas. This choice results in the values printed in
bold in Table 6.

5.1 General Remarks

The Gui signature scheme as described in Section 1.6 of this proposal fulfills the
requirements of the EUF-CMA security model (existential unforeability under
chosen message attacks). The parameters of the scheme (in particular the length
of the random salt) are chosen in a way that up to 264 messages can be signed
with one key pair. The scheme can generate signatures for messages of arbitrary
length (as long as the underlying hash function can process them).

5.2 Practical Security

In this section we study the practical security of the proposed instances of the
Gui signature scheme. Since the security of Gui can not be reduced directly to a
hard mathematical problem such as the MQ-Problem, we choose the parameters
of Gui in a way that the complexities of all known attacks against Gui are beyond
the required levels of security. We note that, despite of the altered signature
generation process, all of the known attacks against Gui are attacks against the
underlying HFEv- scheme. These include (see Section 6):

‹ brute force attacks (see Section 6.2)

‹ direct algebraic attacks (see Section 6.3)

23

— Internet: Portfolio 281

‹ rank attacks of the Kipnis-Shamir type (see Section 6.4) and

‹ the distinguishing attack (see Section 6.5).

While the first two of these attacks are signature forgery attacks, which have
to be performed for every message separately, the Kipnis-Shamir attack and
the distinguishing attack are key recovery attacks. After having recovered the
HFEv- private key using one of these attacks, the attacker can generate signa-
tures for arbitrary messages in the same way as a legitimate user. Further note
that, due to the special signature generation process of Gui, the attacker has,
in order to forge a Gui signature, to run the HFEv- signature forgery attacks k
times.

The following table shows the complexity of these known attacks against our
Gui instances. In each cell, the first number shows the number of classical gates
required to perform the attack, while the second number shows the required
number of quantum gates. In each row, the number printed in bold shows the
complexity of the best attack against the scheme.

parameters log2(#gates)
(n, D, a, v, k) direct1 brute force MinRank1 distinguisher

156.8 171.9 323.6 246.4
Gui-184 (184, 33, 16, 16, 2)

156.8 108.2 323.6 191.4
221.6 292.0 480.5 370.7

Gui-312 (312, 129, 24, 20, 2)
221.6 170.5 480.5 280.3
293.3 420.1 665.2 509.9

Gui-448 (448, 513, 32, 28, 2)
293.3 236.1 665.2 381.9

1 As our analysis (see Section 6) shows, there is no difference between the number
of classical and quantum gates for direct and rank attacks.

Table 7: Estimated attack complexities against the proposed Gui instances

Based on the above security evaluation (and the results of Section 5.3 below) ,
we propose Gui-184 for the security categories I and II (see Table 4). Gui-312
meets the requirements of security categories III and IV, whereas Gui-448 is
suitable for the security Categories V and VI.

5.3 Security against collision attacks

Additionally to the attacks against the Gui scheme itself, we also have to study
the security of our schemes under collision attacks against the underlying hash
functions. As already mentioned in Section 1.8.1, we use

‹ SHA256 for Gui-184

‹ SHA384 for Gui-312 and

24

282 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

‹ SHA512 for Gui-448

as hash functions underlying the proposed Gui instances. For all of the proposed
schemes, we use k = 2 as the repetition factor of our scheme. Therefore, we
obtain for the parameter ` used in Algorithms 2, 4, 6 and 8

` = dk · (n − a)/|He = 2,

which means that the vector h̃ used in these algorithms is given by

h̃ = H(d)||H(H(d)) (rsp. H(H(d)||r)||H(H(H(d)||r)).

The first hash value used in the signature generation process of Gui, d1 consists
of the first (n − a) bits of h̃, whereas d2 = h̃n−a+1, . . . , h̃2·(n−a).
In any case, all the bits of H(d) are contained either in d1 or d2, which means
that a collision attack against our scheme is at least as hard as a collision attack
against the hash function H. This justifies the classification of our Gui instances
into the corresponding security categories.

5.4 Side Channel Resistance

In our implementation of the Gui signature scheme (see Section 3), all key
dependent operations (in particular Gaussian Elimination, Exponentiation) are
performed in a time-constant manner. Therefore, our implementation is immune
against timing attacks.

25

— Internet: Portfolio 283

6 Analysis of Known Attacks

Despite of the modified signature generation process, the security of Gui is
based on that of the HFEv- scheme and all known attacks against Gui are
attacks against HFEv-. These include

‹ collision attacks against the hash function (Section 6.1)

‹ brute force attacks (Section 6.2)

‹ direct attacks (Section 6.3)

‹ rank attacks of the Kipnis-Shamir type (Section 6.4)

‹ the distinguishing attack of Perlner et al. (Section 6.5).

Brute force and direct attacks are signature forgery attacks, which means that
they have to be performed for each message separately. Furthermore, due to the
special signature generation process of Gui, these attacks have to be performed
k times in order to forge a Gui signature. On the other hand, the rank attack
of Kipnis and Shamir and the distinguishing attack are key recovery attacks.
After having recovered the HFEv- private key using one of these attacks, the
adversary can sign messages in the same way as a legitimate user.

6.1 Collision attacks against the hash function

Since the Gui signature scheme follows the Hash then Sign approach, we have
to choose the parameters of Gui in such a way that collision attacks against the
underlying hash function are infeasible. However, due to the specially designed
signature generation process of Gui, this does not have a direct influence on the
number of equations in the public system. Since a Gui signature depends on
the k hash values d1, . . . , dk ∈ Fn−a, the resulting effective length of the hash
value is k · (n − a) · log2q bit. Therefore, the complexity of a collision attack
against our scheme is about

Complexitycollision = 2k·(n−a).

By choosing the repetition factor k in an appropriate way, it is therefore easy
to prevent collision attacks (even for a relatively small number (n − a) of equa-
tions).
An analysis of the security of our proposed Gui instances against collision at-
tacks can be found in Section 5.3.

6.2 Brute Force Attacks

Since the public system of Gui is defined over the field GF(2) with two elements,
the parameters of the scheme have to be chosen in a way that prevents brute
force attacks against binary MQ-systems. In the classical world, we have to

26

284 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

mention here the Gray Code enumeration of [3]. In order to solve a public HFEv-
system using this technique, one first fixes v + a variables to get a determined
system. The resulting system of n − a equations in n − a variables can then be
evaluated for every possible input using 2n−a+2 · log2(n − a) bit operations. In
order to forge a Gui signature, we have to perform this step k times. Therefore,
the complexity of this attack can be estimated as

= k · 2n−a+2 · log2(n − a)Complexitybrute force; classical

bit operations.
In the quantum world, brute force attacks can be sped up using Grover’s al-
gorithm. As shown in [17], we can find the solution of a binary MQ-system
of n − a equations in n − a variables using 2(n−a)/2 · 2 · (n − a)3 quantum bit
operations. Again, in order to forge a Gui signature, an attacker has to perform
this step k times. Therefore, we can estimate the complexity of a quantum
brute force attack against our scheme as

= k · 2(n−a)/2 · 2 · (n − a)3Complexitybrute force; quantum

(quantum) bit operations.

6.3 Direct Attacks

Similar to the brute force attacks (see previous section), a direct attack consid-
ers the public equation P(z) = w as an instance of the MQ-Problem. Since
the public system of HFEv- is an underdetermined system (more variables than
equations), the most efficient way to solve this equation is to fix a + v vari-
ables to create a determined system before applying an algorithm like XL or a
Gröbner Basis technique such as F4 or F5 [6]. It can be expected that the re-
sulting determined system has exactly one solution. In some cases, one obtains
even better results when guessing additional variables before solving the system
(hybrid approach) [1].

Experiments [10, 7] have shown that the public systems of HFEv- can be solved
significantly faster than random systems. The reason for this is that these sys-
tems have a significantly lower degree of regularity. In [5] it was shown that the
degree of regularity of an HFEv- system is upper bounded by

(
(q−1)·(r+a+v−1) + 2 q even and r + a odd,2dreg ≤ (4)(q−1)·(r+a+v) + 2 otherwise.2

with r = blogq(D − 1)c + 1. Since the upper bound on the degree of regularity
given by equation (4) does not really help to estimate the complexity of direct
attacks against HFEv- schemes in practice, we follow here the analysis of [14].
In [14], Petzoldt derived from experiments the following lower bound for the
degree of regularity of an HFEv- system

a + r + v + 7
dreg = b c (5)

3

27

— Internet: Portfolio 285

(�

Furthermore, as shown in [14], the hybrid approach does not help to speed up
direct attacks against HFEv- schemes. In our security analysis (see previous
section), we therefore estimate the complexity of a direct attack against an
HFEv-(n, D, a, v) instance as

� �2 � �
n − a n − a ·Complexitydirect attack = 2 · k · 3 ·
dreg 2

bit operations, where dreg is given by formula (5).
Since there is no guessing step in the attack, we can not reduce its complexity
by the use of Grover’s algorithm.

6.4 Rank attacks of the Kipnis Shamir type

In [9], Kipnis and Shamir proposed a rank attack against the HFE cryptosys-
tem. The key idea of this attack is to consider the public and private maps of
HFE as univariate polynomial maps over the extension field. Due to the spe-
cial structure of the HFE central map, the rank of the corresponding matrix is
limited by r = blog2(D − 1)c + 1. It is therefore possible to recover the affine
transformation S by solving an instance of the MinRank problem.

In [2], Bouillaget et al. improved this attack by showing that the map S can be
found by computing a Gröbner Basis over the base field GF(2) (Minors Mod-
elling). By doing so, they could speed up the attack of Kipnis and Shamir
significantly. The complexity of the MinRank attack against HFE using the
Minors Modelling approach can be estimated as

� �ω
n + r

= ,ComplexityMinRank; HFE r

where r = blog2(D − 1)c + 1 is the rank of the matrix corresponding to the
central map and 2 < ω ≤ 3 is the linear algebra factor. In our security analysis
(see Secton 5.2), we choose the value of ω to be 2.3.

2In the case of HFEv-, the rank of the matrix is given by r + a + v . Therefore,
we can estimate the complexity of our attack by

�2.3n+r+a+v r + a + v even r+a+v= .ComplexityKS attack; HFEv− � �2.3n+r+a+v−1 r + a + v odd r+a+v−1

Since the quadratic systems to be solved during this attack are highly overde-
termined, the attack can not be sped up with the help of Grover’s algorithm.

2Since we work over fields of even chatacteristic, the rank of the matrix corresponding to
the central map F is always even. Therefore, in the case of r + a + v being odd, the rank of
this matrix is given by r + a + v − 1.

28

286 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

6.5 The Distinguishing attack of Perlner et al.

The distinguishing attack of Perlner et al. [13] uses the fact that the behavior
of a direct attack depends on the number of vinegar variables in the HFEv-
system. By using this fact, it is possible to remove the vinegar variables one
by one from the system. The resulting HFE- system can then be solved much
easier than the original system. The most costly step in the attack is hereby
to remove the first vinegar variable, i.e. the reduction of an HFEv-(n, D, a, v)
to an HFEv-(n, D, a, v − 1) scheme. The complexity of this first step can be
estimated as

� �2 � �
n + v − k n + v − k

ComplexityDistinguisher; classical = 2n−k · 3 · · ,
dreg 2

where

‹ n + v − k is the maximal number of variables for which a direct attack
against the projected systems HFEv-(n, D, a, v) and HFEv-(n, D, a, v − 1)
behaves differently; n + v − k is given as the maximal number n0 for which
the degree of regularity of a direct attack against a projected random
system of (n − a) quadratic equations in n0 variables is below dreg.

‹ dreg is the degree of regularity of a direct attack against the unprojected
HFEv-(n, D, a, v) system; according to [14], dreg can be estimated by

r + a + v + 7
dreg = d e.

3

In the presence of quantum computers, we can speed up the searching step of
this attack using Grover’s algorithm. We then get

� �2 � �
n + v − k n + v − k · 3 · · .ComplexityDistinguisher; quantum = 2(n−k)/2

dreg 2

6.6 Differential attacks

Differential attacks against the HFEv- scheme were intensively studied in [4].
In this paper, the authors proved that HFEv- has no differential symmetries or
invariants which could be used for differential attacks.

7 Advantages and Limitations

The main advantages of the Gui signature scheme are

‹ Very short signatures. The signatures produced by the Gui signature
scheme are of size about two times the corresponding security level. There-
fore, Gui produces the shortest signatures of all existing digital signature
schemes (both classical and post-quantum).

29

— Internet: Portfolio 287

‹ Security. Though there exists no formal security proof which connects
the security of the Gui signature scheme to a hard mathematical problem
such as MQ, we are quite confident about the security of our scheme. The
Gui signature scheme is based on the HFEv- signature scheme, which is
one of the best known and most analyzed multivariate schemes. The only
recent advance in the cryptanalysis of HFEv- like schemes is the Minors
modelling of the MinRank attack [2] from 2013. However, as shown in [15],
this attack can be easily prevented by increasing the numbers of minus
equations and vinegar variables. Moreover, while the behaviour of direct
attacks against Gui/HFEv-had long been a mystery, this problem could
be solved by the works of [5, 15, 14].
In general we can say that, in the case of the Gui signature scheme, the
experimental data follow closely the theoretical complexity estimations of
the known attacks. This is fundamentally different than for many other
cryptographic schemes, e.g. lattice based constructions, and gives us ad-
ditional confidence in the security of Gui.

‹ Modest computational requirements. Since Gui only requires sim-
ple linear algebra operations over a small finite field, it can be efficiently
implemented on low cost devices, without the need of a cryptographic
coprocessor [15].

‹ Efficiency. Though Gui is not one of the fastest multivariate schemes,
its performance is highly comparable with that of RSA and ECC (see [15]
and Section 4.2). Especially for high levels of security, the parameters
of Gui and therefore the running time do not increase as drastically as
in the case of RSA. We further mention here that, in the last years, the
performance of schemes like Gui has improved dramatically due to new
processor instructions such as PCLMULQDQ.

On the other hand, the main disadvantage of Gui is its Large Public Key
Size. The public key size of Gui lies, for the parameter sets recommended in
this proposal, in the range of 400 kB to 5MB and is therefore much larger than
that of many classical signature schemes such as RSA and DSA and e.g. lattice
based signature schemes.
On the other hand, the private key of Gui is much smaller than the public key,
which allows to store the private key on small devices such as smartcards.

References

[1] L. Bettale, J.C. Faugére, L. Perret: Hybrid approach for solving multivari-
ate systems over finite fields. J. Math. Cryptol. 3, pp. 177 - 197 (2009).

[2] L. Bettale, J.C. Faugére, L. Perret: Cryptanalysis of HFE, multi-HFE and
variants for odd and even characteristic. Designs Codes and Cryptography
69 (2013), pp. 1 - 52.

30

288 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

[3] C. Bouillaguet, H.-C. Chen, C.-M. Cheng, T. Chou, R. Niederhagen, A.
Shamir, B.-Y. Yang: Fast exhaustive search for polynomial systems in F2.
CHES 2010, LNCS vol. 6225, pp. 203 - 218. Springer, 2010.

[4] R. Cartor, R. Gipson, D. Smith-Tone, J. Vates: On the Differential Security
of the HFEv- Signature Primitive. PQCrypto 2016, LNCS vol. 9606, pp.
162 - 181. Springer, 2016.

[5] J. Ding, B.Y. Yang: Degree of Regularity for HFEv and HFEv-. PQCrypto
2013, LNCS vol. 7932, pp. 52 - 66. Springer, 2013.

[6] J.C. Faugére: A new efficient algorithm for computing Gröbner bases (F4).
J. Pure Appl. Algebra 139, pp. 61 - 88 (1999).

[7] J.C. Faugére: Algebraic cryptanalysis of Hidden Field Equations (HFE)
using Gröbner bases. CRYPTO 2003, LNCS vol. 2729, pp. 44 - 60. Springer,
2003.

[8] A. Fog: Instruction tables: Lists of instruction latencies, throughputs and
microoperation breakdowns for Intel, AMD and VIA CPUs, 7 December
2014. http:// www.agner.org/optimize/

[9] A. Kipnis, A. Shamir: Cryptanalysis of the HFE public key cryptosystem
by Relinearization. CRYPTO 1999, LNCS vol. 1666, pp. 19 - 30. Springer,
1999.

[10] M.S.E. Mohamed, J. Ding, J. Buchmann: Towards algebraic cryptanalysis
of HFE challenge 2. ISA 2011. CCIS vol. 200, pp. 123 - 131. Springer, 2011.

[11] NIST: Submission Requirements and Evaluation Criteria for the
Post-Quantum Cryptography Standardization Process. Available at
https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/submission-requirements

[12] J. Patarin, N.T. Courtois, L. Goubin: QUARTZ, 128-bit long digital sig-
natures. CT-RSA 2001, LNCS, vol. 2020, pp. 282 - 297. Springer, 2001.

[13] R. Perlner, A. Petzoldt, D. Smith - Tone: Improved Cryptanalysis of HFEv-
via Projection. Submitted to PQCrypto 2018. Available as IACR eprint
report 2017/1149.

[14] A. Petzoldt: On the Complexity of the Hybrid Approch on HFEv-. IACR
eprint report 2017/1135.

[15] A. Petzoldt, M.S. Chen, B.Y. Yang, C. Tao, J. Ding: Design principles for
HFEv- based multivariate signature schemes. ASIACRYPT 2015 (Part 1),
LNCS vol. 9742 , pp. 311 - 334. Springer, 2015.

[16] K. Sakumoto, T. Shirai, H. Hiwatari: On Provable Security of UOV and
HFE Signature Schemes against Chosen-Message Attack. PQCrypto 2011,
LNCS vol. 7071, pp 68 - 82. Springer, 2011.

31

— Internet: Portfolio 289

[17] P. Schwabe, B. Westerbaan: Solving Binary MQ with Grover’s Algorithm.
SPACE 2016, LNCS vol. 10076, pp. 303 - 322. Springer 2016.

[18] J. Taverne, A. Faz-Hernandez, D.F. Aranha, F. Rodrguez-Henrquez, D.
Hankerson, , J. Lopez: Software implementation of binary elliptic curves:
impact of the carry-less multiplier on scalar multiplication. CHES 2011.
LNCS vol. 6917, pp. 108123. Springer, 2011.

[19] J. Vates, D. Smith-Tone: Key recovery for all parameters of HFE-.
PQCrypto 2017, LNCS 10346, pp. 272 -288. Springer, 2017.

32

290 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

KINDI

20171130 Submission

Principal submitter

This submission is from the following team, listed in alphabetical order:

• Rachid El Bansarkhani, TU Darmstadt

E-mail address (preferred): elbansarkhani@cdc.informatik.tu-darmstadt.de

Telephone (if absolutely necessary): +49-6151-16-20667

Postal address (if absolutely necessary): Rachid El Bansarkhani, Department of Computer
Science, TU Darmstadt, Hochschulstraße 10, 64289 Darmstadt.

Auxiliary submitters: There are no auxiliary submitters. The principal submitter is the
team listed above.

Inventors/developers: The inventors/developers of this submission are the same as the
principal submitter. Relevant prior work is credited below where appropriate.

Owner: Same as submitter.

Signature:

See also printed version of “Statement by Each Submitter”.

Document generated with the help of pqskeleton version .

1

— Internet: Portfolio 291

Contents

1 Introduction 3

2 General algorithm specification (part of 2.B.1) 4

2.1 Trapdoor based Encryption KindiCPA with Uniform Errors 4

2.1.1 Parameter Space and Notation . 5

2.1.2 Secret and Public Keys . 5

2.1.3 Encryption . 6

2.1.4 Decryption . 7

2.2 Trapdoor-based CCA-secure KEM KINDIKEM with Uniform Errors 9

2.3 Key Generation . 10

2.4 Encapsulation . 10

2.5 Decapsulation . 11

3 List of parameter sets (part of 2.B.1)

3.1 Parameter set encrypt/KINDI − 256 − 3 − 4 − 2 11

3.2 Parameter set encrypt/KINDI − 512 − 2 − 2 − 2 12

3.3 Parameter set encrypt/KINDI − 512 − 2 − 4 − 1 12

3.4 Parameter set encrypt/KINDI − 256 − 5 − 2 − 2 12

3.5 Parameter set encrypt/KINDI − 512 − 3 − 2 − 1 12

3.6 Parameter set kem/KINDI − 256 − 3 − 4 − 2 12

3.7 Parameter set kem/KINDI − 512 − 2 − 2 − 2 12

3.8 Parameter set kem/KINDI − 512 − 2 − 4 − 1 12

3.9 Parameter set kem/KINDI − 256 − 5 − 2 − 2 12

3.10 Parameter set kem/KINDI − 512 − 3 − 2 − 1 12

4 Design rationale (part of 2.B.1)

5 Detailed performance analysis (2.B.2)

5.1 Description of platform 14.

13

14

11

2

292 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

5.2 Time . 14

5.3 Space . 16

5.4 How parameters affect performance . 18

5.5 Optimizations . 18

6 Expected strength (2.B.4) in general 18

6.1 Security definitions . 18

6.2 Rationale . 19

7 Expected strength (2.B.4) for each parameter set 19

7.1 Parameter set encrypt/KINDI − 256 − 3 − 4 − 2 19

7.2 Parameter set encrypt/KINDI − 512 − 2 − 2 − 2 19

7.3 Parameter set encrypt/KINDI − 512 − 2 − 4 − 1 19

7.4 Parameter set encrypt/KINDI − 256 − 5 − 2 − 2 19

7.5 Parameter set encrypt/KINDI − 512 − 3 − 2 − 1 19

7.6 Parameter set kem/KINDI − 256 − 3 − 4 − 2 19

7.7 Parameter set kem/KINDI − 512 − 2 − 2 − 2 20

7.8 Parameter set kem/KINDI − 512 − 2 − 4 − 1 20

7.9 Parameter set kem/KINDI − 256 − 5 − 2 − 2 20

7.10 Parameter set kem/KINDI − 512 − 3 − 2 − 1 20

8 Analysis of known attacks (2.B.5)

9 Advantages and limitations (2.B.6)

References

20

21

22

3

— Internet: Portfolio 293

1 Introduction

Lattices as mathematical objects have been studied by early mathematicians such as Gauss
or Dirichlet due to its extremely rich combinatorial structure appearing in many areas
of mathematics. But in the last 2 decades they have also extensively been utilized in
cryptography to build powerful cryptosystems, where the security stems from the worst-case
hardness of well studied lattice problems.

Beside the NTRU assumption the main computational assumptions exploited to build
those cryptosystems are the hardness of the problems LWE/SIS [1, 16, 12], ring-LWE/ring-
SIS [11, 14, 7, 13] and recently also MLWE/MSIS [10], which are equipped with security
guarantees based on worst-case lattice problems. However, the efficiency of cryptosystems
increases by imposing more structure. Thus, one almost only finds ring instantiations of the
respective schemes for use in practice.

The decision problems are widely used to build lattice-based encryption schemes, where the
public key and ciphertexts can be represented as LWE instances A · s + e. CPA-security is
thus obtained almost for free.

We propose trapdoor-based encryption schemes, where the message is injected into the er-
ror term. By use of the trapdoor, the secret vector and error terms are recovered during
decryption and are thus available for inspection. In many encryption schemes, this is indeed
not possible. Since the message is embedded in the error term, small expansion factors can
be realized at competitive parameters, i.e. we can encrypt more keys or data per (small)
ciphertext bit (e.g. for sign-then-encrypt). Furthermore, it can easily be transformed to
ensure CCA security. This work is based on [2, 15].

4

294 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

2 General algorithm specification (part of 2.B.1)

Parameter Definition
n power of two
xn + 1 cyclotomic polynomial
Z[x] set of polynomials with integer coefficients
Zb[x] set of polynomials with integer coefficients modulo b
R Z[x]/ hxn + 1i
Rb Zb[x]/ hxn + 1i
Rd

b set of d polynomials from Rb

q modulus
` module rank
k log q
[x] represents a polynomial in R with all coefficients equal to x.
bxe rounds x to the nearest integer.
g gadget g = 2k−1

g0 gadget g = 2k−2 used for higher security levels
rsec
p

coefficient range {−rsec, . . . , rsec − 1} of the secrets and error used
p = rsec for simplicity

t number of truncated bits per coefficient of the public key
A ∈ R `×` q public uniform matrix
r ∈ R ` secret key
p̄ ∈ R ` q public key
b̄ ∈ R ` q compressed public key
λ security parameter
δ decryption failure
µ seed of size 2λ for A ∈ R `×` q

γ seed of size 2λ for r, r0

MLWEx,y,z

Secret key size
MLWE instances over a module of rank x with y samples having uniform errors in {−z, . . . , z − 1}
n` log 2p + n`(k − t) + 2λ bits

Public key size n`(k − t) + 2λ bits
Message size n(` + 1) log 2p bits

2.1 Trapdoor based Encryption KindiCPA with Uniform Errors

In this section, we describe our CPA-secure Module-LWE/SIS based encryption scheme
KINDICPA. It is based on the works [2, 15] and employs trapdoors in order to recover the
secret vector and error term from Module-LWE instances. In fact, the scheme embeds the
message into the error term and further encrypts a random string (similar to a KEM) in
the secret vector, which can be exploited as a key for a symmetric key cipher. We note
that our encryption scheme can be seen in some sense as a ”simplified” KEM, where c =
KindiCPA.Encrypt(pk, msg) = (s1 ← R2, Encrypt(pk, msg||s1, G(s1)), msg||s1 ← Decrypt(sk, c)
and KindiCPA.Decrypt just outputs msg. One part of the message, namely the random string,
is always hashed with a random oracle in order to deterministically generate the secret and
error term. The encryption engine Encrypt(·) thus coincides with the deterministic encryption
scheme in [9], if msg is for instance set to ⊥. In our KEM construction we need s1 in order
to finally deduce the key, thus we take s1 ← R2 out of KindiCPA.Encrypt .

We now give a specification of the parameter space and the algorithms.

5

— Internet: Portfolio 295

2.1.1 Parameter Space and Notation

We operate with the rings R = Z[x]/ hxn + 1i and Rq = Zq[x]/ hxn + 1i, where n, q = 2k

are powers of two and k is a positive integer. In general, we define Rb := Zb[x]/ hxn + 1i for
2k−1some positive integer b. Furthermore, we introduce the gadget polynomial g = with

all coefficients being zero except for the constant. By ` we denote the module rank and the
message size per coefficient amounts to log2 rsec bits. Let λ denote the bit security level and
define p := rsec for simplicty. In the implementation, we use rsec instead. By [x] we denote
the polynomial with all coefficients equal to x.

2.1.2 Secret and Public Keys

Two seeds of size 2λ bits are generated, where λ ≥ 128. The first seed µ is used to generate
the public matrix A ∈ R `×` by use of a PRNG ∈ {Shake128, Shake256}, which consists of q

`2 uniformly distributed ring elements modulo q. This seed is public. The second seed γ
of size 2λ bits is secret and serves to generate the private key r ∈ R `q and the error term
r0 each consisting of ` ring elements with coefficients sampled uniformly at random from
{−p, . . . , p−1} . In particular, Shakep generates uniform random integers from {0, . . . , 2p−1}
with Shake and substracts p. The uncompressed public key part b is a module-LWE instance
b = A · r + r0 ∈ R `q . The public key thus consists of pk := (b̄, µ) and the secret key
sk := (r, p̄, µ) also contains the public key required for the decryption engine when recovering
the secret and error terms.

Algorithm 1: KINDICPA.KeyGen(1n, p, k, t, ̀) :

1 γ, µ ← {0, 1}n

2 A ∈ R `×` q ← Shake(γ)
3 r, r0 ∈ R ` q ← Shakep(µ)
4 b = A · r + r0

5 b̄ = Compress(b, t)
6 pk := (b̄, µ), sk := (r, ̄b, µ)
7 return (pk, sk)

Algorithm 2: Compress(x ∈ R `+1
q , t ∈ N) :

1 Truncate the t least significant bits of each coefficient in x .
2 b̄ = bx/2tc ∈ R `+1

2k−t .
3 return b̄

Compressing the public key just requires to truncate the least t significant bits. Thus, if the
public key is uniform random then so the compressed one.

6

296 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

2.1.3 Encryption

If coins =⊥ (required for the KEM) the encryptor samples a secret binary polynomial s1

with coefficients from {0, 1} uniformly at random, otherwise coins already contains s1 (for
the KEM). In what follows, the matrix A ∈ R `q is deterministically generated from µ.
The public key is retrieved, decompressed by multiplication with 2t and modified in such
a way that the constant polynomial g is added to p1. The random binary polynomial
s1 is extended via the random oracle G implemented as Shake to ` − 1 uniform random
polynomials (s2, . . . , s`) with coefficients in the range {0, . . . , 2p−1}, one random polynomial
s̄1 in the range {0, . . . , p − 1}, i.e. one bit per coefficient less than the other polynomials,
and a bit string of size n(` + 1) log 2p bits. To obtain a secret polynomial s1 over the full
range R2p, we shift s̄1 by one bit and add s1. The message msg is xored with the uniform
random string ū and finally split into n log 2p bit chunks that are encoded as polynomials
ui from Rn

2p with log 2p bits per entry. The error terms are just ui translated by p in each
coefficient. The ciphertext is computed as a module-LWE instances with the same secret
s = (s1 − [p], . . . , s` − [p]), where each coefficient is translated by p. To enable recovery of s1

we adjust the last ciphertext sample via subtraction of g · [p], which vanishes modulo q for
g = 2k−1 and p = 2x with x ≥ 1.

2k−2For n = 256 at a post quantum security level of 256 bits, we need s1 ← R4 and g = .
The coefficients are recovered with the alternative subroutine Recover0 .

Algorithm 3: KINDICPA.Encrypt(pk, msg = {0, 1}n(`+1) log 2p; coins =⊥ or s1 ∈ R2) :

1 s1 ← R2

2 A ← Shake(µ)
3 p̄ = Decompress(b̄, t)
4 p = (p̄1 + g, ̄p2, . . . , ̄p`)
5 ū ∈ {0, 1}n` log p, s̄1, (s2, . . . , s`) ∈ {0, 1}n(`+1) log 2p × Rp × R `−1

2p ← G(s1) := Shake(s1)
6 s = (s1 + 2 · ̄s1 − [p], s2 − [p], . . . , s` − [p])>

7 u = ū ⊕ msg
8 u = Encode(u)
9 e = (u1 − [p], . . . , u` − [p])> , e = u`+1 − [p]

10 (c, c)> = (A> · s + e, p · s + g · [p] + e) ∈ R `+1
q

11 return (c, c)

Algorithm 4: Decompress(x ∈ R `+1
q , t ∈ N) :

1 b = 2t · x

7

— Internet: Portfolio 297

Algorithm 5: Encode(u ∈ {0, 1}n(`+1) log 2p) :

1 Pack log 2p bits of u into each coefficient of ui ∈ R for 1 ≤ i ≤ ` + 1.
2 Each ui ∈ R contains n · log 2p bits.
3 u = (u1, . . . , u`+1)
4 return u

Theorem 2.1 In the random oracle model, assume that there exists a PPT-adversary A
against the scheme, then there exists a reduction D that breaks MLWE`,`+1,p such that

≤ 3AdvMLWE AdvCPA (D) .Kindi(A) `,`+1,p

Proof. We proceed in a sequence of hybrids. Thus, let H0 be the real IND − CPA game.
In H1, the MLWE instance b = A · r + e in the key generation step is changed to a
uniform random value. If there exists an adversary that can distinguish the hybrids H0

and H1, then there exists a reduction D0 that can distinguish MLWE`,`,p from uniform such
(D0) ≤ AdvMLWE that AdvH0,H1 (D0). In the hybrid H2, the elements u,¯¯ s1, (s2, . . . , s`) are `,`,p

replaced by uniform random elements (RO) such that e, e, s are again uniform random.
(D1) ≤ AdvMLWE Here too, we obtain AdvH1,H2 (D1) for the chosen parameters. Finally, in `,`,p

H3 the ciphertexts c = A> · s + e and c = p · s + g · [p] + e are replaced by uniform
random elements. If there exists an adversary that can distinguish the hybrids H2 and H3,
then there exists a reduction D2 that can distinguish MLWE`,`+1,p from uniform such that

(D2) ≤ AdvMLWE AdvH2,H3 (D2).`,`+1,p

We now analyze the advantage of an adversary in H0, which is given by

AdvH0 (A) := AdvCPA (A) = |P [b = b0] in H0 − 1/2]Kindi

(D) ≤ 3AdvMLWE ≤ AdvH0,H1 (D) + AdvH1,H2 (D) + AdvH2,H3 (D) .`,`+1,p

2.1.4 Decryption

The decryption engine works similar to the encryption engine. First, the least significant
bit of the coefficients of s1 are recovered via s1 = Recover(v) ∈ R2 and v = c − c · r> =
2k−1s1 + d mod q = 2k−1s1 + d mod q for some small kdk∞ . This recovery function has also
been used for instance in [4] avoiding if-else checks. From s1 the vectors ū and si are derived.
We obtain (u1 − [p], . . . , u`+1 − [p]) = (e, e) = (c − A> · s, c − p · s) mod q .. The decoder
Decode(u) maps the set of polynomials with coefficients in the range [0, 2p] to a bit string
such that the bit string msg = Decode(u) ⊕ ū returns the message.

8

298 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Algorithm 6: KINDICPA.Decrypt(sk, (c, c)) :

1 A ← Shake(µ)
2 p̄ = Decompress(b̄, t)
3 p = (p̄1 + g, ̄p2, . . . , ̄p`)
4 v = c − c · r>

5 s1 = Recover(v) ∈ R2

6 ū, s̄1, (s2, . . . , s`) ∈ {0, 1}n(`+1) log 2p × Rp × R `−1
p ← Shake(s1)

7 s = (s1 + 2 · ̄s1 − [p], s2 − [p], . . . , s` − [p])>

8 (e, e) = (u1 − [p], . . . , u`+1 − [p]) = (c − A> · s, c − p · s) mod q
9 msg = Decode(u) ⊕ ū

10 return (msg, s1)

Algorithm 7: Decode(u ∈ R `+1
2p) :

1 Concatenate the least significant log 2p bits of all coefficients in u into u.
2 return u ∈ {0, 1}n(`+1) log 2p

Algorithm 8: Recover(v ∈ Rq) :

1 Let vi be in {0, . . . , q − 1} .
2 For i = 1 to n do

3 bi = bvi/2k−1e mod 2
4 return b ∈ R2

Algorithm 9: Recover0(v ∈ Rq) :

1 Let vi be in {0, . . . , q − 1} .
2 For i = 1 to n do

3 bi = bvi/2k−2e mod 4
4 return b ∈ R4

Theorem 2.2 Let the coefficients of rj , rj
0 , sj − [p] and ei = ui − [p] be uniformly distributed

from {−p, . . . , p − 1} for 1 ≤ j ≤ ` and 1 ≤ i ≤ ` + 1. Then, for

δ := P [kw > · s + e − e · r >k∞ ≥ q/4]

the algorithm is (1 − δ) correct, where w = Decompress(Compress(A · r + r0)) − A · r.

Proof. We choose the parameters p and q such that s1 is correctly recovered. Let s =

9

— Internet: Portfolio 299

(s1 − [p], . . . , s` − [p]), then

kv − 2k−1 s1k∞ = kc − c > · r − 2k−1 s1k∞

= kp · s + g · [p] + e − (A> · s + e)> · r − 2k−1 s1k∞
> − 2k−1 = kg · (s1 − [p]) + g · [p] + e + w > · s − e · r s1k∞

= kw > · s + e − e · r >k∞ < q/4 .

We note that in case p = 2x, then the term g · [p] vanishes and is not needed in the compu-
tation.

For n = 256 and λ = 256 (key size 2λ bits resisting Grover’s search), we have g = 2k−2 . We
define the correctness requirement with respect to the bound q/8 rather than q/4, i.e.

δ := P [kw > · s + e − e · r >k∞ ≥ q/8] .

2.2 Trapdoor-based CCA-secure KEM KINDIKEM with Uniform Er-
rors

The key encapsulation mechanism KINDIKEM has the same parameter space as KINDICPA.
We adopt the transformation [9] in order to realize a KEM by our construction. In fact, we
already indicated in Section 2.1 that some of the transformations are already encompassed
in our construction. Thus, the construction gets very simple.

The generic construction secure in the quantum random oracle model is given by the following
two algorithms, where G, H, H0 denote random oracles.

Algorithm 10: QEncaps(pk) :

1 m ← M
2 c := Enc(pk, m, G(m))
3 K := H(m)
4 d := H0(m, c)
5 return (K, c, d)

We state the theorem for tight security, when the computation and check of d is omit-
ted. For that we combine the security implications [9] IND − CPA =⇒ OW − PCVA and
OW − PCVA =⇒ IND − CCA .

Theorem 2.3 Let M denote the message space. Furthermore, for any IND − CCA adversary
that makes qG queries to the random oracle G, qH queries to the random oracle H, and qD

10

300 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Algorithm 11: QDecaps(sk, c) :

1 m0 ← Dec(sk, c)
2 c0 := Enc(pk, m0 , G(m0))
3 if c0 = c ∧ H0(m0 , c) = d
4 return K := H(m0 , c)
5 else
6 return K := H(s, c)

queries to the decapsulation oracle, there exists an IND − CPA adversary such that

2 · qG + qH
AdvIND−CCA + 3AdvIND−CPA (B) ≤ qG · δ + (A) (1)KEM PKE|M|

and the running time of A is about that of B.

This reduction is tight. Thus, we can tightly reduce it from MLWE`,`+1,p .

For security in the quantum random oracle model, which requires d, there is an alternative
theorem in [9].

2.3 Key Generation

The key generation step just outputs the keys of KINDICPA .

Algorithm 12: KINDICCA−KEM.KeyGen(1n, p, k, d, ̀) :

1 (pk, sk) ← KINDICPA.KeyGen(1n, p, k, d, ̀)
2 return (pk, sk)

2.4 Encapsulation

The encapsulation mechanism slightly differs from the generic construction. We do not
need to input G(s1) but rather just s1. In fact, the encryption engine KINDICPA.Encrypt
does this implicitly within the algorithm as it applies G(s1) to deterministically deduce the
secret and error polynomials. At the same time s1 is encrypted (see KINDICPA.Encrypt).
As in the generic construction, we compute the key K ∈ {0, 1}2λ and d ∈ {0, 1}2λ . Due
to the fact that KINDI has a large message container, we can also encrypt d and send a
ciphertext that is as large as in KINDICPA. Finally, the ciphertext is output. We implement
the different random oracles as H(s1) := Shake(s1||padding), H0(s1, c) := Shake(s1, c) and
G(s1) := Shake(s1), where we use a one byte padding = 4.

11

— Internet: Portfolio 301

Algorithm 13: KINDICCA−KEM.Encaps(pk) :

1 s1 ← {0, 1}n

2 d ← H(s1)
3 (c, c)> ← KINDICPA.Encrypt(pk, d; s1)
4 K ← H0(s1, (c, c))
5 return K

2.5 Decapsulation

The decapsulation mechanism implicitly performs many steps of the generic construction
within KINDICPA.Decrypt. For instance, it is not required to encrypt s1

0 again once recovered
from the ciphertext as we prove below. It is only necessary, to check that the decrypted d
is equal to the computed d0 . In case, the check is correct the key is deduced, otherwise it
outputs a random key for some uniform random s ∈ {0, 1}2λ .

Algorithm 14: KINDICCA−KEM.Decaps(sk, (c, c, d)) :

1 (d0, s0 1) ← KINDICPA.Decrypt(sk, (c, c))
2 if d0 = d
3 return H0(s0 1, (c, c))
4 else
5 return H0(s, (c, c))

In the following lemma we show that it suffices to only check d0 = d in order to satisfy the
conditions from [9] for key decapsulation.

Lemma 2.4 If d0 = d is satisfied, then s0 1 = s1 and (c, c) = KINDICPA.Encrypt(pk, d; s0 1).

Proof. If d0 = d, then G(s1) = G(s1
0), which means that s1

0 has been correctly recovered. As
a result, we have that c, c is uniquely generated from s and u = Encode(ū ⊕ d) with

ū, s̄1, (s2, . . . , s`) ← G(s1
0)

and s1 = s1 + 2s̄1.

We note that if KINDICPA is (1 − δ) correct, then so is the resulting KINDICCA−KEM.

3 List of parameter sets (part of 2.B.1)

3.1 Parameter set encrypt/KINDI − 256 − 3 − 4 − 2

Public key encryption with n = 256, ` = 3, p = 4, t = 2 and q = 214 .

12

302 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

3.2 Parameter set encrypt/KINDI − 512 − 2 − 2 − 2

Public key encryption with n = 512, ` = 2, p = 2, t = 2 and q = 213 .

3.3 Parameter set encrypt/KINDI − 512 − 2 − 4 − 1

Public key encryption with n = 512, ` = 2, p = 4, t = 1 and q = 214 .

3.4 Parameter set encrypt/KINDI − 256 − 5 − 2 − 2

Public key encryption with n = 256, ` = 5, p = 2, t = 2 and q = 214 .

3.5 Parameter set encrypt/KINDI − 512 − 3 − 2 − 1

Public key encryption with n = 512, ` = 3, p = 2, t = 1 and q = 213 .

3.6 Parameter set kem/KINDI − 256 − 3 − 4 − 2

Key encapsulation mechanism with n = 256, ` = 3, p = 4, t = 2 and q = 214 .

3.7 Parameter set kem/KINDI − 512 − 2 − 2 − 2

Key encapsulation mechanism with n = 512, ` = 2, p = 2, t = 2 and q = 213 .

3.8 Parameter set kem/KINDI − 512 − 2 − 4 − 1

Key encapsulation mechanism with n = 512, ` = 2, p = 4, t = 1 and q = 214 .

3.9 Parameter set kem/KINDI − 256 − 5 − 2 − 2

Key encapsulation mechanism with n = 256, ` = 5, p = 2, t = 2 and q = 214 .

3.10 Parameter set kem/KINDI − 512 − 3 − 2 − 1

Key encapsulation mechanism with n = 512, ` = 3, p = 2, t = 1 and q = 213 .

13

— Internet: Portfolio 303

4 Design rationale (part of 2.B.1)

We propose a simple and highly efficient trapdoor-construction, where the public key B
represents an MLWE instance endowed with a trapdoor T. Roughly spoken, ciphertexts are
generated as MLWE instances B> · s + e, where s and e = u ⊕ msg are vectors of uniform
random polynomials. The message is simply xored to the error polynomials such that large
amounts of data can be encrypted at very competitive parameters, for instance useful in
sign-then-encrypt scenarios or for the transmission of encrypted key bundles etc. Different
to other proposals, the decryption engine can recover all s, e = u ⊕ msg and thus msg by
means of the trapdoor T. This further allows to inspect the secret and error polynomials and
use all of the information stored therein. Our proposal not only encrypts arbitrary messages,
but also outputs by construction a uniform random string s1 for free that can act as a key
for a symmetric key cipher as required in a KEM. In other words, the random coins used to
encrypt the message can be recovered by use of the trapdoor.

We choose to implement random oracles with the FIPS 202 standardized Shake. It is also
used in other lattice-based schemes such as Frodo and Kyber. The matrix A is generated
by use of a PRNG ∈ {Shake128, Shake256} and a uniform random input string µ of size
2λ bits. In fact, we only use Shake256 except for one parameter set namely n = 256 and
` = 3. For the optimized variants we use the Keccak code package1 that allows via AVX2
to compute 4 independent streams of random values on 4 inputs of the same length. Each
input inputi = µ||i is obtained by the seed concatenated with a one byte number 0 ≤ i ≤ 3
resulting in independent uniform random streams. Thus, we do not store A but rather derive
it from µ each time we need it. Since we work modulo 2k, each k bit chunk is considered
as a little endian integer representing one coefficient. Similarly, we generate uniform secrets
and errors just from Shake(s1). Our choice for p to be a power of two allows us to proceed
as with the matrix A taking the required bits from Shake for ū,̄s1 and s2, . . . , s` . For the
random oracle G we use the same padding scheme in our optimized variant. The message is
xored to ū prior to encoding.

However, for the computation of d ∈ {0, 1}2λ in the KEM we append 4 to s1 before invoking
H := PRNG. We implement H0 := PRNG without any padding in the reference implementa-
tion. For the optimized variant we split the large ciphertext into 4 inputs and invoke Shake
outputting 4 streams of size 2λ bits each. The outputs are subsequently concatenated to s1

serving as input to one regular Shake call.

We mark the end of a message by a one byte padding. For polynomial multiplication in
O(n log n) we make use of the FFT transformation, which is a divide-and-conquer algorithm.
Our AVX2 optimized variant processes 4 coefficients at once. Furthermore, we precompute
tables containing powers of the complex root of unity. Modulo q = 2k operations are obtained
almost for free as it just requires to take the k least significant bits.

The ciphertexts, compressed public keys and secret keys are stored in little endian format.
The k − t bit coefficients of the compressed public key are appended to each other before

1https://keccak.team/

14

304 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

the seed µ is concatenated to the resulting string. For the secret key we proceed similarly.

5 Detailed performance analysis (2.B.2)

5.1 Description of platform

We implemented both our CPA/CCA secure schemes on a machine that is specified by an
Intel Core i5-6200U processor (Skylake) operating at 2.3GHz and 8GB of RAM running
on one core. We used Ubuntu 17.10 64-bit (Kernel 4.13.0-17) and gcc version 7.2.0 with
compilation flags

• Reference: -fomit-frame-pointer -Ofast -march=native

• AVX Version: -fomit-frame-pointer -Ofast -msse2avx -mavx2 -march=native

5.2 Time

The following measurements are for kem and encrypt. The difference in running times
between kem and encrypt stems from 3 additional invocations of Shake for kem. We took
the average over 1 Mio measurements.

Kindi-256-3-4-2:

• Reference Implementation:

– Key generation in cycles: 203096

– Encryption/Encaps in cycles: (encrypt,kem)=(247793,260137)

– Decryption/Decaps in cycles: (encrypt,kem)=(312211,323947)

• AVX Implementation:

– Key generation in cycles: 104308

– Encryption/Encaps in cycles: (encrypt,kem)=(122648,133888)

– Decryption/Decaps in cycles: (encrypt,kem)=(151723,162070)

We note that in case we use Shake256 key generation increases by about 3000-6000 cycles,
encryption by about 3000-8000 cycles, encaps by about 8000-10000, decryption by 5000-6000
cycles and decaps by about 7000-10000 cycles (for the reference implementation and AVX
implementation). The decryption failure rate is here δ = 2−192 . In the AVX implementation,
encryption is carried out at a speed of 320 cycles per message byte or 68 cycles per ciphertext
byte, whereas decryption is accomplished at a rate of 396 cycles per message byte or 84 cycles
per ciphertext byte.

15

— Internet: Portfolio 305

Kindi-512-2-2-2:

• Reference Implementation:

– Key generation in cycles: 214064

– Encryption/Encaps in cycles: (encrypt,kem)=(280420,306043)

– Decryption/Decaps in cycles: (encrypt,kem)=(377962,397147)

• AVX Implementation:

– Key generation in cycles: 113082

– Encryption/Encaps in cycles: (encrypt,kem)=(142950,160150)

– Decryption/Decaps in cycles: (encrypt,kem)=(187097,202458)

2−284The decryption failure rate is here δ = . In the AVX implementation, encryption
is carried out at a speed of 373 cycles per message byte or 57 cycles per ciphertext byte,
whereas decryption is accomplished at a rate of 488 cycles per message byte or 75 cycles per
ciphertext byte.

Kindi-512-2-4-1:

• Reference Implementation:

– Key generation in cycles: 215542

– Encryption/Encaps in cycles: (encrypt,kem)=(285832,307999)

– Decryption/Decaps in cycles: (encrypt,kem)=(382958,402041)

• AVX Implementation:

– Key generation in cycles: 114356

– Encryption/Encaps in cycles: (encrypt,kem)=(142961,160905)

– Decryption/Decaps in cycles: (encrypt,kem)=(186397,202330)

2−165The decryption failure rate is here δ = . In the AVX implementation, encryption
is carried out at a speed of 248 cycles per message byte or 53 cycles per ciphertext byte,
whereas decryption is accomplished at a rate of 324 cycles per message byte or 69 cycles per
ciphertext byte.

Kindi-256-5-2-2:

• Reference Implementation:

– Key generation in cycles: 519010

– Encryption/Encaps in cycles: (encrypt,kem)=(595043,623436)

16

306 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

– Decryption/Decaps in cycles: (encrypt,kem)=(701763,723922)

• AVX Implementation:

– Key generation in cycles: 249776

– Encryption/Encaps in cycles: (encrypt,kem)=(280265,298163)

– Decryption/Decaps in cycles: (encrypt,kem)=(328537,342016)

The decryption failure rate is here smaller than δ = 2−216.In the AVX implementation,
encryption is carried out at a speed of 731 cycles per message byte or 104 cycles per ciphertext
byte, whereas decryption is accomplished at a rate of 857 cycles per message byte or 122
cycles per ciphertext byte.

Kindi-512-3-2-1:

• Reference Implementation:

– Key generation in cycles: 429952

– Encryption/Encaps in cycles: (encrypt,kem)=(530173,562640)

– Decryption/Decaps in cycles: (encrypt,kem)=(672720,698041)

• AVX Implementation:

– Key generation in cycles: 216600

– Encryption/Encaps in cycles: (encrypt,kem)=(256730,282120)

– Decryption/Decaps in cycles: (encrypt,kem)=(325113,339830)

2−276The decryption failure rate is here δ = . In the AVX implementation, encryption
is carried out at a speed of 502 cycles per message byte or 77 cycles per ciphertext byte,
whereas decryption is accomplished at a rate of 636 cycles per message byte or 97 cycles per
ciphertext byte.

5.3 Space

The secret key, public key and ciphertext sizes can be computed straightforwardly. They are
the same for the encryption scheme and the KEM.

The ciphertext size is n(` + 1)k/8 bytes, whereas the public key pk amounts to (n`(k − t) +
2λ)/8 bytes including the seed µ for the matrix A. The secret key amounts to (n`(k − t +
log 2p) + 2λ)/8 bytes including the size of the public key. The message size for encryption
amounts to n`(log 2p)/8 − 1 bytes, where one byte is used for the padding. Thus, we obtain
the following.

17

— Internet: Portfolio 307

Kindi-256-3-4-2:

• Ciphertext size: 1792 bytes

• Public key size: 1184 bytes

• Secret key size: 1472 bytes

• Message size: 383 bytes

• Message expansion factor: 4.7

Kindi-512-2-2-2:

• Ciphertext size: 2496 bytes

• Public key size: 1456 bytes

• Secret key size: 1712 bytes

• Message size: 383 bytes

• Message expansion factor: 6.5

Kindi-512-2-4-1:

• Ciphertext size: 2688 bytes

• Public key size: 1728 bytes

• Secret key size: 2112 bytes

• Message size: 575 bytes

• Message expansion: 4.7

Kindi-256-5-2-2:

• Ciphertext size: 2688 bytes

• Public key size: 1984 bytes

• Secret key size: 2304 bytes

• Message size: 383 bytes

• Message expansion factor: 7

Kindi-512-3-2-3:

18

308 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

• Ciphertext size: 3328 bytes

• Public key size: 2368 bytes

• Secret key size: 2752 bytes

• Message size: 511 bytes

• Message expansion: 6.5

5.4 How parameters affect performance

The main parameters governing the performance and security level of the schemes are
n, ̀ , q and p = rsec. For increasing parameters n, p or ` the security of the overall system is
increased while simultaneously decreasing the performance level via n and ` or increasing
the secret key size at a higher decyption failure rate via p. For increasing q and all other
parameters being fixed, the decryption failure rate and the security of the system decrease
while the ciphertext and public key sizes increase.

5.5 Optimizations

In pricipal, it is possible to generate the private and public keys just by use of the secret seed
γ and the public seed µ. If in applications, the running time is of interest, then all keys and
the matrix A are stored rather than the seeds. In case, key sizes are more important than
running time, then one may store only the seeds and generate the respective keys during
decryption or decapsulation. Furthermore, it is possible to compress the ciphertext in case
the message container is not fully exhausted, i.e. one can compress the coefficients of ci if the
respective error terms do not contain message bits. For the simplicity of our construction,
we did not include these modifications.

6 Expected strength (2.B.4) in general

6.1 Security definitions

The KEM is designed for IND-CCA2 security and PKE ensures CPA security. See Section 7
for quantitative estimates of the security of specific parameter sets.

19

— Internet: Portfolio 309

6.2 Rationale

See Section 8 for an analysis of known attacks. This analysis also presents the rationale for
these security estimates.

7 Expected strength (2.B.4) for each parameter set

7.1 Parameter set encrypt/KINDI − 256 − 3 − 4 − 2

Classical security PQ-security Category
181 164 2

7.2 Parameter set encrypt/KINDI − 512 − 2 − 2 − 2

Classical security PQ-security Category
229 207 4

7.3 Parameter set encrypt/KINDI − 512 − 2 − 4 − 1

Classical security PQ-security Category
255 232 4

7.4 Parameter set encrypt/KINDI − 256 − 5 − 2 − 2

Classical security PQ-security Category
270 251 5

7.5 Parameter set encrypt/KINDI − 512 − 3 − 2 − 1

Classical security PQ-security Category
365 330 5

7.6 Parameter set kem/KINDI − 256 − 3 − 4 − 2

Classical security PQ-security Category
181 164 2

20

310 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

7.7 Parameter set kem/KINDI − 512 − 2 − 2 − 2

Classical security PQ-security Category
229 207 4

7.8 Parameter set kem/KINDI − 512 − 2 − 4 − 1

Classical security PQ-security Category
255 232 4

7.9 Parameter set kem/KINDI − 256 − 5 − 2 − 2

Classical security PQ-security Category
270 251 5

7.10 Parameter set kem/KINDI − 512 − 3 − 2 − 1

Classical security PQ-security Category
365 330 5

8 Analysis of known attacks (2.B.5)

We give a summary of the most relevant attacks against our MLWE based encryption
schemes. To this end, MLWE instances are considered as regular LWE instances of
dimension ` · n with (` + 1) · n samples. To date, there exist no better cryptanalytic
algorithms to attack MLWE for concrete parameters than the ones on regular LWE.
The best way to attack our encryption schemes is to mount a key recovery attack or
to consider attacks against the ciphertext. Since we chose the same parameter for the
ciphertext and public key, we need only to consider attacks against the ciphertext since
it further contains an additional ring sample as compared to the public key. We apply
the conservative methodology of [3] in order to estimate the attack complexity or to
choose reasonable parameters. Currently, the best way to attack the system is carried
out with the primal and dual attacks using BKZ. This lattice reduction algorithm reduces
the basis of the lattice using polynomial calls to an SVP oracle in a smaller dimen-
sion. For the computation of the attack complexity only one call to the SVP oracle is
taken into account. All other factors are also removed leading to very conservative estimates.

In the classical setting the best-known attack bound is 20.292b deduced from lattice sieving
whereas in the post-quantum setting the SVP solver requires 20.265b with quantum sieving.
Here b denotes the block size. The best plausible security estimates rely on building lists of

21

— Internet: Portfolio 311

size 20.2075b .

The primal attack on our cryptosystem consists in finding a unique solution (s, e, 1) for the
SIS instance [P> | I | − c] · x ≡ 0 mod q for x ∈ Zn(2`+1)+1) and pk considered as a matrix

>] ∈ Zn`×(n`+1)
and c ∈ Zn(`+1)

P = [A | p q q .

For the dual attack the attacker tries to find a short vector in the dual lattice that is
employed to distinguish MLWE samples from uniform random samples in order to break
decision-MLWE.

We do not need to take (quantum) hybrid attacks [8] into account as they often only get
significant for sparse binary or trinary secrets and errors, which is never the case for the cho-
sen parameters. Those attacks are based on Howgrave-Graham’s Hybrid Attack combining
lattice reduction with guessing techniques such as brute-force or meet-in-the-middle attacks.

Algebraic attacks such as finding short generators do not apply in our setting as the param-
eters required for a successful attack are far from being practical [5, 6].

9 Advantages and limitations (2.B.6)

The encryption scheme KINDI is a simple and flexible trapdoor-based encryption scheme,
which by use of the trapdoor allows to retrieve back the error term and secret key from
Module-LWE based ciphertexts. By this, it is possible to inspect all the constituents, if they
comply with the allowed parameters in order to detect, for instance, inadmissible error terms.
Furthermore, lattice-based trapdoor-constructions are used in many areas of cryptography,
not only for encryption or KEMs. Thus, KINDI may serve as a basis for new primitives. For
instance, when using a slightly modified KINDICPA in combination with a random oracle tag
mac = H(s, e), we already obtain a scheme that can be employed in CCA2-secure scenarios,
since an adversary needs to know the unique inputs in order compute mac or differently
spoken a correct ciphertext requires already to show knowledge of all its inputs via the mac.

In addition, KINDI allows to encrypt huge amount of data at once resulting in low message
expansion factors as compared to other proposals since the error serves to transport the
message. This is particularly interesting for sign-then-encrypt scenarios or for the transport
of key bundles etc. For appropriate parameters signatures (uniform or Gauss) could also act
as the error term, in this case the encryption scheme needs not to compute ū. Our proposal
always by construction encrypts both a uniform random key s1 and arbitrary messages.
Thus, it inherently tends to act as a KEM. Due to this, we see that many steps from [9]
are already implicit in our CPA-secure construction resulting in very small overhead. In
fact, even the generation of s1 in KINDICCA−KEM is implicitly accomplished in the encryption
engine. Due to uniform random secrets and error vectors generated by SHAKE and the
applied operations our implementations are constant-time.

22

312 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

There exist a wide range of parameters for various security levels. Increasing the parameters
allows to encrypt more data at once without loosing efficiency. For rsec = 1 we obtain binary
errors, in this case we can even apply the NTT transform.

Our KINDICCA−KEM can easily be deployed into the TLS protocol as shown by Google for
NewHope or in constrained devices or can be transformed into an authenticated key exchange
protocol using known transformations.

References

[1] M. Ajtai. Generating hard instances of lattice problems (extended abstract). In Pro-
ceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, STOC
’96, pages 99–108, New York, NY, USA, 1996. ACM.

¨ [2] Rachid El Bansarkhani, Ozgür Dagdelen, and Johannes A. Buchmann. Augmented
learning with errors: The untapped potential of the error term. IACR Cryptology
ePrint Archive, 2014:733, 2014.

[3] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria Niko-
laenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the ring! practical,
quantum-secure key exchange from LWE. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria, October 24-
28, 2016, pages 1006–1018, 2016.

[4] Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-quantum
key exchange for the TLS protocol from the ring learning with errors problem. In 2015
IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21,
2015, pages 553–570, 2015.

[5] Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering short generators
of principal ideals in cyclotomic rings. IACR Cryptology ePrint Archive, 2015:313, 2015.

[6] Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Short stickelberger class rela-
tions and application to ideal-svp. In Advances in Cryptology - EUROCRYPT 2017 -
36th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part I, pages 324–348,
2017.

[7] Henri Gilbert, editor. Advances in Cryptology - EUROCRYPT 2010, 29th Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques,
French Riviera, May 30 - June 3, 2010. Proceedings, volume 6110 of Lecture Notes in
Computer Science. Springer, 2010.

[8] Florian Göpfert, Christine van Vredendaal, and Thomas Wunderer. A hybrid lattice
basis reduction and quantum search attack on LWE. In Post-Quantum Cryptography
- 8th International Workshop, PQCrypto 2017, Utrecht, The Netherlands, June 26-28,
2017, Proceedings, pages 184–202, 2017.

23

— Internet: Portfolio 313

[9] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the
fujisaki-okamoto transformation. IACR Cryptology ePrint Archive, 2017:604, 2017.

[10] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module
lattices. Des. Codes Cryptography, 75(3):565–599, 2015.

[11] Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knapsacks are col-
lision resistant. Electronic Colloquium on Computational Complexity (ECCC), (142),
2005.

[12] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on
gaussian measures. In 45th Symposium on Foundations of Computer Science (FOCS
2004), 17-19 October 2004, Rome, Italy, Proceedings, pages 372–381, 2004.

[13] Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudorandomness of ring-
lwe for any ring and modulus. In Proceedings of the 49th Annual ACM SIGACT Sympo-
sium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017,
pages 461–473, 2017.

[14] Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from worst-case
assumptions on cyclic lattices. Electronic Colloquium on Computational Complexity
(ECCC), (158), 2005.

[15] El Bansarkhani Rachid. Lara - a design concept for lattice-based encryption. Cryptology
ePrint Archive, Report 2017/049, 2017. https://eprint.iacr.org/2017/049.

[16] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore,
MD, USA, May 22-24, 2005, pages 84–93, 2005.

24

314 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

LUOV
Signature Scheme proposal for NIST PQC Project

Principal submitter Ward Beullens, imec-COSIC KU Leuven
ward.beullens@esat.kuleuven.be
+32471 12 64 57
Afdeling ESAT - COSIC,
Kasteelpark Arenberg 10 - bus 2452,
3001 Heverlee, Belgium

Auxiliary submitters Bart Preneel, imec-COSIC KU Leuven
Alan Szepieniec, imec-COSIC KU Leuven
Frederik Vercauteren, imec-COSIC KU Leuven

Inventors/developers The same as the principal submitter. Relevant
prior work is credited below where appropriate.

Owner Same as submitter
Signature

— Internet: Portfolio 315

Contents

1 Introduction 4

2 Algorithm specification (part of 2.B.1) 4

2.1 Overview of the scheme . 4

2.2 Relation to the UOV scheme . 5

2.3 Parameter space . 6

2.4 Key Generation Algorithm . 6

2.4.1 Finding the remaining coefficients of P 6

2.5 Signature Generation Algorithm . 7

2.6 Signature Verification Algorithm . 9

2.7 Signatures with message recovery . 12

2.8 Encoding of objects . 13

2.8.1 Encoding of finite field elements . 13

2.8.2 Encoding of private key . 15

2.8.3 Encoding of public key . 15

2.8.4 Encoding of signature . 15

2.9 Sampling objects with the SHAKE function 16

2.9.1 Squeezing public seed . 16

2.9.2 Squeezing T . 16

2.9.3 Squeezing hash digest and vinegar variables 17

2.9.4 Squeezing most part of the public map 17

3 List of parameter sets (part of 2.B.1) 17

4 Detailed performance analysis (2.B.2) 18

4.1 Description of platform . 18

4.2 Time . 18

4.3 Space . 18

4.4 How parameters affect performance . 19

2

316 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

4.5 Optimizations . 20

4.5.1 Bit slicing . 20

4.5.2 Precomputing P and F . 20

5 Expected strength (2.B.4) 20

6 Analysis of known attacks (2.B.5) 22

6.1 Direct attack . 22

6.2 Key recovery attacks. 26

6.2.1 UOV attack . 26

6.2.2 Reconciliation attack . 26

6.3 Hash collision attack . 27

7 Advantages and limitations (2.B.6) 27

7.1 Advantages . 27

7.2 Limitations . 28

References

A Statements

29

30

A.1 Statement by Each Submitter . 31

A.2 Statement by Reference/Optimized Implementations’ Owner(s) 33

3

— Internet: Portfolio 317

1 Introduction

One of the major candidates for providing secure cryptographic primitives in a post-quantum
world is Multivariate Cryptography. Multivariate Cryptography is based on the hardness
of problems related to multivariate polynomials over finite fields, such as solving systems of
multivariate polynomial equations. In general, Multivariate Cryptography is very fast and
requires only moderate computational resources, which makes it attractive for applications
in low-cost devices. In the field of Multivariate Cryptography, the Unbalanced Oil and
Vinegar signature scheme (UOV) is one of the oldest and best studied cryptosystems. Since
the proposal of the Oil and Vinegar scheme in 1997 by Patarin [15], UOV has successfully
withstood almost two decades of cryptanalysis. The UOV scheme is very simple, has small
signatures and is fast. The main disadvantage of UOV is arguably that its public keys are
quite large. This document presents the Lifted Unbalanced Oil and Vinegar signature scheme
(LUOV), which is a simple improvement of the UOV scheme that greatly reduces the size of
the public keys.

2 Algorithm specification (part of 2.B.1)

2.1 Overview of the scheme

→ FmThe LUOV signature scheme uses a one-way function P : Fn
2r 2r , which is a multivariate

quadratic polynomial map in n = m + v variables with coefficients in the binary subfield
F2 ⊂ F2r . The trapdoor is a factorization P = F ◦ T , where T : F2

n
r → F2

n
r is an invertible

→ Fmlinear map, and F : Fn
2r 2r is a quadratic map whose components f1, · · · , fm are of the

form Xv n nX X
fk(x) = αi,j,kxixj + βi,kxi + γk ,

i=1 j=i i=1

where the αi,j,k, βi,k and γ are chosen randomly from F2 and v = n − m. We say that the
first v variables x1, · · · , xv are the vinegar variables, whereas the remaining m variables are
the oil variables. Equivalently, the components of F are quadratic polynomials with random
binary coefficients in the variables xi such that there are no quadratic terms which contain
two oil variables. One could say that the vinegar variables and the oil variables are not fully
mixed, which is where their names come from.

How does the trapdoor P = F ◦ T 2rhelp to invert the function P? Given a target x ∈ Fm a
solution y for P(y) = x can be found by first solving F(y0) = x for y0 and then computing
y = T −1(y0). The system F(y0) = x can be solved efficiently by fixing the vinegar variables
to some pseudo-randomly chosen values. If we substitute these values in the equations the
remaining system only contains linear equations, because every quadratic term contains at
least one vinegar variable and thus turns into a linear or constant term after substitution.
The remaining linear system can be solved using linear algebra. In the event that there are
no solutions we can simply try again with a different assignment to the vinegar variables.

4

318 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

The trapdoor function is then combined with a collision resistant hash function H : {0, 1}∗ →
Fm
2r into a signature scheme using the standard hash-and-sign paradigm. The resulting key

generation, signature generation and verification algorithms are described in the next few
sections.

A large part of the coefficients of P is generated from a seed. This seed is included in the
public key and replaces all the generated coefficients to make the public key much smaller.
In order to reduce the size of the secret key we do not store F nor T . Instead, we only store
a private seed that was used to generate the public seed and T .

The LUOV scheme can be used in two modes. One option is the usual appended signature
mode where a message is authenticated by appending a signature. A different option is the
message recovery mode, which can be used to reduce the size of a message-signature pair.
In message recovery mode (part of) the message is not transmitted but recovered from the
signature.

2.2 Relation to the UOV scheme

The LUOV scheme is an adaptation of the Unbalanced Oil and Vinegar signature scheme.
It differs from the original UOV scheme in a number of ways. The first modification, due
to Petzoldt [16], changes the key generation algorithm to make it possible to choose a large
part of the public key. One can then choose this part to correspond with the output of a
pseudo-random number generator and replace a large part of the public key by a seed. The
modified key generation algorithm generates a distribution of public polynomial maps P
that is indistinguishable from the original signature scheme if we assume the output of the
PRNG (we have used the Keccak1600 Sponge construction) is indistinguishable from true
randomness.

→ FmA second modification is that a public key P : Fn
2 2 for the UOV scheme over F2 is used

as a public key for the UOV scheme over a large extension field F2r . The public key is ‘lifted’
to the extension field by just extending the polynomial map P to a map from Fn

2r 2r .to Fm

This is were the Lifted UOV scheme gets its name from. The advantage of this approach is
that the public key remains small (since the coefficients of the public key are 0 or 1), while
solving the system P(x) = y for some y in Fm

2r becomes more difficult compared to the case
where y is in Fm

2 . This adaptation is due to Beullens and Preneel. [5].

Thirdly, the linear map T is chosen to have a matrix representation of the form
� �
1v T
0 1m

,

where T is a v-by-m matrix. This choice makes the key generation algorithm and the signing
algorithm much faster, but does not affect the security of the scheme because for a random
public key there exists an equivalent private key with T of this form with high probability [18].
This implies that if there is an attack against the modified signature scheme, the same attack
would work on nearly all public keys of the original UOV scheme. This choice of T was first

5

— Internet: Portfolio 319

proposed by Czypek [7], where it was used to speed up the key generation algorithm. LUOV
makes the same choice of T , but uses different key generation and signature generation
algorithms that are even faster.

Lastly, in the signing algorithm, instead of choosing the assignments to the vinegar variables
truly randomly, the assignments are deterministically generated from the message M and
the private key. This ensures that when a message is signed multiple times, the generated
signatures will be identical. If the vinegar variables were chosen at random, an attacker
could query many different signatures for the same message. We are not aware of an attack
that exploits this fact, but it is cautious to block this kind of attack anyway.

2.3 Parameter space

The parameters for the LUOV algorithm are :

• r — The degree of the field extension F2 ⊂ F2r .

• m — The number of polynomials in the public key, also the number of oil variables.

• v — The number of vinegar variables.

• n = m + v — The total number of variables

• SHAKE — The extendable output function that is used, either SHAKE128 or
SHAKE256.

2.4 Key Generation Algorithm

The key generation algorithm (Alg. 4) first uses a private seed to pseudo-randomly generate
a seed that will be published, as well as the v-by-m matrix that determines the linear map
T . Then, the public seed is used to generate C ∈ Fm

2 , the constant part of the public
v(v+1)

2map P , L ∈ Fm
2
×n

2

+vm

2
, the linear part of P and Q1 ∈ Fm×

, the first v(v+1) +vm columns
of the Macaulay matrix of the quadratic part of P in the lexicographic ordering. Then

m(m+1)

∈ Fm×
2 , the remaining part of the Macaulay matrix of the quadratic part of P isQ2 2

calculated (see Sect. 2.4.1). The public key consists of the public seed and Q2. The private
key is simply the seed that was used as input for the key generation algorithm. The details
of how the different objects are sampled from the SHAKE function are described in Sect. 2.9.

2.4.1 Finding the remaining coefficients of P

For each polynomial pk in the public map P there is a uniquely determined upper triangular
∈ Fn×nmatrix Pk 2 , such that x>Pkx is equal to the evaluation of the quadratic part of pk

6

320 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

at x. The matrix corresponding to the polynomial fk in the secret map F is then, up to the
addition of a skew-symmetric matrix, equal to

� �� �� � � �
1v 0 Pk,1 Pk,2 1v −T

=
Pk,1 −Pk,1T + Pk,2 ,−T> 1m 0 Pk,3 0 1m −T>Pk,1 T>Pk,1T − T>Pk,2 + Pk,3

where we have split up the matrix Pk, into Pk,1 ∈ Fv
2
×v , Pk,2 ∈ Fv

2
×m and Pk,3 ∈ Fm

2
×m . The

terms of fk that are quadratic in the vinegar variables have to vanish, so

Pk,3 = −T>Pk,1T + T>Pk,2 ,

up to the addition of a skew-symmetric matrix. This formula completely determines the
upper triangular matrix Pk,3. The entries of the Pk,1 and Pk,2 are generated from the public
seed and the matrix T is known, so the matrices Pk,3 can easily be computed. The entries of
the matrices Pk,3 are then arranged in the Macaulay matrix Q2. A detailed implementation
of this procedure is shown in Alg. 3.

Algorithm findPk1

input: k — An integer between 1 and m.
Q1 — First part of Macaulay matrix of the quadratic part of P

output: Pk,1 — The v-by-v matrix representing the part of pk that is quadratic in
the vinegar variables.

1: Pk,1 ← 0v

2: column ← 1
3: for i from 1 to v do
4: for j from i to v do
5: Pk,1[i,j] ← Q1[k, column]
6: column ← column + 1 . move to the next term
7: end for
8: column ← column + m . Skip the terms xixv+1 up to xixv+m

9: end for
10: return Pk,1

Alg. 1: Algorithm for reading Pk,1 from Q1.

2.5 Signature Generation Algorithm

The signature generation algorithm first generates C, L, Q1 and T from the private seed
in the same way as the key generation algorithm. Then, it calculates h, the hash digest
of the message that will be signed, concatenated with a zero. Concatenating the message
with zero is done to make signatures generated in appended signature mode unrelated to
signatures generated in message recovery mode (see Sect. 2.7). Then, the algorithm produces

7

— Internet: Portfolio 321

Algorithm findPk2

input: k — An integer between 1 and m.
Q1 — First part of Macaulay matrix of quadratic part of P

output: Pk,2 — The v-by-m matrix representing the part of pk that is bilinear in
the vinegar variables and the oil variables.

1: Pk,2 ← 0v×m

2: column ← 1
3: for i from 1 to v do
4: column ← column + v − i + 1 . Skip terms x2

i up to xixv

5: for j from 1 to m do
6: Pk,2[i,j] ← Q1[k, column]
7: column ← column + 1 . Move to the next term
8: end for
9: end for
10: return Pk,2

Alg. 2: Algorithm for reading Pk,2 from Q1.

Algorithm findQ2

input: Q1 — First part of Macaulay matrix of quadratic part of P
T — A v-by-m matrix

output: Q2 — The second part of Macaulay matrix for quadratic part of P

1: Q2 ← 0m×D2

2: for k from 1 to m do
3: Pk,1 ←findPk1(k, Q1)
4: Pk,2 ←findPk2(k, Q1)
5: Pk,3 ← −T>Pk,1T + T>Pk,2 . Compute Pk,3 up to skew-symmetric matrix
6: column ← 1
7: for i from 1 to m do . Read off Q2

8: Q2[k, column] ← Pk,3[i, i]
9: column ← column + 1
10: for j from i + 1 to m do
11: Q2[k, column] ← Pk,3[i, j] + Pk,3[j, i]
12: column ← column + 1
13: end for
14: end for
15: end for
16: return Q2

Alg. 3: Algorithm for determining Q2 from Q1 and T.

8

322 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Algorithm KeyGen

input: private seed — seed to generate a key-pair

output: (public seed, Q2) — A public key
private seed — A corresponding private key

1: private sponge ← InitializeAndAbsorb(private seed)
2: public seed ← SqueezePublicSeed(private sponge)
3: T ← SqueezeT(private sponge)
4: public sponge ← InitializeAndAbsorb(public seed)
5: C, L, Q1 ← SqueezePublicMap (public sponge)
6: Q2 ← FindQ2(Q1, T)
7: return (public seed, Q2) and private seed

Alg. 4: The key generation algorithm

a signature in two steps. First, the special structure of F is exploited to produce a solution
s0 to the equation F(s0) = h. Then, the signature s is calculated as

� �
1v −T 0 s = s .
0 1m

Solving F(s0) = h is done by repeatedly substituting pseudo-randomly generated values
into the vinegar variables and trying to solve the resulting linear system until a unique
solution is found. A unique solution is almost always found on the first try, the probability
of failing being roughly 2−r . For a particular assignment to the vinegar variables v ∈ F2

v
r ,

the augmented matrix for the linear system F((v||o)>) = h can be derived as in Alg. 5.
This algorithm relies on the fact that after fixing the vinegar variables to v, the map F is a
linear map with constant part

⎛ ⎞ � � v>P1,1v
v ⎝ ⎠C + L + · · · ,
0

v>Pm,1v

and a linear part with the matrix representation
⎛ ⎞ � � v>[(P1,1 + P>

1,1)T + P1,2]−T ⎝ ⎠L + · · · .
1m v>[(Pm,1 + P>

m,1)T + Pm,2]

Pseudocode for the signature generation algorithm is provided in Alg. 6.

2.6 Signature Verification Algorithm

First, the signature verification algorithm uses the public seed to generate C, L and Q1.
Together with Q2, which is included in the public key, this completely determines the public

9

— Internet: Portfolio 323

Algorithm BuildAugmentedMatrix

input: C ∈ Fm
2r — The constant part of the public map P

L ∈ Fm
2r
×n — The linear part of P

v(v+1)
2Q1 ∈ Fm

2r
× +vm

— The first part of quadratic part of P
T ∈ Fv

2
×m — The matrix that determines the linear transformation T .

h ∈ Fm
2r — The hash digest to target.

v ∈ Fv
2r — An assignment to the vinegar variables.

output: LHS||RHS ∈ Fm
2r
×m+1 — The augmented matrix for F(v||o) = h

1: RHS ← h − C − Ls(v||0)> . Right hand side of linear system � �
−T

2: LHS ← L . Left hand side of linear system
1m

3: for k from 1 to m do
4: Pk,1 ← findPk1(k, Q1)
5: Pk,2 ← findPk2(k, Q1)
6: RHS[k] ← RHS[k] − v>Pk,1v . evaluation of terms of fk that are

quadratic in vinegar variables
7: Fk,2 ← −(Pk,1 + P>

k,1)T + Pk,2 . Terms of fk that are bilinear in the
vinegar and the oil variables

8: LHS[k] ← LHS[k] + vFk,2 . Insert row in the left hand side
9: end for
10: return LHS||RHS

Alg. 5: Builds the augmented matrix for the linear system P(v||o) = h after fixing the
vinegar variables.

10

324 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Algorithm Sign

input: private seed — A private key
M — A message to sign

output: s — A signature for the message M

1: sponge ← InitializeAndAbsorb(private seed)
2: public seed ← SqueezePublicSeed(sponge)
3: T ← SqueezeT(sponge)
4: public sponge ← InitializeAndAbsorb(public seed)
5: C, L, Q1 ← SqueezePublicMap (public sponge)
6:

7:

hash sponge ←InitializeAndAbsorb(M ||0x00)
h ←SqueezeHashDigest(hash sponge) . Calculate hash digest

8: vinegar sponge ←InitializeAndAbsorb(M ||0x00||private seed) . Sponge
mining

for deter-
vinegar

variables
9: while No solution s0 to the system F(s0) = h is found do
10:

11:

12:

13:

14:

15:

16:

v ← SqueezeVinegar (vinegar sponge)
A ← BuildAugmentedMatrix (C, L, Q1, T, h, v)

. Build the augmented matrix for the linear system F(v||o) = h
GaussianElimination(A)
if F(v||o) = h has a unique solution o then

s0 ← (v||o)>

end if
17: end while � �

1v −T
18: s ← s0

0 1m

19: return s

Alg. 6: The signature generation algorithm

11

— Internet: Portfolio 325

map P . To verify a signature s for a message M , the verification algorithm simply checks
whether P(s) is equal to the rm-bit long hash digest of the message M , appended with 0x00.
Pseudocode for this algorithm is provided in Alg. 9.

Algorithm EvaluatePublicMap

input: (public seed, Q2) — A public key
s — A candidate–signature

output: The evaluation of P at s

1: sponge ← InitializeAndAbsorb(public seed)
2: C, L, Q1 ← SqueezePublicMap (sponge)
3: Q ← Q1||Q2

4: e ← C + Ls . Evaluate constant and linear part of P at s
5: column ← 1
6: for i from 1 to n do . Evaluate quadratic parts of P at s
7: for j from i to n do
8: for k from 1 to m do
9: e[k] ← e[k] + Q[k, column]s[i]s[j] . Evaluate terms in xixj

10: end for
11: column ← column + 1
12: end for
13: end for
14: return e

Alg. 7: The algorithm for evaluating the public map at a point

2.7 Signatures with message recovery

It is possible to use the signature scheme in a message recovery mode. Whether or not
message recovery is used does not affect the signature generation algorithm. The same
key pair can be used to sign messages in message recovery mode and in appended signature
mode, a signature for M in appended signature mode is unrelated to a signature for the same
message in message recovery mode, because a different byte is appended to the message
in each mode. The signing algorithm in message recovery mode differs from the signing
algorithm in appended signature mode (Alg. 6) because the message is padded with 0x01
instead of 0x00 in lines 6 and 8. Furthermore, the procedure to determine the target of the
public map is altered to make message recovery possible. In the appended signature mode,
the target was determined by interpreting the r

8 m byte long output of a SHAKE function
as a vector of m elements of F2r . In message recovery mode, the target is obtained by
interpreting

SHAKE(M ||0x01, l1)||SHAKE(SHAKE(M ||0x01, l1), l2) ⊕ M 0

as a vector of m elements in F2r , where l1 is equal to 256 if SHAKE128 is used, or equal to
r512 if SHAKE265 is used, and l2 is equal to
8 m − l1, and M 0 is formed by taking the last

12

326 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Algorithm Verify

input: (public seed, Q2) — A public key
M — A message
s — A candidate–signature

output: Accept if s is a valid signature for M , Reject otherwise

1:

2:

sponge ←InitializeAndAbsorb(M ||0x00)
h ←SqueezeHashDigest(sponge)

3: e ←EvaluatePublicMap((public seed, Q2), s)
4: if e = h then . Check if P(s) = h
5: return Accept
6: else
7: return Reject
8: end if

Alg. 8: The signature verification algorithm in appended signature mode

l2 − 1 bytes of the message M , appending the byte 0x01 from the right, and padding with
zeros in the case that the message M is shorter that l2 − 1 bytes.

The signature verification algorithm evaluates the public map P at the signature s, and
interprets the output as a sequence first bytes of l1 bytes, concatenated with a sequence
last bytes of l2 bytes. The signature verification algorithm recovers up to l2 − 1 bytes of the
message M , by calculating

M 0 = last bytes ⊕ SHAKE(first bytes, l2)

and removing the padding. If the computed value of M 0 does not end in a 0x01, followed by
a (possibly empty) sequence of 0x00s, the signature is rejected. Otherwise, the signature is
accepted if t1 is equal to SHAKE(M ||0x01, l1).

2.8 Encoding of objects

2.8.1 Encoding of finite field elements

The finite fields that are used by the various instantiations of the LUOV signature scheme
are F28 , F216 , F248 , F264 and F280 .

Field of size 28 . Field elements in the field F28 are represented as binary polynomials
modulo the irreducible polynomial f8 = x8 + x4 + x3 + x + 1. This choice is arbitrary and
does not affect the security of the scheme. An element of F2[x]/(f8) is encoded as the byte
obtained by concatenating its coefficients, where the least significant bits correspond to the
lowest degree terms.

13

— Internet: Portfolio 327

Algorithm Verify

input: (public seed, Q2) — A public key
M — The first part of a message (possibly the empty string)
s — A candidate–signature

output: The full message M if s is a valid signature, Reject otherwise

1: e ←EvaluatePublicMap((public seed, Q2), s)
2: first bytes, last bytes ←Enc(e) . Split e into l1 and l2 bytes
3: padded message ← last bytes⊕SHAKE(first bytes, l2)
4: if padded message is not properly padded then
5: return Reject . Reject if padded message doesn’t end in 0x01 0x00 · · · 0x00
6: end if
7: M ← M ||RemovePadding(padded message)
8: hash digest ←SHAKE(M ||0x01, l1)
9: if first bytes = hash digest then
10: return M
11: else
12: return Reject
13: end if

Alg. 9: The signature verification algorithm in message recovery mode

Example.

Enc(1) = 0x01

Enc(x 6) = 0x40

Enc(x + x 5 + x 7) = 0xa2

Field of size 216 . Field elements in the field F216 are represented as binary polynomials
16 + x12 + xmodulo the irreducible polynomial f16 = x 3 + x + 1. This choice is arbitrary

and does not affect the security of the scheme. An element of F2[x]/(f16) is encoded as the
two bytes obtained by concatenating its coefficients. The first byte represents the terms of
degree 0 op to 7, the second byte represents the terms of degree 8 up to 15.

Example.

Enc(1) = 0x01 0x00

Enc(x 8 + x 9) = 0x00 0x03

Enc(x + x 5 + x 7 + x 15) = 0xa2 0x80

Larger fields. The larger fields used by the scheme are seen as simple field extensions
of F216 . The irreducible polynomials of these field extensions are given in Table 1. If F is

14

328 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Table 1: Irreducible polynomials used for representing finite fields.

Finite Field Irreducible polynomial in F2[X, x]/(f16)
F248 X3 + X + 1
F264 X4 + X2 + xX + 1
F280 X5 + X2 + 1

such an irreducible polynomial of degree d, an element of F2[X, x]/(f16, F) is encoded by the
2d bytes obtained by concatenating the encodings of its coefficients in order of increasing
degrees, i.e.

Enc(c0 + c1X + · · · + cd−1X
d−1) = Enc(c0) · · · Enc(cd−1)

2.8.2 Encoding of private key

A private key for the LUOV signature scheme is a sequence of 256 random bits (used to seed
a Keccak1600 Sponge) and is simply encoded as a sequence of 32 bytes.

2.8.3 Encoding of public key

A public key of the LUOV signature scheme consists of a sequence of 32 bytes (which are
used to seed a Keccak Sponge) and an m-by-m(m + 1)/2 matrix with binary entries. The
matrix is encoded by concatenating the columns and padding the result with zero bits to get
a sequence of bits of length divisible by 8. Then, the sequence is interpreted as a sequence
of bytes, where the first bits have the least significant values. The encoding of a public keys

2(m+1) 1is 32 + dm
2 8 e bytes large.

Example. For a parameter set with m = 3, the public key could contain the matrix
⎛ ⎞
010111

⎝ ⎠Q2 = 111001 .
000101

Concatenating its columns gives 010110010101100111, which results in the 3 bytes
(01011001) (01011001) (11000000), so

Enc(0x36 · · · 0x5d, Q2) = 0x36 · · · 0x5d 0x9a 0x9a 0x03 .| {z } | {z }
32-byte Public seed T

2.8.4 Encoding of signature

A signature of the UOV signature scheme consists of a vector s ∈ Fn
2r of n = v + m field

elements. The encoding of the signature consists of the concatenation of the encodings of

15

— Internet: Portfolio 329

these n field elements. The encoding of a signature is nr bytes large. (r is always divisible
8

by 8)

Enc(s) = Enc(s[0])Enc(s[1]) · · · Enc(s[n − 1])

2.9 Sampling objects with the SHAKE function

The LUOV signature scheme uses the SHAKE extendable-output functions to provide cryp-
tographically secure pseudorandom bit-streams. First, a seed is fed into the Keccak1600
sponge construction. Then output bytes are squeezed from the sponge and interpreted as
some mathematical object. This approach is used to generate the following objects:

• public seed — The public seed used to generate a large part of the public map P .

• T — The matrix that determines the linear transformation that hides the UOV struc-
ture of the secret map F .

• h — The hash digest of a message.

• v — An assignment to the vinegar variables.

• C, L, Q1 — A large part of the public map P .

Before sampling objects from a Keccak sponge, the sponge has to be initialized to the all-
zero state and used to absorb a seed. In our pseudocode description of the LUOV algorithm
we refer to this operation as InitializeAndAbsorb, which receives a sequence of bytes as
input, and outputs a Keccak sponge object that was initialized and has absorbed the input
sequence. The sponge can then provide an arbitrarily long sequence of pseudorandom bytes
with the Squeeze operation, which takes a sponge object and an integer b as input, outputs a
sequence of b bytes and updates the state of the sponge, such that it can be used to squeeze
more bytes if needed.

2.9.1 Squeezing public seed

A public seed, represented by 32 bytes, is simply obtained from a sponge by squeezing out
the 32 bytes. This operation is called SqueezePublicSeed.

2.9.2 Squeezing T

The matrix T ∈ Fv
2
×m is squeezed out of a sponge by squeezing dm ev bytes from the sponge,

8
and interpreting the bytes (i−1)dm e+1 up to idm e as the i-th row of T. If m is not divisible

8 8
by 8, the most significant bits of the last byte (i.e. idm e-th byte in the sequence) are ignored.

8
This operation is referred to as SqueezeT.

16

330 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Example. Suppose m = 3, v = 4 and the following 4 bytes are squeezed from the Keccak
sponge :

0x49 0xa2 0x86 0x4d .

Then, the matrix T ∈ Fv
2
×m is equal to

⎞⎛

⎜⎜⎝

001
010
110
101

⎟⎟⎠ .

2.9.3 Squeezing hash digest and vinegar variables

The hash digest and the assignment to the vinegar variables are vectors over F2r of length
n = m + v and length v respectively. They are obtained by squeezing n

8
r and v

8
r bytes from

the sponge and interpreting these as the encoding of n, respectively v elements of F2r . These
operations are referred to as SqueezeHashDigest and SqueezeVinegar.

2.9.4 Squeezing most part of the public map

o(o+1)
2 +mo)

The matrices C ∈ Fm×1 , L ∈ Fm×n and Q1 ∈ Fm×(
are squeezed column by column 2 2 2

from the Keccak sponge. Each column is obtained by squeezing dm e bytes from the sponge,
8

and interpreting these as m-bit long columns, ignoring the most significant bits of the last
byte in the case that m is not divisible by 8. The process of sampling columns of coefficients
of P is identical to the process of sampling rows of T.

o(o+1)In total, 1+n+
2 +mo columns are sampled from the sponge. The first column represents

C, the next n columns represent L, and the remaining o(o
2
+1) +mo columns represent Q1. The

entire operation is called SqueezePublicMap, it takes a sponge object as input and returns
the matrices C, L and Q1.

3 List of parameter sets (part of 2.B.1)

We define two sets of parameter choices. The first set aims to provide small signatures,
which is suitable for applications where many signatures are communicated. The second set
of parameter choices aims to minimize the combined cost of a signature and a public key
and is more suitable when the signatures and the public key are both communicated, such
as a chain of signatures anchored to a root certificate authority.

17

— Internet: Portfolio 331

Table 2: Different parameter choices for the LUOV signature scheme. The first 3 choices
provide small signatures, the last three choices give small public keys at the cost of larger
signatures.

claimed
security
level r m v SHAKE |sig| |pk| |sk|

message
recovery

(optional)

LUOV-8-63-256
LUOV-8-90-351
LUOV-8-117-404

lvl 2
lvl 4
lvl 5

8
8
8

63
90
117

256
351
404

128
256
256

319 B
441 B
521 B

15.5 KB
45.0 KB
98.6 KB

32B
32B
32B

30 B
25 B
52 B

LUOV-48-49-242
LUOV-64-68-330
LUOV-80-86-399

lvl 2
lvl 4
lvl 5

48
64
80

49
68
86

242
330
399

128
256
256

1.7 KB
3.1 KB
4.7 KB

7.3 KB
19.5 KB
39.3 KB

32B
32B
32B

261 B
479 B
795 B

4 Detailed performance analysis (2.B.2)

4.1 Description of platform

The following measurements were collected using supercop-20171020 running on a com-

puter named bas. The CPU on bas is an Intel R
TM

i5-7500T running at 3.3 GHz. bas Core
has 7.5GB of RAM and runs CentOS Linux release 7.4.1708. Benchmarks used crypto_sign,
which ran on one core of the CPU. The gcc version 4.8.5 20150623 (Red Hat 4.8.5-16) was
used.

4.2 Time

The median number of cycles consumed by the different algorithms are reported in Table 3.
The measurements are made in appended signature mode, but there is no noticeable differ-
ence between the cycle count in appended signature mode and in message recovery mode.
A more optimized implementation that uses vectorization instructions is likely to reduce the
cycle counts significantly.

4.3 Space

For all parameter choices, the secret key consists of a 32-byte seed.
2(m+1)The public key consists of a 4 byte seed, and the remaining m

2 coefficients of the public
2(m+1)map P . This makes a total of 4 + dm
16 e bytes. If message recovery is used, the messages

can be shortened by roughly 15% of the signature size.

18

332 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Table 3: Median cycle counts of optimized implementation. Measured with
supercop20171020. The SUPERCOP output files with the compiler flags that were
used and the exact cycle counts for various message sizes are included in the Support-
ing Documentation folder.

claimed Key generation Signing Verification
security level (million cycles) (million cycles) (million cycles)

LUOV-8-63-256 lvl 2 21.0 5.87 4.93
LUOV-8-90-351 lvl 4 81.8 21.6 17.3
LUOV-8-117-404 lvl 5 146 36.5 29.7

LUOV-48-49-242 lvl 2 14.8 34.1 23.6
LUOV-64-68-330 lvl 4 50.8 111 66.1
LUOV-80-86-399 lvl 5 96.8 216 124

r(v+m)A signature consists of v + m elements of the field F2r , good for a total of
8 bytes.

The concrete sizes for the proposed parameter choices are displayed in Table 2.

When implemented properly, the signing and verification algorithms require very little RAM
memory. The RAM usage of the signing algorithm is dominated by storing the augmented
matrix for the linear system after fixing the vinegar variables. This requires storing m(m+1)
elements of F2r . For the LUOV-8-63-256 parameter set this is 4032 bytes. Besides storing
the public key and a signature, the memory requirements of the verification algorithm is
dominated by the state of the Keccak sponge (i.e. 200 bytes), or storing the evaluation of
the public map P , (i.e. rm/8 bytes).

4.4 How parameters affect performance

Table 3 shows that key generation is faster for the parameter sets with large extension fields.
This is so because key generation benefits from the smaller polynomial systems, without
paying the price of more complex field arithmetic, since key generation works in F2.

In contrast, in our implementation of the signing and verification algorithms, the smaller
size of the polynomial systems does not make up for the increased complexity of the field
arithmetic. Therefore, signing and verification is faster for the parameter sets with smaller
field extensions.

The size of the public key is only impacted by the parameter m, and scales as O(m3),
therefore to keep the public key small m should not be too large. By increasing r, the degree
of the field extension F2 ⊂ F2r , the required value of m to achieve a fixed security level
decreases. However, increasing r also increases the size of the signatures. Therefore, it is
possible to make a trade-off between small public keys (i.e. large r) or small signatures (i.e.
small r). We propose two sets of parameter choices, one aiming at small signatures, the
other aiming at small public keys. By varying the parameter r it is possible to interpolate

19

— Internet: Portfolio 333

between these parameter sets.

Example. One might want a signature scheme that attains security level 2 with signatures
as small as possible, subject to the condition that the public key is smaller than 10KB. The
best option from the proposed parameter sets would be LUOV-48-49-242, having signatures
of 1.7KB and public keys of 7.3KB. We can do better by adjusting the parameter r. For the
choice r = 28, the python script that is included in the submission proposes the parameters
m = 54, v = 247, resulting in signatures of 1.0KB and public keys of just under 10KB.

4.5 Optimizations

4.5.1 Bit slicing

The i-th row of Q2 is calculated using only the data T and the i-th row of Q1 and this
calculation is exacly the same for each row. This is an ideal situation for using bit slicing. The
bits in the columns of Q1 and Q2 are packed into words and the computation is performed
for all rows simultaneously. This greatly speeds up the key generation algorithm. This
optimization is included in the reference implementation, because it does not affect the
legibility of the code.

4.5.2 Precomputing P and F

With each verification of a signature a lot of coefficients of the public map P have to be
generated with the SHAKE function. According to the gprof profiler, this computation is
responsible for roughly 75% of the cycle usage of the verification algorithm in our optimized
implementation of the first parameter set. If enough memory is available (e.g. roughly 380
KB for the first parameter set) the coefficients of P can be precomputed and stored to
speed up the verification of signatures. Similarly, the coefficients of the secret map F can
be precomputed to speed up the signing algorithm. This optimization was not used in the
reference or optimized implementation.

5 Expected strength (2.B.4)

The LUOV signature system is designed for EUF-CMA security. The parameters of the
LUOV scheme are chosen such that lower bounds to the bit complexity of all the known
attacks exceed the required complexity level by a margin of 10 percent to account for possible
future improvements in the attacks. The process of choosing the parameters is implemented
in a python script which is included in the submission package. The designer specifies the
desired security level and chooses the size of the field extension, then the script determines
the parameters m and v to reach the required security level. Larger field extensions lead to
smaller public keys at the cost of larger signatures. Table 4 summarizes the lower bounds

20

334 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

to the complexity of the various attacks. An overview of the known attacks and what the
lower bounds to their complexities are is given in section 6.

To reach security level 2 i.e. “Any attack that breaks the relevant security definition must
require computational resources comparable to or greater than those required for collision
search on a 256-bit hash function (e.g. SHA256/ SHA3-256)” we assure that all known
attacks (except hash collision attacks) require at least 2160 operations. This number was
determined by considering the estimated number of gates required to find a hash collision
in SHA3-256 (i.e. 2146), and increasing the exponent by a margin of 10 percent to allow for
future improvements of the attacks. Similarly, to reach security level 4, we require that all
known attacks require at least 2231 = 2210×1.1 operations.

To reach security level 5, i.e. “any attack that breaks the relevant security definition must
require computational resources comparable to or greater than those required for key search
on a block cipher with a 256-bit key (e.g. AES 256)” we require that all classical attacks
require at least 2299 operations, and all quantum attacks require at least 2257 operations.
These numbers are obtained by considering the estimated number of classical gates (i.e. 2272)
or quantum gates (i.e. 2234) and increasing their exponent by 10 percent to allow for future
improvements of the attacks. In all attack scenarios the depth of a quantum computation is
assumed to be bounded by 264 quantum gates.

21

— Internet: Portfolio 335

Table 4: Summary of attacks against our parameters. The table reports log2 of a lower
bound to the number of operations required for each attack. Quantum computations are
bounded to a depth of 264 field operations.

(r, m, v) security
Direct

optimal k
forgery
complexity

UOV
classical

attack
quantum

Reconciliation
classical

attack
quantum

(8, 63, 256)
(8, 90, 351)
(8, 117, 404)

lvl 2
lvl 4
lvl 5

2
3
4

161
231
300

225
295
322

161
231
258

192
263
303

192
287
340

(48, 49, 242)
(64, 68, 330)
(80, 86, 399)

lvl 2
lvl 4
lvl 5

1
1
1

165
235
300

224
295
347

160
231
283

181
247
299

178
266
335

6 Analysis of known attacks (2.B.5)

The signature scheme is an adaptation of Oil and Vinegar [15] scheme that was proposed
by Patarin in 1997. The Oil and Vinegar scheme is one of the best studied multivariate
signature schemes which has, with the right parameter choices, withstood all cryptanalysis
since 1997.

All the adaptations that LOUV makes to the Unbalanced Oil and Vinegar scheme (see
Sect. 2.2) can be shown not to impact the security of the scheme (assuming the output of
the Keccak1600 sponge construction is indistinguishable from random bits), an exception
being the adaptation of lifting a public key of UOV over F2 to a large extension field. It
requires some argument to show that a direct signature forgery against the modified scheme
is as difficult as a direct signature forgery against UOV over the extension field. However,
since the key generation algorithm is not changed by this adaptation, it is clear that a key
recovery attack against LUOV is equivalent to a key recovery attack against UOV over F2.

We now give an overview of known attacks. The overview is based on the overview given
in [5]; We have adapted the example to match one of the proposed parameter sets.

6.1 Direct attack

This attack tries to forge a signature for a certain message M by trying to find a solution
s ∈ Fn

2r for the system F(s) = H(M). This is an instance of the MQ (Multivariate Quadratic)
problem.

→ Fm

x ∈ Fn
q that satisfies P(x) = 0.

MQ Problem. Given a quadratic polynomial map P : Fn
q q over a finite field Fq, find

22

336 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Thomae and Wolf showed that finding a solution for an underdetermined system with n =
αm can be reduced to finding a solution of a determined system with only m + 1 − bαc
equations [17]. This means that as a system becomes more underdetermined it becomes
easier to solve.

For all but very small values of q, (e.g. q = 2, q = 3), the best known classical algorithms
to solve the MQ-problem for generic determined systems over finite fields use a hybrid
approach [3, 4] that combines exhaustive search with Gröbner basis computations. In this
approach k variables are fixed to random values and the remaining n − k variables are found
with a Gröbner basis algorithm such as F4, F5 or XL. If no assignment to the remaining
n − k variables exists that solves the system, the procedure starts again with a different
guess for the first k variables. We require on average roughly qk Gröbner basis computations
until a solution is found. As a result, the optimal value of k decreases as q increases. The
complexity of computing a Gröbner basis for a system of polynomials depends critically on
the degree of regularity (dreg) of that system. We refer to Bardet [1] for a precise definition
of the degree of regularity.

The most costly part of the F5 algorithm is doing Gaussian elimination on a large matrix � �
n+dreg with roughly rows and columns. The complexity of the F5 algorithm is thus given
dreg

by �� �ω�
n + dreg

CF5 (n, dreg) = O ,
dreg

where 2 ≤ ω < 3 is the constant in the complexity of doing Gaussian reduction on the
matrices constructed in the Gröbner basis computation. These matrices are structured
and sparse, which can be exploited to make Gaussian elimination more efficient [9]. The
complexity of the hybrid approach is

� � �ω�
k n − k + dreg(k)

CHybridF5(n,dreg ,k) = O q , (1)
dreg(k)

where dreg(k) stand for the degree of regularity of the system after fixing the values of k
variables.

Determining the degree of regularity for a specific polynomial system is difficult, but for a
certain class of systems, called semi-regular systems, it is known that the degree of regularity
can be deduced from the number m of equations and the number n of variables [1, 8]. In
particular, for quadratic semi-regular systems the degree of regularity is the degree of the
first term in the power series of

(1 − x2)m

Sm,n(x) =
(1 − x)n

that has a non-positive coefficient. This gives a practical method to calculate the degree of
regularity of any semi-regular system. Empirically, polynomial systems that are randomly
chosen have a very large probability of being semi-regular and it is conjectured that most
systems are semi-regular systems. For the definition and the theory of semi-regular systems
we refer to chapter 3 of the PhD thesis of Bardet [1].

23

— Internet: Portfolio 337

In a direct attack against the LUOV scheme all the coefficients of the system that needs to
be solved lie in F2, except those of the constant terms, because those coefficients come from
the message digest. We claim that this property does not significantly reduce the hardness
of finding solutions relative to the case where the coefficients are generic elements of F2r .
By definition [1], the degree of regularity of a polynomial system does only depend on its
quadratic part, and it is apparent that lifting a polynomial system to a field extension does
not affect its degree of regularity. Therefore, the degree of regularity of a LUOV public key
follows the same distribution of a UOV public key over the field F2, even after fixing a number
of variables. It has been observed by Faugère and Perret [10] that polynomial systems that
result from fixing ≈ v variables in a UOV system behave like semi-regular systems, whose
degree of regularity does not depend on q. Therefore, the degree of regularity of a LUOV
public polynomial system is distributed identically to that of a UOV public polynomial
system, independently of the size q of the finite field that is used.

Since the degree of regularity, in combination with the number of variables, determines
the complexity of a Gröbner basis computation (measured in number of field operations),
a Gröbner basis computation on the LUOV polynomial system is not significantly more
efficient than a Gröbner basis computation against regular UOV with the same parameters.
This argument is confirmed by the experimental data in Table 5. There we see that a direct
attack is slightly faster against the modified scheme than against the original UOV scheme,
but only by a small constant factor. Even though the Gröbner basis is computed over F2r ,
the largest part of the arithmetic only involves the field elements 0 and 1, so the arithmetic
is faster than with generic elements of F2r . This is where the difference observed in Table 5
comes from. If we do the same experiment with a smaller extension field such as F28 there
is no observed difference between the running time of a direct attack against a regular UOV
scheme and our modified scheme.

Remark. In a direct attack one fixes ≈ v variables randomly to make the system a slightly
overdetermined system. In our experiments we have fixed these variables to values in F2 to
make sure that we do not introduce linear terms with coefficients in F2r instead of F2 in the
case of the modified UOV scheme.

Table 5: Running time of a direct attack against the regular UOV scheme over F264 and the
modified UOV scheme, with the MAGMA v2.22-10 implementation of the F4 algorithm. We
did not implement the method of Thomae and Wolf [17].

(m, v) Regular UOV (s) Lifted UOV (s) difference
(7,35) 0.43 0.21 -52%
(8,40) 1.56 0.76 -51%
(9,45) 7.00 3.21 -54%
(10,50) 33.50 17.44 -48%
(11,55) 132.88 76.60 -42%
(12,60) 828.31 588.33 -29%

To obtain a lower bound to the complexity of a Gröbner basis computation we assume that
the parameter ω in the complexity of Gaussian elimination on the matrices constructed

24

338 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

in the Gröbner basis algorithm is equal to 2 and that the constant factor hidden by the
big O notation is equal to 1. That is, in Eqn. (1) we put ω = 2 and we drop the big O
notation to get a concrete lower bound to the number of bit operations of a hybrid attack.
Even though this is a generous lower bound, we require that this lower bound exceeds the
required bit complexity by 10 percent when choosing parameters. This is done to allow for
future improvements in algorithms that find solutions to polynomial equations.

Example. We will estimate the complexity of a direct attack against LUOV with the param-
eter set (r = 8,m = 63, v = 256); this set is proposed as a set that achieves security level 2.
Using the method of Thomae and Wolf. we can reduce finding a solution to this underdeter-
mined system to finding a solution of a determined system with 63+1−b(63+256)/63c = 59
equations. We assume this system, and the systems that are derived by fixing a number of
variables, to be semi-regular. If we fix k extra variables the degree of regularity is equal to
the degree of the first term in the power series of

2)59(1 − x
S59,59−k(x) =

(1 − x)59−k

which has a non-positive coefficient. For k = 0 we have S59,59(x) = (1 + x)59, so the degree
of regularity is 60. For k = 1 we have

3 30 31) ,S59,58(x) = 1 + 58x + 1652x + · · · + 3814986502092304x 29 + 0x + O(x

where all the omitted terms have positive coefficients, so the degree of regularity is 30. We
can now use (1) to obtain a lower bound to the complexity of the hybrid approach. For k
equal to 0 and 1 this is equal to

�
59 + 60

�2

≈ 2230.4 and 28

�
59 − 1 + 30

�2

≈ 2164.0

60 30

respectively. Repeating this calculation for higher values of k we eventually see that the
optimal value of k is 2, the corresponding degree of regularity is 27 and the complexity of the
direct attack is estimated as 2161.3 . Thus, this lower bound exceeds 2146×1.1, as required.

In theory, a quantum attacker could use Grover search instead of the brute force part of the
hybrid approach to speed up a direct attack. The complexity of this attack would be

� � �ω�
(k)k/2 n − k + dreg

CHybridF5(n,dreg ,k) = O q , (2)
dreg(k)

k k/2where the only difference with (1) is that the factor q is replaced by q . However, this
attack is not possible if the depth of a quantum computation is limited to, say, 264 operations.
For all our parameter choices and all practical values of k, the complexity of even a single
Gröbner basis computation is beyond 264, and the Grover algorithm should do a large number
of these computations sequentially in order to enjoy a noticeable speedup over the classical
brute force search.

25

— Internet: Portfolio 339

6.2 Key recovery attacks.

Since the key pair generation algorithm used by the LUOV scheme is identical to that of the
original UOV scheme over the field F2 it is clear that a key recovery attack against the Lifted
UOV scheme is equivalent to a key recovery attack against a regular UOV scheme over F2.
Key recovery attacks against UOV have been investigated ever since the invention of the
Oil and Vinegar scheme in 1997 [15], so it is well understood which attacks are possible and
what the complexities of these attacks are. It is also clear that we can make key recovery
attacks harder by increasing the number of vinegar variables.

6.2.1 UOV attack

Patarin [15] suggested in the original version of the Oil and Vinegar scheme to choose the
same number of vinegar and oil variables, or v = m. This choice was cryptanalyzed by
Kipnis and Shamir [14]: they showed that an attacker can find the inverse image of the oil
variables under the map T . This is enough information to find an equivalent secret key, so
this breaks the scheme. This approach generalizes for the case v > m; the complexity then
increases to O(qv−mn4) [13] and is thus exponential in v − m. Since a UOV attack on the
Lifted UOV scheme is equivalent to a UOV attack over F2, we have that the complexity of
a UOV attack against the Lifted UOV scheme is approximately 2v−m−1 ·n4 binary operations.

The generalized UOV attack chooses a random linear combination of the matrices that
represent the quadratic parts of the polynomials in the public system and computes the
minimal eigenspaces of the matrix. With probability 2m−v+1 this computation yields a
vector in the oil subspace. This means that a quantum attacker can use the Grover search
algorithm [11] to look for a random linear combination that will yield a vector in the oil
subspace. Ignoring issues of ‘Groverizing’ the algorithm such as making the computation
reversible and the probabilistic nature of the eigenspace computation, the complexity of a

v−m−1
2quantum attack becomes 2 n4 . If we limit the depth of a quantum computation to

2depth, and we ignore the depth of the eigenspace-finding subroutine, the complexity of an
v−m−1 4 , 2v−m−1 4/2depth).2attack is at least max(2 n n

6.2.2 Reconciliation attack

The reconciliation attack against the lifted UOV scheme is equivalent to the UOV reconcilia-
tion attack against UOV over the field F2. A lower bound on the complexity of this attack is
given by the complexity of solving a quadratic system of v variables and v equations over F2,
but the problem is expected to be harder [5]. There exists specialized algorithms for solving
polynomial systems over F2 that are more efficient than the generic hybrid approach. One
method is a smart exhaustive search, which requires approximately log2(n)2n+2 bit opera-
tions [6]. The BooleanSolve algorithm [2] combines an exhaustive search with sparse linear
algebra to achieve a complexity of O(20.792n). However the method only becomes faster than

26

340 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

the exhaustive search method when n > 200. Recently, Joux and Vitse proposed a new
algorithm that was able to solve a Boolean system of 146 quadratic equations in 73 vari-
ables in one day [12]. The algorithm beats the exhaustive search algorithm, even for small
systems. The complexity of this algorithm is still under investigation, but a rough estimate
based on the reported experiments suggests that the number of operations scales like 2αn

with α between 0.8 and 0.85 and with a constant factor between 27 and 210 . For choosing
the parameters of the LUOV signature scheme, we have assumed that finding a solution
to a determined system of n quadratic Boolean equations requires 20.75n operations in F2,
even though this is likely to seriously overestimate the capabilities of the state of the art
algorithms.

Due to the limit on the circuit depth of quantum computations, the Gröbner based methods
of solving a Boolean system cannot be ’Groverised’. In contrast, quantum attackers can still
use a brute force Grover search to solve systems over F2 with 2n/2 sequential evaluations of
the polynomials in the system. However, if the depth of a quantum computation is restricted
to 2depth evaluations of the polynomials, the required number of polynomial evaluations in a
Grover search is at least max(2n−depth, 2n/2). Asymptotically this is worse than the classical
Gröbner basis based methods, which is why the reported hardness of a quantum reconciliation
attack in Table 6 is higher than the hardness of the classical reconciliation attack. One would
expect quantum attacks to be at least as efficient as classical attacks, because a quantum
computer can simulate a classical computer. In our analysis this is not the case, because
the depth of a quantum computation is assumed to be limited, which is not the case for a
classical computation.

6.3 Hash collision attack

As is the case for all hash-and-sign digital signature algorithms, a hash collision can be
exploited to break the EUF-CMA security definition. The SHAKE extendable output func-
tions are used to generate a hash digest of the required length. The parameter sets claiming
a security level 2 use SHAKE-128, those claiming security level 4 or 5 use SHAKE-256. In
each proposed parameter set the output length (i.e. rm bits) is large enough to reach the
required hardness of finding collisions. Therefore, a hash collision attack does not threaten
the claimed security levels.

7 Advantages and limitations (2.B.6)

7.1 Advantages

• Small signatures. Like many other MQ signature schemes, the signatures of the
LUOV scheme are very small. For security level 2 the signatures are only 319 bytes
long.

27

— Internet: Portfolio 341

• A wide security margin Instead of trying to estimate the complexity of existing
attacks and choosing the parameters such that these estimates match the required
security level we have formulated conservative lower bounds to plausible attacks. For
example, we have assumed that a classical attacker can solve a determined system of n
Boolean quadratic polynomials with only 20.75n bit operations, whereas the best known
algorithms seem to require 20.80n+7 operations at best. On top of our conservative
lower bounds, we require the log2 of this lower bound to exceed the log2 of the required
number of operations by 10% (see Sect. 5).

• Simple arithmetic. The scheme only uses SHA-3 and simple arithmetic operations
over F2 or over an extension field. Arithmetic over F2 translates to the operations AND
and XOR, while the arithmetic over an extension field can be implemented with XOR,
additions and table lookups in small tables. This makes the algorithm very suitable
for hardware implementations.

• Message recovery. It is possible to use the LUOV scheme in a message recovery
mode. In this mode, a part of the message can be recovered from the signature and
does not need to be communicated. This can reduce the size of a message-signature
pair by up to 15 percent of the signature size.

• Deterministic signatures. The generation of a signature does not require any ex-
ternal source of randomness. This makes a secure implementation easier and excludes
any attack that might exploit the usage of a poor source of randomness.

• Stateless. The signing algorithm does not need to maintain a state between sign-
ing sessions and can sign an unbounded number of messages. This makes a secure
implementation of the algorithm easier.

• Flexible. The parameters of the signature are easily adjustable to reach a specific
security level. It is also possible to choose parameters to make a trade-off between
small signatures and small public keys.

• Diversity. Multivariate cryptography relies on a different hard problem than other
branches such as lattice cryptography or hash-based cryptography. It is prudent to have
cryptographic algorithms that rely on a diverse set of hard problems such that if one
hard problem is broken and wipes out a branch of cryptography, there are alternative
algorithms available.

7.2 Limitations

• Public key size. Even though the public key size of the LUOV scheme is much
smaller than the public key size of other MQ signature schemes, it remains larger than
the public key size of some other post quantum signature schemes. It is possible to
mitigate this problem by making a trade-off for a smaller public key at the cost of
larger signatures.

28

342 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

• No encryption or KEM. The LUOV scheme is a digital signature scheme. This
submission does not include an encryption scheme or a key encapsulation mechanism.

References

´ [1] Magali Bardet. Etude des systèmes algébriques surdéterminés. Applications aux codes
correcteurs et à la cryptographie. PhD thesis, Université Pierre et Marie Curie-Paris VI,
2004.

[2] Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and Pierre-Jean Spaenlehauer. On
the complexity of solving quadratic Boolean systems. Journal of Complexity, 29(1):53–
75, 2013.

[3] Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Hybrid approach for solving
multivariate systems over finite fields. Journal of Mathematical Cryptology, 3(3):177–
197, 2009.

[4] Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Solving polynomial systems
over finite fields: Improved analysis of the hybrid approach. In Proceedings of the 37th
International Symposium on Symbolic and Algebraic Computation, pages 67–74. ACM,
2012.

[5] Ward Beullens and Bart Preneel. Field lifting for smaller UOV public keys. In Progress
in Cryptology–INDOCRYPT 2017: 18th International Conference on Cryptology in In-
dia, Chennai, India, December 10-13, 2016, Proceedings 18. Springer, 2017.

[6] Charles Bouillaguet, Hsieh-Chung Chen, Chen-Mou Cheng, Tung Chou, Ruben Nieder-
hagen, Adi Shamir, and Bo-Yin Yang. Fast exhaustive search for polynomial systems
in F2. In International Workshop on Cryptographic Hardware and Embedded Systems,
pages 203–218. Springer, 2010.

[7] Peter Czypek. Implementing Multivariate Quadratic Public Key Signature Schemes on
Embedded Devices. PhD thesis, Diploma Thesis, Chair for Embedded Security, Ruhr-
Universität Bochum, 2012.

[8] Claus Diem. The XL-algorithm and a conjecture from commutative algebra. In Asi-
acrypt, volume 4, pages 338–353. Springer, 2004.

[9] Jean-Charles Faugère and Sylvain Lachartre. Parallel Gaussian elimination for Gröbner
bases computations in finite fields. In Proceedings of the 4th International Workshop on
Parallel and Symbolic Computation, pages 89–97. ACM, 2010.

[10] Jean-Charles Faugère and Ludovic Perret. On the security of UOV. IACR Cryptology
ePrint Archive, 2009:483, 2009.

29

— Internet: Portfolio 343

[11] Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the twenty-eighth annual ACM symposium on Theory of computing, pages 212–219.
ACM, 1996.

[12] Antoine Joux and Vanessa Vitse. A crossbred algorithm for solving Boolean polynomial
systems. IACR Cryptology ePrint Archive, 2017:372, 2017.

[13] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced Oil and Vinegar signa-
ture schemes. In International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 206–222. Springer, 1999.

[14] Aviad Kipnis and Adi Shamir. Cryptanalysis of the Oil and Vinegar signature scheme.
In Annual International Cryptology Conference, pages 257–266. Springer, 1998.

[15] Jacques Patarin. The Oil and Vinegar signature scheme. In Dagstuhl Workshop on
Cryptography1997, 1997.

[16] Albrecht Petzoldt. Selecting and Reducing Key Sizes for Multivariate Cryptography.
PhD thesis, TU Darmstadt, July 2013. Referenten: Professor Dr. Johannes Buchmann,
Professor Jintai Ding, Ph.D.

[17] Enrico Thomae and Christopher Wolf. Solving underdetermined systems of multivariate
quadratic equations revisited. In International Workshop on Public Key Cryptography,
pages 156–171. Springer, 2012.

[18] Christopher Wolf and Bart Preneel. Equivalent keys in multivariate quadratic public
key systems. Journal of Mathematical Cryptology, 4(4):375–415, 2011.

A Statements

These statements “must be mailed to Dustin Moody, Information Technology Laboratory,
Attention: Post-Quantum Cryptographic Algorithm Submissions, 100 Bureau Drive – Stop
8930, National Institute of Standards and Technology, Gaithersburg, MD 20899-8930, or can
be given to NIST at the first PQC Standardization Conference (see Section 5.C).”

First blank in submitter statement: full name. Second blank: full postal address. Third,
fourth, and fifth blanks: name of cryptosystem. Sixth and seventh blanks: describe and
enumerate or state “none” if applicable.

First blank in patent statement: full name. Second blank: full postal address. Third blank:
enumerate. Fourth blank: name of cryptosystem.

First blank in implementor statement: full name. Second blank: full postal address. Third
blank: full name of the owner.

30

344 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

A.1 Statement by Each Submitter

I, Ward Beullens, of Afdeling ESAT - COSIC, Kasteelpark Arenberg 10 - bus 2452,
3001 Heverlee, Belgium, do hereby declare that the cryptosystem, reference implementation,
or optimized implementations that I have submitted, known as LUOV, is my own original
work, or if submitted jointly with others, is the original work of the joint submitters. I
further declare that (check one):

X I do not hold and do not intend to hold any patent or patent application with a claim
which may cover the cryptosystem, reference implementation, or optimized implemen-
tations that I have submitted, known as LUOV OR (check one or both of the following):

to the best of my knowledge, the practice of the cryptosystem, reference im-
plementation, or optimized implementations that I have submitted, known
as LUOV may be covered by the following U.S. and/or foreign patents:
None
I do hereby declare that, to the best of my knowledge, the following pend-
ing U.S. and/or foreign patent applications may cover the practice of my sub-
mitted cryptosystem, reference implementation or optimized implementations:
None

I do hereby acknowledge and agree that my submitted cryptosystem will be provided to the
public for review and will be evaluated by NIST, and that it might not be selected for standard-
ization by NIST. I further acknowledge that I will not receive financial or other compensation
from the U.S. Government for my submission. I certify that, to the best of my knowledge,
I have fully disclosed all patents and patent applications which may cover my cryptosystem,
reference implementation or optimized implementations. I also acknowledge and agree that
the U.S. Government may, during the public review and the evaluation process, and, if my
submitted cryptosystem is selected for standardization, during the lifetime of the standard,
modify my submitted cryptosystem’s specifications (e.g., to protect against a newly discovered
vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish
the draft standards for public comment.

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below, for
any patent or patent application identified to cover the practice of my cryptosystem, reference
implementation or optimized implementations and the right to use such implementations for
the purposes of the public review and evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove
my cryptosystem from consideration for standardization. If my cryptosystem (or the derived
cryptosystem) is removed from consideration for standardization or withdrawn from consider-
ation by all submitter(s) and owner(s), I understand that rights granted and assurances made
under Sections 2.D.1, 2.D.2 and 2.D.3, including use rights of the reference and optimized
implementations, may be withdrawn by the submitter(s) and owner(s), as appropriate.

Signed: Ward Beullens

31

— Internet: Portfolio 345

Title:
Date:
Place:

32

346 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

A.2 Statement by Reference/Optimized Implementations’
Owner(s)

I, Ward Beullens, Afdeling ESAT - COSIC, Kasteelpark Arenberg 10 - bus 2452,
3001 Heverlee, Belgium, am the owner or authorized representative of the owner
Ward Beullens of the submitted reference implementation and optimized implementa-
tions and hereby grant the U.S. Government and any interested party the right to reproduce,
prepare derivative works based upon, distribute copies of, and display such implementations
for the purposes of the post-quantum algorithm public review and evaluation process, and
implementation if the corresponding cryptosystem is selected for standardization and as a
standard, notwithstanding that the implementations may be copyrighted or copyrightable.

Signed: Ward Beullens
Title:
Date:
Place:

33

— Internet: Portfolio 347

Ming-Shing Chen
Andreas Hülsing
Joost Rijneveld
Simona Samardjiska
Peter Schwabe

MQDSS specifications

Version 1.0 November 2017

348 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

— Internet: Portfolio 349

Introduction

This document is a detailed specification of the design and security arguments of the
digital signature scheme MQDSS. It is divided in two main parts:

• Part I Backbone results - contains:
– an analysis of the hardness of the underlying hard problem with respect to both
classical and quantum algorithms - Chapter 2,

– a description of the underlying Identification scheme - Chapter 3,
– a description and proof of security of the underlying construction - Chapter 5.

• Part II MQDSS Specifications - contains:
– a detailed description of MQDSS - Chapter 7 and Chapter 9,
– proposed and additional parameter sets - Chapter 8,
– security analysis of MQDSS- Chapter 10,
– justification of the design choices - Chapter 11,
– a detailed performance analysis of the reference implementation using the proposed
parameter sets - Chapter 12.

– a discussion on the security vs performance tradeoffs - Chapter 13,
– a summary of the strengths and weaknesses - Chapter 14, and
– a short description of an additional AVX2 implementation - Chapter 15.

350 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

— Internet: Portfolio 351

Contents

Part I Backbone Results
- Underlying Construction and Security Arguments -

1 Preliminaries . 3

1.1 Notations and Conventions . 3

1.2 Security Notions and Definitions . 3
1.2.1 Digital Signatures . 3
1.2.2 Identification Schemes . 5

2 The MQ Problem . 9

2.1 Multivariate Quadratic (MQ) Functions and the MQ Problem 9

2.2 Classical Algorithms for Solving the MQ Problem . 10
2.2.1 Exhaustive search . 11
2.2.2 The HybridF5 algorithm . 11
2.2.3 The BooleanSolve algorithm . 12
2.2.4 The Crossbread algorithm . 13

2.3 Using Grover’s Algorithm for Solving the MQ Problem 16
2.3.1 Finite Field Arithmetic on Quantum Computers 16
2.3.2 Grover’s Quantum Search Algorithm . 17
2.3.3 Resource Estimates of Grover Enhanced Quantum Algorithms for

Solving the MQ Problem . 18

3 The Sakumoto-Shirai-Hiwatari (SSH) 5-pass IDS scheme 25

3.1 Description of the SSH 5-pass IDS . 25

3.2 Properties of the SSH 5-pass IDS . 25

4 The Fiat-Shamir Transform . 27

4.1 Description of the Fiat-Shamir Transform . 27

4.2 Security of the Fiat-Shamir Transform . 28

5 The Fiat-Shamir Transform for 5-pass Identification Schemes 31

5.1 A Fiat-Shamir transform for q2 -Identification Schemes 31

5.2 Security of q2-signature schemes. 32

352 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Part II MQDSS Specifications

6 Notations . 37

7 MQDSS High Level Description . 39

7.1 MQDSS Parameters Description and Auxiliary Functions 39

7.2 MQDSS Key Generation . 40

7.3 MQDSS Signature Generation . 40

7.4 MQDSS Signature Verification . 42

8 Parameter Sets . 45

8.1 Reference Parameter Sets . 45

8.2 Additional Parameter Sets . 46

9 Low Level Description of MQDSS . 49

9.1 Auxiliary Functions . 49
9.1.1 Secret Key Expansion . 49
9.1.2 Expanding SF, Ss and Srte . 49
9.1.3 Evaluating F . 50
9.1.4 Packing and unpacking F31 elements . 52
9.1.5 Commitment and hash functions . 52

9.2 Putting it all together - Pseudo code of KGen,Sign,Vf 54

10 Security of MQDSS . 57

10.1 EU-CMA security of MQDSS . 57

10.2 Attacks Against MQDSS . 57

11 Design Rationale . 59

11.1 Parameters . 59

11.2 5-pass over 3-pass SSH Identification Scheme . 60

11.3 Optimizations . 60

11.4 Other Functions . 60

12 Performance Analysis . 61

12.1 Performance on Intel x64-86 . 61

12.2 Performance on Intel x64-86 AVX2 . 61

12.3 Size . 61

13 Security v.s. Performance . 63

14 Strengths and Weaknesses . 65

15 Additional AVX2 Implementation of MQDSS . 67

VI

— Internet: Portfolio 353

References . 68

Appendix . 71

A Security proofs . 73

A.1 Security of q2-signature schemes. 73

A.2 Proof of Theorem 10.1 [EU-CMA security of MQDSS] 78

VII

354 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

— Internet: Portfolio 355

Part I

Backbone Results
- Underlying Construction and Security Arguments -

356 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

— Internet: Portfolio 357

1

Preliminaries

1.1 Notations and Conventions

Let A(·, ·, . . .) be a randomized algorithm. We write y ← A(x1, x2, . . .) for the output of
the algorithm on input x1, x2, The same notation is used for the output of a function.
If S is a set, then s ←R S denotes that s is drawn uniformly at random from S.

Furthermore, let Fq denote the finite field of order q. We use boldface letters u to denote
vectors over a finite field, i.e. u ∈ Fn, for some positive integer n ∈ N. We call a function q

Fn → Fm a vectorial function. q q

1.2 Security Notions and Definitions

In the following we provide basic security related definitions used throughout these speci-
fications.

A function µ is called negligible (in k) if for every positive polynomial p, and sufficiently
large k it holds that µ(k) < 1/p(k). For better readability we sometimes denote negligible
functions by negl(k).

We say that two distribution ensembles {Xk}k∈N and {Yk}k∈N indexed by a security
parameter k are computationally indistinguishable if for any non-uniform probabilistic
polynomial time algorithm A

|Pr [1 ← A (Xk)] − Pr [1 ← A (Yk)]| = negl(k) .

1.2.1 Digital Signatures

This specification describes a construction of digital-signature schemes. These are defined
as follows.

Definition 1.1 (Digital signature scheme). A digital-signature scheme with secu-
rity parameter k, denoted Dss(1k) is a triplet of polynomial-time algorithms Dss =
(KGen, Sign, Vf) defined as follows:

• The key-generation algorithm KGen is a probabilistic algorithm that outputs a key pair
(sk, pk).
• The signing algorithm Sign is a possibly probabilistic algorithm that on input a secret
key sk and a message M outputs a signature σ.

358 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

• The verification algorithm Vf is a deterministic algorithm that on input a public key
pk, a message M and a signature σ outputs a bit b, where b = 1 indicates that the
signature is accepted and b = 0 indicates a reject.

We write Dss instead of Dss(1k), whenever the security parameter k is clear from context
or irrelevant. For correctness of a Dss, we require that for all (sk, pk) ← KGen(), all mes-

sages M and all signatures σ ← Sign(sk,M), we get Vf(pk, M, σ) = 1, i.e., that correctly
generated signatures are accepted.

Existential Unforgeability under Adaptive Chosen Message Attacks.
The standard security notion for digital signature schemes is existential unforgeability
under adaptive chosen message attacks (EU-CMA) [34], defined as follows.

Experiment Expeu-cma (A)Dss(1k)

(sk, pk) ← KGen()
(M?, σ?) ← ASign(sk,·)(pk)
Let {(Mi)}Qs be the queries to Sign(sk, ·).1

Return 1 iff Vf(pk,M?, σ?) = 1 and M? 6∈ {Mi}Qs .1

For the success probability of an adversary A in the above experiment we write
h i

Succeu-cma Expeu-cma(A) = Pr (A) = 1 .Dss(1k) Dss(1k)

A signature scheme is called EU-CMA-secure if any PPT algorithm A has only negligible
success probability in the Expeu-cma (A) experiment. More formally, we have the following Dss(1k)

definition.

Definition 1.2 (EU-CMA security). Let k ∈ N and Dss a digital signature scheme with
security parameter k. We call Dss existentially unforgeable under chosen message attacks
or EU-CMA-secure if for all Qs, t = poly(k) the success probability of any PPT algorithm A
(the adversary) running in time ≤ t, making at most Qs queries to Sign in the Expeu-cma (A)Dss(1k)

experiment, is negligible in k:

Succeu-cma (A) = negl(k) .Dss(1k)

In the security proof of our signature scheme, we will also make use of the weaker
notion of security against key-only attacks (KOA). The difference from EU-CMA security
is that the adversary is given no access to the signing oracle, i.e., Qs = 0. More formally,
we define the following experiment.

Experiment Expkoa (A)Dss(1k)

(sk, pk) ← KGen()
(M?, σ?) ← A(pk)
Return 1 iff Vf(pk,M?, σ?) = 1.

Definition 1.3 (KOA security). Let k ∈ N and Dss a digital signature scheme with
security parameter k. We call Dss secure under key only attacks or KOA-secure if for all
t = poly(k) the success probability of any PPT adversary A running in time ≤ t in the
Expkoa (A) experiment, is negligible in k:Dss(1k)

Succkoa (A) = negl(k) ,Dss(1k)
h i

where Succkoa (A) = Pr Expkoa (A) = 1 .Dss(1k) Dss(1k)

4

— Internet: Portfolio 359

1.2.2 Identification Schemes

An identification scheme (IDS) is a protocol that allows a prover P to prove its identity
to a verifier V. More formally:

Definition 1.4 (Identification scheme). An identification scheme with security param-

eter k, denoted IDS(1k), is a triplet of PPT algorithms IDS = (KGen, P, V) such that:

• the key generation algorithm KGen outputs a key pair (sk, pk).
• P and V are interactive algorithms, executing a common protocol. The prover P takes
as input a secret key sk and the verifier V takes as input a public key pk. At the
conclusion of the protocol, V outputs a bit b with b = 1 indicating “accept” and b = 0
indicating “reject”.

We write IDS instead of IDS(1k), if the security parameter k is clear from context or
irrelevant. For correctness of an IDS, we require that for all (pk, sk) ← KGen() we have

Pr [hP(sk), V(pk)i = 1] = 1,

where hP(sk), V(pk)i refers to the common execution of the protocol between P with input
sk and V on input pk. In this case we say that the IDS is perfectly correct.

For the following definitions we need the notion of a transcript. A transcript of an
execution of an identification scheme IDS refers to all the messages exchanged between P
and V and is denoted by trans(hP(sk), V(pk)i).

We will focus on canonical 2n + 1-pass IDS, where the prover and the verifier exchange
2n + 1 messages, n challenges and n replies. These IDS are defined as follows.

Definition 1.5 (Canonical 2n + 1-pass identification schemes). Consider IDS =
(KGen, P, V), a 2n + 1-pass identification scheme with n challenge spaces C1, . . . , Cn.
We call IDS a canonical 2n + 1-pass identification scheme if the prover can be split
into n + 1 subroutines P = (P0, P1, . . . , Pn) and the verifier into n + 1 subroutines
V = (ChS1, . . . , ChSn, Vf) such that:

• P0(sk) computes the initial commitment com sent as the first message and a state state
fed forward to P1.
• ChS1, computes the first challenge message ch1 ←R C1, sampling at random from the
challenge space C1.
• P1(state, ch1), computes the first response resp1 of the prover (and updates the state
state) given access to the state and the first challenge.
• For every i ∈ {2, . . . , n}

– ChSi, computes the i-th challenge message chi ←R Ci.
– Pi(state, chi), computes the i-th response respi of the prover given access to the state
and the i-th challenge.

• Vf(pk, com, ch1, resp1, . . . , chn, resp), upon access to the public key and the whole tran-n

script outputs V’s final decision.
Note that the state forwarded among the prover algorithms can contain all inputs to
previous prover algorithms if they are needed later. We also assume that the verifier keeps
all sent and received messages to feed them to Vf.

Our construction uses the special case of canonical 5-pass IDS (where n = 2). On the
other hand, standard choice in the literature for building signatures is the special case

5

360 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

n = 1. For comparison, we will use both in these specifications, and for completeness
and clarity we provide figures of both. Figure 1.1 describes a canonical 3-pass IDS, and
Figure 1.2 a canonical 5-pass IDS.

P V

(state, com) ← P0(sk) com

ch1 ←R ChS1(1
k)ch1

resp1 ← P1(state, ch1) resp1

b ← Vf(pk, com, ch1, resp1)

Fig. 1.1: Canonical 3-pass IDS

P V

(state, com) ← P0(sk) com

ch1 ←R ChS1(1
k)

(state, resp1) ← P1(state, ch1)

ch2 ←R ChS2(1
k)

resp2 ← P2(state, ch2)

b ← Vf(pk, com, ch1, resp1, ch2, resp2)

ch1

resp1

ch2

resp2

Fig. 1.2: Canonical 5-pass IDS

Furthermore, we will consider a particular type of canonical 5-pass IDS where the size
of the two challenge spaces is restricted to q and 2.

Definition 1.6 (q2 -Identification scheme). A q2 -Identification scheme IDS is a canon-
ical 5-pass identification scheme where for the challenge spaces C1 and C2 it holds that
|C1| = q and |C2| = 2.

Security against Impersonation under Passive Attack.
The standard security notion for identification schemes is security against impersonation.
Here, the goal of the adversary - the impersonator I, is to impersonate the prover in an
interaction with an honest verifier without the knowledge of the secret key. When talking
about passive attacks, the impersonator, besides the public key, might have access to pol-
lynomially many valid interactions between the prover and the verifier (via eavesdropping
for example), i.e., access to a transcript oracle Trans(pk, sk, ·) that outputs valid transcripts
of honest executions.

For a canonical 2n + 1-pass IDS we consider the following experiment:

imp-paExperiment Exp (I)
IDS(1k)

(sk, pk) ← KGen()
(state, com) ← ITrans(pk,sk,·)(pk)
For every i ∈ {1, . . . , n}
chi ←R ChSi(1

k)
(state, respi) ← ITrans(pk,sk,·)(pk)

Return 1 iff Vf(pk, com, ch1, resp1, . . . , chn, resp) = 1. n

6

— Internet: Portfolio 361

For the success probability of the impersonator I in the above experiment we write
h i

imp-pa imp-paSucc (I) = Pr Exp (I) = 1 .
IDS(1k) IDS(1k)

Definition 1.7 (IMP-PA security). Let k ∈ N and IDS a canonical 2n +1 identification
scheme with security parameter k. We say IDS is secure against impersonation under
passive attacks or IMP-PA-secure if for all Qt, t = poly(k) the success probability of any
PPT impersonator I running in time ≤ t, making at most Qt queries to Trans in the

imp-paExp (I) experiment, is negligible in k:
IDS(1k)

imp-paSucc (I) = negl(k) .
IDS(1k)

Security Properties of Identification Schemes.
The properties of identification schemes interesting in our context are those that provide
passive security. We next give the necessary definitions.

First of all, it must be hard for any cryptographic scheme to derive a valid secret key
given a public key. To formally capture this intuition, we need to define what valid means.
For this we define the notion of a key relation.

Definition 1.8 (Key relation). Let IDS be an identification scheme and R some relation.
We say IDS has key relation R if

∀(pk, sk) ← KGen() : (pk, sk) ∈ R

Now that we have defined what valid means, we can define key-one-wayness.

Definition 1.9 (Key-One-Wayness). Let k ∈ N be the security parameter, IDS(1k)
be an identification scheme with key relation R. We call IDS key-one-way (KOW) (with
respect to key relation R) if for all polynomial time algorithms A,

� �
Succpq−kow (A) = Pr (pk, sk) ← KGen(), sk0 ← A(pk) : (pk, sk0) ∈ R = negl(k)

IDS(1k)

Definition 1.10 (Soundness (with soundness error κ)). Let k ∈ N, IDS(1k) =
(KGen, P, V) an identification scheme with security parameter k. We say that IDS is sound,
with soundness error κ, if for every PPT algorithm A (the adversary),

� �
(pk, sk) ← KGen()

Pr � ≤ κ + negl(k) . A(1k , pk), V(pk) = 1

Definition 1.11 ((computational) Honest-verifier zero-knowledge). Let k ∈ N,
IDS(1k) = (KGen, P, V) an identification scheme with security parameter k. We say that
IDS is computational honest-verifier zero-knowledge (HVZK) if there exists a probabilis-
tic polynomial time algorithm S, called the simulator, such that for any polynomial time
algorithm A and (pk, sk) ← KGen():

Succpq−hvzk (A) =
IDS(1k)

|Pr [1 ← A (sk, pk, trans(hP(sk), V(pk)i))] − Pr [1 ← A (sk, pk, S(pk))]| = negl(k) .

7

362 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Definition 1.12 (Special soundness). Let IDS(1k) be a 3-pass Identification scheme
with key relation R and A a polynomial time algorithm that upon input of security param-

eter 1k and an IDS(1k) public key pk outputs, with non-negligible probability, four valid
transcripts with respect to pk:

trans = (com, ch1, resp1),
0 (1.1)

trans0 = (com, ch0 1, resp1),

where ch1 6 1.= ch0

We say that IDS(1k) is special sound if there exists a polynomial time algorithm KIDS ,
the extractor, that, given a public key pk and access to A, outputs a secret key sk such that
(pk, sk) ∈ R with non-negligible success probability in k.

To prove security of our signature scheme, we will make use of the existence of so called
q2-extractor which is a variant of special soundness. This is combined with a notion of
key-one-wayness to later be able to argue about security.

Definition 1.13 (q2-Extractor). Let IDS(1k) be a q2-Identification scheme with key re-
lation R and A a polynomial time algorithm that upon input of security parameter 1k and
an IDS(1k) public key pk outputs, with non-negligible probability, four valid transcripts with
respect to pk:

0trans(1) = (com, ch1, resp1, ch2, resp2), trans
(3) = (com, ch0 1, resp1, ch2, resp2),

0 0 (1.2)0trans(2) = (com, ch1, resp1, ch
0
2, resp2), trans

(4) = (com, ch0 1, resp1, ch2
0 , resp2).

where ch1 6 and ch2 = ch0 2.= ch0 1 6
We say that IDS(1k) has a q2-Extractor if there exists a polynomial time algorithm

KIDS , the extractor, that, given a public key pk and access to A, outputs a secret key sk
such that (pk, sk) ∈ R with non-negligible success probability in k.

Security Properties of Commitments.
The security of identification schemes relies on the properties of the underlying commit-

ment scheme. The goal of “commiting” to a certain value is twofold: It should not be
feasible for anyone to discover this value before the prover opens the commitment, but
also, it should not be feasible for the prover to open the commitment in multiple ways.
These two properties are known as hiding and binding. They come in different flavors -
perfect, statistical and computational, depending on what “feasible” means.

For our purposes, the weakest version of computational hiding and binding will suffice.
These are formally defined as follows.

Definition 1.14 (Computationally hiding commitments). Let k ∈ N, Com(1k) a
commitment scheme with security parameter k. We say that Com is computationally hiding
if for any two messages M, M 0 and random string ρ, for any polynomial time algorithm
A:

� � � ��� �Pr [1 ← A (Com(ρ, M))] − Pr 1 ← A Com(ρ, M 0) � = negl(k) .

Definition 1.15 (Computationally binding commitments). Let k ∈ N, Com(1k)
a commitment scheme with security parameter k. We say that Com is computationally
binding if for any polynomial time algorithm A

h i
Pr Com(ρ, M) = Com(ρ0,M 0) ∧ M 6= M 0 : (ρ, M, ρ0,M 0) ← A(1k) = negl(k) .

8

— Internet: Portfolio 363

2

The MQ Problem

2.1 Multivariate Quadratic (MQ) Functions and the MQ Problem

Let m, n, q ∈ N, x = (x1, . . . , xn) and let MQ(n, m, Fq) denote the family of vectorial
functions F : Fn → Fm of degree 2 over Fq:q q

MQ(n, m, Fq) = {F(x) = (f1(x), . . . , fm(x))|
X X

(s) (s)
fs(x) = ai,j xixj + bi xi, s ∈ {1, . . . ,m}}.

i,j i

We will refer to F ∈ MQ(n, m, Fq) as multivariate quadratic (MQ) function. Given
v ∈ Fm we will refer to F(x) = v as system of m quadratic equations in n variables. q

We will omit m, n, q whenever they are clear from the context.

Definition 2.1. Let F ∈ MQ(n, m, Fq). The function G(x, y) = F(x + y) − F(x) − F(y)
is called the polar form of the function F.

It is not hard to verify that the polar form is bilinear, i.e., for every a1, a2, b ∈ Fn it holds q

G(a1 + a2, b) = G(a1, b) + G(a2, b) and

G(b, a1 + a2) = G(b, a1) + G(b, a2).

Definition 2.2 (MQ relation). The MQ relation is the binary relation defined as:
) × Fm) × FnRMQ(m,n,q) ⊆ (MQ(n, m, Fq q q : ((F, v), s) ∈ RMQ(m,n,q) iff F(s) = v.

We relate the following problem to the family MQ(n, m, Fq) of MQ functions:

Definition 2.3 (MQ problem (search version)). Let m, n, q ∈ N. An instance
MQ(F, v) of the MQ (search) problem is defined as:

Given F ∈ MQ(n, m, Fq), v ∈ Fm find, if any, s ∈ Fn such that q q

((F, v), s) ∈ RMQ(m,n,q).

The decisional version of the MQ problem is known to be NP -complete [32]1 . It is
widely believed that the MQ problem is intractable even for quantum computers in the
average case. We formalize the intractability of the MQ problem through the following.

1 Note that the MQ problem is a special case of the more general problem of solving a system of equations
over a finite field of degree deg ≥ 2, known as PoSSo. The decisional version of the PoSSo problem is
NP -complete [32].

364 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

�

Assumption 2.4 (MQ assumption) Let m, n, q ∈ N, F ←R MQ(n, m, Fq) and s ←R

Fn. For every polynomial time quantum algorithm A given F and v = F(s) it is computa-q

tionally hard to find a solution s
⎡

0 to the MQ(F, v) problem. More formally,

F ←R MQ(n, m, Fq)
s ←R Fn

q

⎤

Pr
⎢⎢⎣ (F, v), s 0

� ⎥⎥⎦∈ RMQ(m,n,q) : = negl(k) .
((F, v), s) ∈ RMQ(m,n,q)

s0 ← A(1k , F, v)

2.2 Classical Algorithms for Solving the MQ Problem

The difficulty of solving the MQ problem is strongly dependent on the ratio between the
number of variables n and number of equations m. It is known that when m > n(n + 1)/2
(overdetermined systems) and when n > m(m + 1) (underdetermined systems) the MQ
problem is solvable in polynomial time.

The first case is simply a result of replacing all monomials by a new variable, and
solving a linear system in n(n + 1)/2 variables and at least as many equations. The second
case was solved by Kipnis, Patarin and Goubin [40] and later [53] Thomae and Wolf
showed that the complexity gradually increases to exponential when m ≈ n. Indeed, the
most interesting case is when m = n: Adding more equations gives away more information
about the system; On the other hand, if there are more variables, we can simply fix the
excess of them, and end up with a system of the same number of variables and equations.

In the rest of this section we will assume that m > n, but also that m = O(n).
For this range of parameters, the state of the art algorithms employ algebraic techniques
that analyze the properties of the ideal generated by the given polynomials. The most
important are the algorithms from the F4/F5 family [26, 27, 5, 12], and the variants of
the XL algorithm [21, 24, 59, 58]. Although different in description, the two families bear
many similarities, which results in similar complexity [60]. Therefore, in our analysis we
will not consider the algorithms from the XL family.

In the Boolean case, today’s state of the art algorithms BooleanSolve [6] and FXL [58],
provide improvement over exhaustive search, with an asymptotic complexity of Θ(20.792n)
and Θ(20.875n) for m = n, respectively. Practically, the improvement is visible for poly-
nomials with more than 200 variables. A very recent algorithm, the Crossbred algorithm
[37] over F2, is likely to further improve the asymptotic complexity, as the authors report
that it passes the exhaustive search barrier already for 37 Boolean variables.

Interestingly, the current best known algorithms, BooleanSolve [6], FXL [58, 59], the
Crossbred algorithm [37] and the Hybrid approach [12] all combine algebraic techniques
with exhaustive search. This immediately allows for improvement in their quantum version
using Grover’s quantum search algorithm [36], provided the cost of implementing them
on a quantum computer does not diminish the gain from Grover. These algorithms will
be subject to our interest in the rest of the section. Their implementation on a quantum
computer and the speed up from using Grover’s algorithm will be discussed in Section 2.3.

For comparison reasons, in our analysis we will also consider exhaustive search per-
formed through fast enumeration techniques [13]. We will not consider a probabilistic
method recently proposed by Lokshtanov et al. [43]. Although it is provably faster than
exhaustive search, the improvement in the case of odd characteristic fields is not compa-

rable to the best algebraic methods. Furthermore, it has not been studied enough and has

10

— Internet: Portfolio 365

not been implemented (to the best of our knowledge), so even in the Boolean case where
the asymptotic complexity is O(20.8765n) it is not clear for what values of n this algorithm
outperforms exhaustive search.

In the rest of this section, let F = (f1, . . . , fm), fi ∈ Fq[x1, . . . , xn]. Without loss of
generality, the equation system that we want to solve is F(x) = 0.

2.2.1 Exhaustive search

A natural and simple way of obtaining a solution of the given system is to try out all
possible values x ∈ Fn until the system is satisfied. A näıve implementation would require q� �

n2 2 additions and multiplications for a single polynomial, and m times more for the entire
2system, amounting to a complexity of O(mn qn) field operations. However, in [13], Bouil-

laguet et al. introduced a technique for fast enumeration in F2 that needs only log2(n)2
n+2

Boolean operations. The technique uses Gray codes enumeration and partial derivatives
of the polynomials. Although [13] considers only the Boolean case, the technique can be
extended to larger fields by using q-ary Gray codes. So, for simplicity we will assume that

nfast enumeration can be performed in logq(n)q operations over a field of size q.

2.2.2 The HybridF5 algorithm

Currently, the standard algorithms for solving generic instances of the MQ problem are
the algorithms for computing a Gröbner basis of the ideal generated by the set of MQ
polynomials. The idea was first introduced by Buchberger [15] and later further devel-
oped by Lazard [42] who established the link between computing the Gröbner basis and
performing Gaussian elimination on the Macaulay matrices (of degree up to a sufficiently
large integer D) of the given polynomials.2 The algorithm was improved several times by
Buchberger himself in order to reduce the number of unnecessary reductions to 0 during
the Gröbner basis computation. A significant improvement was done in the variant pro-
posed by Faugère [26] known as the F4-algorithm. The main improvement comes from the
introduced strategy to reduce all critical pairs of minimal degree at once (instead of one
by one) using the Macaulay matrix and sparse matrix algebra techniques. Later, Faugère
completely removed the reductions to zero for semi-regular sequences in the improved
F5-algorithm [27, 7, 8].

The semi-regularity assumption is crucial in this algorithm (as it will be in the other
algebraic methods we consider). Informally (which is enough for our purposes), a sequence
of polynomials (f1, . . . , fm),m ≥ n is semi-regular if the only relations (dependencies)
among the polynomials are the trivial ones generated by fifj − fj fi = 0. Note that the
regularity assumption is a very plausible one for randomly generated polynomials, and
has been experimentally supported (see for example [6]). We will also assume that the
instances generated in our signature scheme are semi-regular.

The main complexity in the F5 algorithm (and also in the BooleanSolve and the
Crossbread algorithm) comes from performing Gauss elimination on the Macaulay matrix
MacD(F) of degree D (the matrix whose rows are formed by the coefficients of monomials

2 In essence, it can be considered as a generalization of Gaussian elimination for nonlinear polynomials.
One important distinction is that, unlike in Gaussian elimination, in Gröbner basis algorithms the order
in which the variables are eliminated and generally, the ordering of the monomials, is very important
(see [27, 7] for example).

11

366 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

ufi of maximal degree D). The degree D should be big enough so that a Gröbner basis
of the ideal generated by the polynomials can be obtained by row-reducing the Macaulay
matrix. The smallest such D is called the degree of regularity Dreg, and for semi-regular
systems it is given by Dreg(n, m) = 1 + deg(HSq(t)), where

� � � �
(1 − t2)m (1 + t)n

HSq(t) = , for q > 2, and HS2(t) = ,
(1 − t)n (1 + t2)m

+ +

and the + subscript denotes that the series has been truncated before the first non-positive
coefficient. � �

n+D−1Now, for the case of q > 2 the Macaulay matrix MacD(F) has D columns and � � � �� �ω−1n+D−3 n+D−3 n+D−1 m rows, so computing the row-echelon form requires Θ(m)D−2 D−2 D
operations, where 2 6 ω 6 3 is the linear algebra constant. The computation is repeated for � �� �ω−1

� PDreg n+D−3 n+D−1
�

every D ∈ {2, . . . , Dreg}, which amounts to a total of Θ m D=2 D−2 D

field operations. In the case of q = 2, the logic is the same, except that now we use
plain combinations (instead of combinations with repetition as for q > 2), so the formula � ��� PDreg n n �ω−1

�
becomes Θ m D=2 . More compactly, the complexity of the F5 algorithm D−2 D

is: � �� �ωn+Dreg (n,m)−1CF 5(q, m, n) = O mDreg , for q > 2, and
Dreg (n,m)� �� �ω (2.1)
nCF 5(2, m, n) = O mDreg Dreg (n,m)

field operations [8]. The value of the linear algebra constant ω depends on the algorithm
used, and it ranges from ω = 3 for näıve Gauss elimination down to ω = 2.376 for
Coppersmith-Winograd algorithm [19], and even further to ω < 2.373 due to improvements
by Vassilevska-Williams [57]. However these algorithms are extremely complex and with
a huge constant factor to be actually useful in practice. For cryptanalysis purposes, the
best we can hope for is ω = log2(7), obtained using Strassen algorithm [51].

The Hybrid approach introduced by Bettale et al.[12], tries to reduce the complex-

ity of F5 by introducing a trade-off between brute-forcing and the F5 algorithm for
smaller MQ instances. Namely, the algorithms first fixes n − k variables, so the re-
duction is now performed on MacDreg (F̃), where F̃ = (f̃1, . . . , f̃

m) and f̃i(x1, . . . , xk) =
fi(x1, . . . , xk, ak+1, . . . , an), for every (ak+1, . . . , an) ∈ Fn−k. The value of k is chosen such 2
that the overall complexity is minimized. In total the complexity of the Hybrid approach
for solving systems of n equations in n variables over Fq is

CHyb(n, k) = Guess(q, n − k) · CF 5(q, k, n), (2.2)

where Guess(q, n − k) = O(log(n − k)qn−k) is the cost of the exhaustive search over all
qn−k possibilities, including partially evaluating n − k variables in field operations, and
CF 5(k, n) is given in (2.1).

Note that the technique of fixing variables had already been used in the XL algorithm
[21], and this version is known as FXL [58, 59].

2.2.3 The BooleanSolve algorithm

In the case of F2, the BooleanSolve algorithm [6] performs better than the Hybrid approach.
Similar to the Hybrid approach, it requires a semi-regularity assumption on the MQ

12

— Internet: Portfolio 367

instance. Also as in the Hybrid approach, it first fixes some optimal amount n − k of the
variables and then performs some tests on the smaller instance.

Then, the problem of finding a solution is basically reduced to testing the consistency
of a related linear system

u · MacDreg (F̃) = (0, . . . , 0, 1) (2.3)

where MacDreg (F̃) is defined in the previous paragraph. If the system (2.3) is consistent,
then the original system does not have a solution. This allows for pruning of all the

∈ Fn−kinconsistent branches corresponding to some a 2 . A simple exhaustive search is
then performed on the remaining branches. It can be shown that the running time of
the algorithm is dominated by the first part of the algorithm (this holds true even in
the quantum version of the algorithm, although in the quantum case the difference is
not as big, as a consequence of the reduced complexity of the first part). Therefore, for
simplicity, we omit the exhaustive search on the remaining branches from our analysis.
The complexity of the BooleanSolve algorithm is given by

CBool(n, k) = Guess(2, n − k) · Ccons(MacDreg (F̃)), (2.4)

where Guess(2, k) is defined the same as in the Hybrid approach, and

Dreg (k,n) � �X k
Ccons(MacDreg (F̃)) = Θ(N2 log2 N log log N), N =

i
i=0

is the complexity of testing consistency of the system (2.3), using the sparse linear algebra
algorithm from [33].

2.2.4 The Crossbread algorithm

Recently, Joux and Vitse [37] proposed a new algebraic method for solving quadratic sys-
tems over F2 called the Crossbred algorithm. Although originally only F2 was considered,
the algorithm works the same for any field, so we will assume an arbitrary field Fq. We
will also assume that the given system is semi-regular.

The main idea of this approach is to first perform some operations on the Macaulay
matrix of degree D > Dreg(k, n) of the given system, and only afterwards to fix variables.
Again, as in the previous algorithms, k is a suitably chosen optimization parameter such
that the overall complexity is minimized. Furthermore, let d 6 D be a small integer and

(k)
degku denote the degree of the monomial u in the first k variables. Let MacD,d(F) be the
submatrix of MacD(F) consisting of the rows indexed by ufi, where degku > d−1, and let

(k) (k)
M (F) be the submatrix of Mac (F) consisting of the columns indexed by u, where D,d D,d

degku > d.
The algorithm works as follows: In the first part, we try to find enough linearly inde-Pd �

k+i−1�
pendent elements vi (in particular for q > 2 at least including the original mi=0 i

(k) (k)
when d > 1) in the kernel of M (F), that are not in the kernel of Mac (F). Next we D,d D,d

(k)
find the set of polynomials corresponding to viMacD,d(F). These polynomials, (possibly
together with the original when d > 1) form a new system P that will be of interest in
the second part of the algorithm.

13

368 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

In this part, for each (ak+1, . . . , an) ∈ Fq
n−k we form the system P̃(x1, . . . , xk) =

˜P(x1, . . . , xk, ak+1, . . . , an). It is crucial to observe that P is of degree d and the sys-� � � �Pd k+i−1 Pd ktem contains equations when q > 2 (when q = 2), which means i=0 i i=0 i
it is possible to solve it easily by linearization, i.e. by considering each monomial as new
variable, and solving the resulting linear system.

The advantage here comes from using sparse linear algebra algorithms on MacD(F) for
the first part and dense linear algebra only on the smaller matrix in the second part. Note
that, as long as the number of the remaining k variables is small, the sparse linear algebra
part takes much less time, since in this case Dreg(k, n) is also small. It turns out that
actually it is more efficient to work with a MacD, with D > Dreg(k, n), but not too large
so that the cost of the first part becomes significant. The complexity thus, is dominated
by enumeration of n−k variables in a system of n variables of degree D over Fq q > 2, and
checking whether the obtained system has a valid solution. In total, under the condition
that: � �dX k + i − 1(k) (k)

Dim(Ker(M (F)) \ Ker(Mac (F))) > , (2.5)D,d D,d i
i=0

the complexity of the Crossbread algorithm for q > 2 is given by3

� �ω
(k) k + d − 1

CCross(n, k, d) = Sparse(MD,d(F)) + Guess(q, n − k) · , (2.6)
d

(k)
where Guess(q, k) is defined the same as in the Hybrid approach, and Sparse(MD,d(F)) =

� �2n+D−1O() is the complexity for finding the kernel vectors using for example the block D
Lanczos algorithm [44] or the block Wiedemann algorithm [20] for sparse matrices (or
their improvements). Note that an external specialization of variables is also possible, but
we have verified that this does not bring any improvement in the number of operations.
However it is useful for parallelization of the algorithm. 4

At the end of this section, we provide the number of field operations of the described
algorithms for solving MQ instances for various fields Fq and different values of m = n
that are interesting for practical use. Table 2.1 summarizes the Boolean case, and Table 2.2
lists the values for some common choices of q > 2. Note that the cost of the algorithms is
given in field operations as is common for such algorithms. We did not use the gate count
metric from the NIST call for proposals [46], but it is not difficult to convert to number
of gates if necessary.

� �
3 The case of q = 2 is similar except that the system is of size ≈ k

d .
4 The preprint [37] does not contain a complexity analysis of the Crossbread algorithm, nor are all the
choices in the algorithm described. What is written here is our interpretation of the algorithm.

14

— Internet: Portfolio 369

CrossBread (d =1) BooleanSolve HybridF5 FastEnum

n k Field op. k Field op. k Field op. Field op.

128
144
160
192
224
256
296

28
30
30
31
32
33
34

2118

2130

2148

2179

2210

2241

2280

40
52
55
80
96

102
139

2135

2150

2164

2191

2219

2246

2280

16
17
18
35
38
55
59

2137

2153

2168

2198

2228

2259

2296

2133

2149

2165

2197

2229

2261

2301

Table 2.1: Comparison of the time complexity of the Crossbread algorithm [37], the
BooleanSolve algorithm [6], the Hybrid Approach [12] and exhaustive search through fast
enumeration [13] in terms of field operations for F2. The parameter k denotes the number
of remaining variables in the specialization process in each of the algorithms respectively.

HybridF5 CrossBread (d=1) FastEnum

q n k Field op. k Field op. Field op.

4 80 32 2160 21 2134 2164

4 96 35 2188 21 2166 2195

4 112 44 2215 22 2196 2228

4 128 53 2242 23 2226 2260

4 144 51 2269 24 2257 2292

4 160 60 2296 25 2287 2324

16 48 36 2147 18 2135 2194

16 64 41 2190 19 2196 2258

16 72 49 2210 20 2224 2290

16 96 66 2273 21 2316 2386

31 40 32 2134 17 2129 2200

31 48 39 2159 18 2164 2240

31 64 49 2205 19 2238 2319

31 88 71 2274 20 2353 2438

31 96 72 2297 21 2388 2478

32 48 39 2159 18 2165 2242

32 64 52 2206 19 2240 2322

32 88 71 2274 20 2356 2442

32 96 72 2298 21 2391 2482

64
64

40
64

32
52

2143

2217
17
19

2153

2286
2242

2386

128
128

40
64

37
59

2143

2222
17
19

2176

2330
2281

2450

256 40 37 2146 17 2199 2321

Table 2.2: Comparison of the time complexity of the the Hybrid Approach [12], the
Crossbread algorithm [37], and exhaustive search through fast enumeration [13] in terms
of field operations for common choices of the field Fq, q > 2. The parameter k denotes
the number of remaining variables in the specialization process in each of the algorithms
respectively.

15

370 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

2.3 Using Grover’s Algorithm for Solving the MQ Problem

In this section we will investigate the cost of the quantum versions of the known classical
algorithms that we described in the previous Section. To the best of our knowledge, there
are no dedicated quantum algorithms for solving the MQ problem. We are only aware of
the work of Westerbaan and Schwabe [56], who investigate the cost of exhaustive search
using Grover’s algorithm against the MQ problem. In our paper [16], where we first
introduce MQDSS, we briefly analyze the gain of applying Grover on the Hybrid approach.

Here, we will use a more accurate metric, and following NIST’s recommendations [46]
we will express the cost of the algorithms in terms of number of fault-tolerant quantum
gates and quantum circuit depth.

2.3.1 Finite Field Arithmetic on Quantum Computers

Fault-Tolerant quantum gates.
In quantum computing, similarly as in classical computing, there is a need for fixed small
universal set of instructions that can be used to express any type of reversible quantum
operation. Furthermore, such universal sets need to have fault-tolerant implementations
to reduce pilling up of noise and thus errors in quantum computation. Recent work [4, 3]
has identified “Clifford+T” as the standard universal fault-tolerant gate set. It is the set
of gates generated by = {H, CNOT, T } where,

|0i + (−1)x|1i
H : |xi 7→ √ ,

2
CNOT : |xi|yi 7→ |xi|x ⊕ yi,

iπx
T : |xi 7→ e 4 |xi.

We will also need the Toffoli gate:

T offoli : |xi|yi|zi 7→ |xi|yi|z ⊕ xyi.

which is also a common gate in designing circuits. Many implementations of the Toffoli
gate using Clifford+T gate are known, depending on whether the goal is to minimize the
number of ancilla qubits used, the gate count or circuit depth. In our evaluation we have
chosen a balanced metric, assuming sufficient number of ancilla qubits. In other words,
we are interested in implementations that minimize at the same time the T -count and T -
depth (of T gates only) but more importantly, the overall gate count and depth including
Clifford gates. Thus we will use the implementation from Amy et al.[4] that requires 7
T -gates and 8 Clifford gates, and has T -depth 4, and overall depth 8.

In what follows, we will use the same metric to evaluate larger quantum circuits.

Cost of finite field addition and multiplication.
The algorithms we are interested in, are all performed over finite fields F(2s) or Fp for p
prime. Therefore we need an estimate for the cost of the arithmetic operations over these
fields. We use the results from [9, 18, 38]:

• Addition over F(2s) can be implemented using s parallel CNOT (Clifford) gates (so
the overall depth is 1).

16

— Internet: Portfolio 371

• Multiplication over F(2s) (using Karatsuba’s algorithm) can be implemented using
log2(3) log2(3) − 2s7s T -gates and 10s Clifford gates, with T -depth of 4s and overall

depth of 9s
• Addition over F(p) can be implemented using approximately 180 log2(p) Clifford gates
and 140 log2(p) T -gates with the same depth.

• Multiplication over F(p) can be implemented using approximately 2·180 log22(p) Clifford
gates and 2 · 140 log22(p) T -gates with T -depth of 2 · 140 log2(p) and overall depth of
2 · 320 log2(p).

2.3.2 Grover’s Quantum Search Algorithm

Grover’s algorithm [36] searches for an item in an unordered list of size N = 2k that satisfies
a certain condition given in a form of a quantum black-box function f : {0, 1}k → {0, 1}
and realized as a unitary circuit Uf : |xi|yi 7→ |xi|x ⊕ f(y)i - the “oracle”. If the condition
is satisfied for an item x0, then f(x0) = 1, otherwise f(x0) = 0. The algorithm consists of � �
applying an optimal number of times the operator G = Uf (H⊗k(2|0ih0| − 12k)H⊗k) ⊗ 12

on a state |ψi⊗ |φi where the first register has been prepared in an equal superposition of P
all |xi, i.e., |ψi = √1

x∈{0,1}k |xi, and φ = √1 (|0i − |1i) (see Figure 2.1). The operator
2k 2j p k

G needs to be iteratively repeated π N/M times, where M is the number of items that 4

satisfy the condition f [14]. In this case, if M << N , the algorithm fails with negligible
probability 6 M/N . Note that, even if the number of solutions M is unknown, a slight
modification of the algorithm from [14], again guarantees that a solution will be found j p k
with overwhelming probability after 9 N/M Grover iterations. In the next subsection, 4

we will elaborate on the number of solutions of the MQ problem.

(a) (b)

Fig. 2.1: Quantum circuit that implements Grover’s algorithm for a search space of size
N = 2k . Figure from [35]. (a) The full algorithm where G is the Grover iterate that
represents one round of the algorithm. (b) One round of Grover’s algorithm (detailed view
of the operator G).

From the above, and assuming we know the number of solutions, the cost of Grover’s
algorithm can be expressed as:

� q �
π

Cost(Grover) = 2k/M · (Cost(Uf) + Cost(Us)) (2.7)
4

where Us = 2|sihs| − 12k is the Grover diffusion operator. Here Cost can be any metric of
choice, such as quantum gate count or quantum circuit depth.

17

372 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

In [35] it was calculated that the diffusion operator Us can be implemented as a k-fold
CNOT gate which requires 8k − 24 Toffoli gates, which easily translates to Clifford+T
gates (see previous Section).

In the next subsection we will consider several different instantiations of the function
Uf leading to a solution for the MQ problem F(x) = 0. The oracle Uf can be any of the
following:

• The MQ oracle UMQ: UMQ(a) = 1 for a ∈ Fn if F(a) = 0 (cf. Subsection (2.2.1));q

∈ Fn−k• The BooleanSolve oracle UBool: UBool(a) = 1 for a if the system (2.3) is 2
inconsistent and the second part of the BooleanSolve algorithm on F̃ outputs b ∈ Fk

q

such that F̃(b) = 0 (cf. Subsection (2.2.3));
• The Hybrid F5 oracle UHybF 5: UHybF 5(a) = 1 for a ∈ Fn−k if the F5 algorithm on F̃q

outputs b ∈ Fk such that F̃(b) = 0 (cf. Subsection (2.2.2));q

• The Crossbread oracle UCross: UCross(a) = 1 for a ∈ Fn−k if the Crossbread algorithm q

on P̃ outputs a solution b ∈ Fk such that P̃(b) = 0 (cf. Subsection (2.2.4)).q

2.3.3 Resource Estimates of Grover Enhanced Quantum Algorithms for
Solving the MQ Problem

On the number of solutions of the MQ problem.
As already mentioned, our proposal uses randomly generated instances F ∈ MQ(n, m, Fq),
where the number of polynomials m is the same as the number of variables n. The goal
of the adversary will be to find one solution of a system F(x) = v, for a given public
value v ∈ Fn. While our key generation mechanism guarantees that this system will have
at least one solution, we don’t know the exact number of solutions which is an important
parameter in Grover’s algorithm. In the previous section we saw that it is possible to
overcome this problem by adapting Grover’s algorithm to such a setting. But, we can
actually argue that there is no need for that, and that it is safe to assume in our analysis
that the number of solutions is M = 1. Indeed, in [30], it was shown that the number of
solutions of a system of n equations in n variables follows the Poisson distribution with
parameter λ = 1 (the expected value is 1), i.e. the probability that the system has exactly
M solutions is 1 Furthermore, the probability that there are more than M solutionseM ! .
can be estimated as the tail probability of a Poisson distribution which is negligible in
M . This means that with overwhelming probability, the number of solutions is very small,
and we can simply run Grover first assuming M = 1, then M = 2 and so on, until the
algorithm succeeds. In particular, since we know that the system has at least one solution,

1the probability that it is the only solution is e−1 ≈ 0.58, and that there are at most 2
5solutions ≈ 0.73. Hence, the adversary has a good chance to succeed already in the 4(e−1)

first two runs, and the probability quickly rises with each additional run. In our analysis,
we will assume that it is enough to run Grover only for M = 1 (as a lower bound of the
cost of the algorithm).

The MQ oracle.
In [56], Westerbaan and Schwabe constructed two oracles for evaluation of MQ polyno-
mials over F2 and estimated the cost of Grover’s algorithm using these oracles. Here we
will adapt their estimates for the case of any field Fq. As our metrics is mainly circuit
size and depth (and not number of qubits) we will focus on their approach for the first

18

— Internet: Portfolio 373

oracle. Their second oracle uses approximately half the number of quibits of their first
oracle (with a small overhead), but double the circuit size.

Following [56] we estimate that the MQ oracle UMQ over Fq requires approximately
4n2m field multiplications and as many field additions. The total depth required for the
multiplications is approximately 4n, as is for the additions. Using the formulas:

j k
π 2blog2 qcGates(MQGrover) =

n
2 · (Gates(UMQ) + Gates(Us)),j k4
n (2.8)

π 2blog2 qcDepth(MQGrover) = 2 · (Depth(UMQ) + Depth(Us)),4

and the results from Subsections 2.3.1 and 2.3.2 we obtain an estimate of the cost of
Exhaustive search with Grover’s algorithm. The results are summarized in Table 2.3.

Gates Depth

q n T Clifford T Total

2 128 289.46 289.82 276.54 277.63

2 192 2123.21 2123.58 2109.13 2110.23

2 224 2139.88 2140.24 2125.36 2126.45

2 256 2156.46 2156.82 2141.55 2142.64

4 72 296.55 296.97 285.02 286.15

4 96 2121.80 2122.21 2109.44 2110.57

4 112 2138.47 2138.88 2125.66 2126.79

4 128 2155.04 2155.46 2141.85 2142.98

16 32 286.63 287.08 277.21 278.38

16 40 2103.60 2104.04 293.53 294.70

16 48 2120.38 2120.83 2109.80 2110.96

16 64 2153.63 2154.08 2142.22 2143.38

31 24 287.77 288.13 278.60 279.80

31 32 2108.83 2109.19 298.84 2100.03

31 40 2129.61 2129.97 2118.98 2120.17

31 48 2150.22 2150.58 2139.06 2140.25

31 56 2170.70 2171.06 2159.09 2160.29

32 32 2103.14 2103.60 293.66 294.84

32 40 2124.11 2124.56 2113.99 2115.16

32 48 2144.89 2145.35 2134.25 2135.43

32 56 2165.56 2166.02 2154.47 2155.65

64 24 294.31 294.78 285.62 286.80

64 32 2119.56 2120.02 2110.04 2111.22

64 40 2144.52 2144.99 2134.36 2135.54

64 48 2169.31 2169.77 2158.62 2159.81

128
128
128

24
32
40

2106.66

2135.91

2164.87

2107.13

2136.38

2165.34

297.94

2126.36

2154.67

299.13

2127.54

2155.87

256
256
256

16
24
32

285.22

2118.97

2152.21

285.69

2119.44

2152.69

277.63

2110.21

2142.63

278.82

2111.41

2143.83

Table 2.3: Cost of Exhaustive search on the MQ problem using Grover’s algorithm

The HybridF5 oracle.
The Hybrid Approach includes partial evaluation of n − k variables. The cost of this part
can be computed similarly as for the MQ oracle. We found that for this part we need

19

374 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

6(n − k)km multiplications and the same amount of additions. The depth of this part of
the circuit is 6(n − k) times the depth of a multiplication and 6(n − k) times the depth of
an addition.

The rest of the cost of the Hybrid Approach comes from implementing Strassen’s � �k+Dreg −1algorithm on the Macaulay matrix of size in a quantum circuit. The cost Dreg � �log2 7k+Dreg −1is approximately 5 field additions which can be realized in circuit depth Dreg � �k+Dreg −13 log2 times the depth of an addition. Dreg

Using the formulas:
j k

n−kπ 2blog2 qcGates(HybF 5Grover) = 2 · (Gates(UHybF 5) + Gates(Us)),j k4
n−k (2.9)

π 2blog2 qcDepth(HybF 5Grover) = 2 · (Depth(UHybF 5) + Depth(Us)),4

and the results from Subsections 2.3.1 and 2.3.2 we obtain an estimate of the cost of
the Hybrid F5 algorithm with Grover’s search algorithm. The results are summarized in
Table 2.4.

The Crossbread oracle.
Similarly as the HybridF5 oracle, the Crossbread oracle includes partial evaluation of
n − k variables, so this cost is the same. For each enumeration, the Strassen’s algorithm is � � � �log2 7k+d−1 k+d−1applied on a matrix of size for a small d which costs 5 field additions � � d d

k+d−1and total depth 3 log2 d times the depth of an addition. An important feature of
the algorithm is that it can be split into two distinct parts: Sparse linear algebra on the
Macaulay matrix, and enumeration plus dense linear algebra to check the consistency of

(k)
the smaller system obtained from the kernel elements of MD,d. The first part, that is more
memory demanding can always be performed on a classical computer, and the second part
which can make use of Grover’s algorithm can be performed on a quantum computer. This
is undoubtedly a big advantage over the quantum version of the Hybrid Approach, albeit
the later is in theory faster.

The cost of the entire algorithm for various parameters is given in Table 2.5.

The BooleanSolve oracle.
For the BooleanSolve oracle, the cost of the partial evaluation of n − k is the same as for � �
the previous oracles. The rest comes from consistency checking of a system of size k

Dreg

using a sparse linear algebra technique from [33]. For simplicity, we will lower bound the � �2 � � � �
k k kcost of this part by log2 additions (xor) in F2 of linear depth .Dreg Dreg Dreg

The cost of the entire algorithm for various parameters is given in Table 2.6.

20

— Internet: Portfolio 375

Gates Depth

q n k T Clifford T Total

2 120 59 254.23 2139.87 242.50 246.14

2 128 63 256.56 2143.84 244.59 248.26

2 168 83 267.73 2174.26 254.99 259.02

2 192 95 274.31 2197.09 261.18 265.52

2 232 115 285.12 2226.97 271.46 276.10

4 72 35 260.16 2134.03 249.27 252.01

4 96 47 273.40 2164.67 261.69 264.75

4 104 51 277.74 2171.29 265.80 268.89

4 128 63 290.64 2211.72 278.10 281.69

4 136 67 294.90 2218.18 282.19 285.80

16 48 23 273.00 2119.41 262.70 264.37

16 64 31 290.24 2151.34 279.11 281.02

16 72 35 298.74 2172.03 287.28 289.40

16 88 43 2115.61 2203.83 2103.57 2105.92

31 40 18 2118.76 2119.12 275.98 277.17

31 48 20 2136.74 2137.10 291.18 292.37

31 56 22 2154.25 2154.61 2106.37 2107.52

31 64 28 2172.07 2172.44 2112.07 2113.26

31 72 30 2189.42 2189.78 2127.15 2128.34

32 40 19 275.22 2118.45 265.26 266.81

32 56 27 296.67 2154.85 285.74 287.49

32 64 31 2107.24 2168.16 295.94 297.71

32 72 35 2117.75 2190.85 2106.10 2108.06

64 40 19 286.14 2129.21 276.02 277.50

64 48 23 298.92 2145.00 288.29 289.78

64 56 27 2111.59 2169.62 2100.51 2102.16

64 64 31 2124.16 2184.92 2112.70 2114.37

128 32 15 282.03 2113.34 272.43 273.72

128 40 19 296.99 2139.93 286.75 288.17

128 48 23 2111.78 2157.72 2101.01 2102.45

128 56 27 2126.44 2184.34 2115.23 2116.81

256 32 15 290.84 2122.03 281.12 282.39

256 40 19 2107.80 2150.62 297.44 298.82

256 48 23 2124.58 2170.41 2113.70 2115.10

256 56 27 2141.24 2199.03 2129.93 2131.45

Table 2.4: Cost of applying the Hybrid F5 algorithm on the MQ problem using Grover’s
algorithm

21

376 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Classical part Gates Depth

q n k Field. op. T Clifford T Total

2 128 21 269.79 276.69 277.05 266.20 267.31

2 160 25 291.87 291.60 291.96 280.54 281.64

2 192 27 2105.09 2107.26 2107.62 295.82 296.92

2 224 30 2118.36 2122.36 2122.73 2110.55 2111.65

2 296 35 2154.47 2156.92 2157.28 2144.46 2145.57

4 88 19 292.65 292.46 292.88 282.45 283.59

4 96 19 288.24 2100.74 2101.16 290.59 291.74

4 120 23 2115.69 2121.67 2122.09 2110.93 2112.07

4 128 24 2124.76 2128.93 2129.34 2118.02 2119.17

4 160 28 2154.32 2157.81 2158.23 2146.36 2147.50

16 48 17 285.02 284.87 285.33 275.77 276.93

16 56 19 294.79 297.51 297.96 288.01 289.18

16 72 23 2123.38 2122.54 2123.00 2112.41 2113.57

16 80 25 2133.03 2134.98 2135.43 2124.57 2125.74

16 96 28 2156.92 2161.71 2162.16 2150.86 2152.03

31 48 20 297.57 299.27 299.63 289.33 290.52

31 56 22 2112.01 2114.76 2115.13 2104.47 2105.66

31 64 24 2126.43 2130.17 2130.54 2119.57 2120.76

31 72 27 2140.84 2143.07 2143.43 2132.12 2133.31

31 80 28 2151.00 2160.81 2161.18 2149.67 2150.86

32 48 19 293.55 295.95 296.41 286.65 287.83

32 64 24 2126.43 2124.65 2125.12 2114.60 2115.78

32 72 26 2136.64 2140.14 2140.60 2129.79 2130.97

32 80 28 2151.00 2155.57 2156.03 2144.96 2146.14

32 88 29 2156.56 2173.44 2173.90 2162.63 2163.81

64 40 18 286.85 289.13 289.60 280.17 281.34

64 48 21 2105.20 2104.90 2105.37 295.45 296.63

64 56 24 2119.83 2120.56 2121.03 2110.69 2111.87

64 64 27 2138.24 2136.13 2136.60 2125.89 2127.07

64 72 27 2140.84 2160.58 2161.05 2150.14 2151.32

128 40 19 290.48 296.99 297.47 287.93 289.11

128 56 26 2130.80 2129.93 2130.41 2119.94 2121.12

128 64 27 2138.24 2154.98 2155.45 2144.71 2145.89

128 72 27 2140.84 2183.43 2183.90 2172.96 2174.15

256
256
256

32
48
64

15
23
27

268.54

2112.38

2138.24

290.84

2124.58

2173.79

291.32

2125.06

2174.26

282.39

2114.96

2163.48

283.58

2116.14

2164.67

Table 2.5: Cost of applying the Crossbread algorithm on the MQ problem using Grover’s
algorithm

22

— Internet: Portfolio 377

Gates Depth

n k T Clifford T Total

144
160
192
208
256
264

71
79
95

103
127
131

261.06

265.52

274.31

278.66

291.55

293.68

2112.88

2119.58

2138.99

2151.94

2177.46

2180.51

248.76

252.92

261.18

265.30

277.60

279.65

269.46

274.75

288.25

296.57

2115.13

2117.65

Table 2.6: Cost of BooleanSolve on the MQ problem using Grover’s algorithm

23

378 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

— Internet: Portfolio 379

3

The Sakumoto-Shirai-Hiwatari (SSH) 5-pass IDS scheme

3.1 Description of the SSH 5-pass IDS

In [41], Sakumoto, Shirai, and Hiwatari proposed two new identification schemes, a 3-pass
and a 5-pass IDS, based on the intractability of the MQ problem. In these specifications,
and documents related to this submission, we will refer to identification schemes from [41]
as the SSH 3-pass and 5-pass schemes.

Unlike previous public key schemes, the SSH schemes provably rely only on the MQ
problem (and the security of the commitment scheme), and not on other related problems
in multivariate cryptography such as the Isomorphism of Polynomials (IP) [48], the related
Extended IP [25] and IP with partial knowledge [52] problems or the MinRank problem
[22, 28].

The main idea from [41] is a clever splitting of the secret, that relies on the polar form
of the function F. With this technique, the secret s is split into s = r0 + r1, and the
public v = F(s) can be represented as v = F(r0) + F(r1) + G(r0, r1). In order for the
polar form not to depend on both shares of the secret, r0 and F(r0) are further split as
αr0 = t0 + t1 and αF(r0) = e0 + e1. Now, because of the bilinearity of the polar form it
holds that αv = (e1 + αF(r1) + G(t1, r1)) + (e0 + G(t0, r1)), and from only one of the
two summands, represented by (r1, t1, e1) and (r1, t0, e0), nothing can be learned about
the secret s.

Let (pk, sk) = ((F, v), s) ∈ RMQ be the public and private keys of the prover P (i.e.,
key generation just samples from the MQ relation). The SSH 5-pass IDS from [41] is given
in Figure 3.1.

3.2 Properties of the SSH 5-pass IDS

The following theorem summarizes the properties of the SSH 5-pass IDS.

Theorem 3.1. The 5-pass identification scheme of Sakumoto, Shirai, and Hiwatari [41]:

1. Has key relation RMQ(m,n,q),
2. Is KOW if the MQ search problem is hard on average,
3. Is perfectly correct,
4. Is computationally HVZK when the commitment scheme Com is computationally hid-

ing,
1 15. Is argument of knowledge for RMQ(m,n,q) with knowledge error + when the com-2 2q

mitment scheme Com is computationally binding,

380 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

P(pk, sk) V(pk)

//setup

r0, t0 ←R Fn
q , e0 ←R Fm

q

r1 ← s − r0

//commit

c0 ← Com(r0, t0, e0)

c1 ← Com(r1, G(t0, r1) + e0) com = (c0, c1) //challenge 1

//first response ch1 = α α ←R Fq

t1 ← αr0 − t0

e1 ← αF(r0) − e0 resp1 = (t1, e1) //challenge 2

//second response ch2
ch2 ←R {0, 1}

If ch2 = 0, resp2 ← r0

Else resp2 ← r1
resp2 //verify

If ch2 = 0, parse resp2 = r0, check

c0
?
= Com(r0, αr0 − t1, αF(r0) − e1)

Else, parse resp2 = r1, check

c1
?
= Com(r1, α(v − F(r1)) − G(t1, r1) − e1)

Fig. 3.1: The SSH 5-pass IDS by Sakumoto, Shirai, and Hiwatari [41]

16. Is sound with soundness error 12 + 2q when the commitment scheme Com is computa-

tionally binding,
7. Has a q2-Extractor when the commitment scheme Com is computationally binding.

The first statement holds by construction. The second statement follows directly from
the first. The third, a stronger version of the fourth1 and the fifth were proven in [41]. The
last two statements were proven in [16].

Sakumoto et al. [41] proved that their 5-pass scheme is statistically zero knowledge when the commit-

ment scheme Com is statistically hiding which implies (honest-verifier) zero knowledge. Relaxing the
requirements of Com to computationally hiding, weakens the result to computationally HVZK, since
now, it is possible to distinguish (albeit only with negligible probability) whether the commitment was
produced in a valid run of the protocol.

26

1

— Internet: Portfolio 381

4

The Fiat-Shamir Transform

The Fiat-Shamir paradigm [29] for transforming canonical 3-pass identification schemes to
signatures has been one the most popular methods for obtaining classically secure signature
schemes. In this chapter, we present the transform, known results about its security, as
well as its limitations.

4.1 Description of the Fiat-Shamir Transform

In what follows, let IDSr = (KGenIDS, Pr , Vr) denote the parallel composition of r rounds
of the identification scheme IDS = (KGenIDS, P, V).

Construction 4.1 (Fiat-Shamir transform [29]) Let k ∈ N the security parameter,
IDS = (KGenIDS, P, V), where P = (P0, P1), V = (ChS, Vf IDS) a canonical 3-pass Identi-
fication scheme that achieves soundness with soundness error κ. Select r, the number of
(parallel) rounds of IDS, such that κr = negl(k), and that the challenge space Cr of the
composition IDSr, has exponential size in k. Moreover, select a cryptographic hash function
H : {0, 1}∗ → Cr .

A signature scheme derived from IDS via the Fiat-Shamir transform is a triplet of
algorithms (KGen, Sign, Vf) defined as in Figures 4.1,4.2 and 4.3.

KGen()

(pk, sk) ← KGenIDS

Return (pk, sk)

Fig. 4.1: Fiat-Shamir key generation

382 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Sign(sk,M)

For j ∈ {1, . . . , r} do
(j) (j)(state , com) ← P0(sk)

(1) (r)state := (state , . . . , state)
(1) (r)com := (com , . . . , com)

σ0 := com

ch ← H(pk, M, σ0)

, ch(2)Parse ch as ch = (ch(1) , . . . , ch(r)), ch(j) ∈ C

For j ∈ {1, . . . , r} do
(j) (j)resp ← P1(state , ch(j))

(1) (r)resp := (resp , . . . , resp)

σ1 := resp

Return σ = (σ0, σ1)

Fig. 4.2: Fiat-Shamir signature generation

Vf(pk, σ, M)

Parse σ = (σ0, σ1)
(1) (r)Parse σ0 as σ0 = (com , . . . , com)

ch ← H(pk, M, σ0)

, ch(2)Parse ch as ch = (ch(1) , . . . , ch(r)), ch(j) ∈ C
(1) (r)Parse σ1 as σ1 = (resp , . . . , resp)

For j ∈ {1, . . . , r} do
(j) (j) (j)b ← Vf IDS(pk, com , ch(j) , resp)
(1) (2) (r)b ← b ∧ b ∧ · · · ∧ b

Return b

Fig. 4.3: Fiat-Shamir signature verification

4.2 Security of the Fiat-Shamir Transform

The security of the Fiat-Shamir transform has been investigated for over two decades.
The first security proof of the transform was given in the seminal paper of Pointcheval
and Stern [49]. They showed that assuming honest-verifier zero knowledge and special
soundness of the identification scheme, Construction 5.1 gives EU-CMA secure signatures.
Their proof is in the random oracle model and is based on the (now famous) forking
lemma. The two main techniques introduced in the forking lemma are rewinding of the
adversary and adaptively programming the random oracle. While these have proven to be
quite powerful techniques in ROM reductions, they come with a drawback - the reduction
is not tight - there is loss of factor the number of adversary’s random oracle queries.

Later, Ohta and Okamoto [47] provide a different proof using a modular technique and
similar assumptions on the identification scheme. Abdalla et al.[1] show that a signature

28

— Internet: Portfolio 383

via the Fiat-Shamir transform is EU-CMA if and only if the identification scheme is IMP-

PA, thus minimizing the needed assumption on the identification scheme.
Lately, the main two techniques from the forking lemma cause even more problems

in the quantum-accessible random oracle model (QROM) and showing the Fiat-Shamir
transform secure in the QROM has proven to be a tedious task (see [2, 23, 55]). The only
known way to show security of the Fiat-Shamir transform in the QROM setting [23] is
using oblivious commitments. Here the need for rewinding is replaced by introducing an
additional trapdoor assumption on the commitments, which in itself is a very strong and
problematic assumption.

Very recently, multi-user security of the Fiat-Shamir transform has been investigated in
[39]. Although thle authors of [39] attempt to provide a more general framework for multi-

user security (previously, tight results have been obtained only for Schnorr like signatures
[10]), the assumptions on the IDS still seem too strong to be applicable on many post-
quantum schemes. Thus for now, the only general result remains the one from [31], with
a loss of factor - the number of users in the scenario.

29

384 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

— Internet: Portfolio 385

5

The Fiat-Shamir Transform for 5-pass Identification
Schemes

For several intractability assumptions, the most efficient IDS are five pass, i.e. IDS where a
transcript consists of five messages. Here, efficiency refers to the size of all communication
of sufficient rounds to make the soundness error negligible. This becomes especially relevant
when one wants to turn an IDS into a signature scheme as it is closely related to the
signature size of the resulting scheme.

As said in the Preliminaries (Chapter 1), the most common 5-pass identification
schemes in the literature are those with challenge spaces C1 and C2 restricted to q and
2 respectively, that we called q2 -Identification Schemes. In this chapter, we restrict our
attention to such schemes and describe a transformation from passively secure q2 - IDS to
unforgeable signatures. The transformation is a direct generalization of the Fiat-Shamir
transform for 3-pass schemes (see Chapter 4). The description and security argument
follow closely the one from [16], where we first introduced MQDSS.

Note that the Fiat-Shamir transform can be generalized to more general canonical
2n +1 schemes with non-binary challenge spaces. However, this makes the description and
proofs unnecessarily complex, especially because such schemes are not at all common in
the literature.

5.1 A Fiat-Shamir transform for q2 -Identification Schemes

As in the previous chapter, let IDSr = (KGenIDS, Pr , Vr) denote the parallel composition
of r rounds of the identification scheme IDS = (KGenIDS, P, V).

Construction 5.1 (Fiat-Shamir transform for q2 -Identification Schemes) Let k ∈
N be the security parameter and let IDS = (KGenIDS, P, V), where P = (P0, P1, P2),
V = (ChS1, ChS2, Vf IDS) be a q2 -Identification Scheme that achieves soundness with sound-
ness error κ. Select r, the number of (parallel) rounds of IDS, such that κr = negl(k), and
that the challenge spaces Cr and Cr of the composition IDSr, have exponential size in k.1 2

Moreover, select two cryptographic hash functions H1 : {0, 1}∗ → Cr
1, H2 : {0, 1}∗ → Cr

2.
A q2 -signature scheme q2 -Dss(1k) is a triplet of algorithms (KGen, Sign, Vf) defined as

in Figures 5.1,5.1 and 5.3.

386 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

KGen()

(pk, sk) ← KGenIDS

Return (pk, sk)

Fig. 5.1: q2 -signature scheme: Key generation

Sign(sk,M)

For j ∈ {1, . . . , r} do
(j) (j)(state , com) ← P0(sk)

(1) (r)state := (state , . . . , state)
(1) (r)com := (com , . . . , com)

σ0 := com

h1 ← H1(pk, M, σ0)
(1) (2) (r) (j)

Parse h1 as h1 = (ch , ch , . . . , ch), ch ∈ C11 1 1 1

For j ∈ {1, . . . , r} do
(j) (j) (j) (j)

(state , resp1) ← P1(state , ch1)
(1) (r)state := (state , . . . , state)
(1) (r)

resp1 := (resp1 , . . . , resp1)

σ1 := resp1

h2 ← H2(pk, M, σ0, σ1)
(1) (2) (r) (j)

Parse h2 as h2 = (ch , ch , . . . , ch), ch ∈ C22 2 2 2

For j ∈ {1, . . . , r} do
(j) (j) (j)

resp2 ← P2(state , ch2)
(1) (r)

resp2 := (resp2 , . . . , resp2)

σ2 := resp2

Return σ = (σ0, σ1, σ2)

Fig. 5.2: q2 -signature scheme: Signature generation

The correctness of the scheme follows immediately from the correctness of the IDS.

5.2 Security of q2-signature schemes.

The security of the above transform was proven in [16]. The proof is in the random oracle
model and builds on techniques introduced by Pointcheval and Stern [49]. Namely, we
generalized the well known Forking Lemma and showed that a particular type of rewinding
of the adversary together with adaptive programming of the random oracles is useful for
showing EU-CMA security. For completeness of this document, we include the complete
security reduction in Appendix A.

In summary, the following theorem holds for q2-signature schemes:

Theorem 5.2 (EU-CMA security of q2-signature schemes [16]). Let k ∈ N, IDS(1k)
a q2-IDS that has a key relation R, is KOW secure, is honest-verifier zero-knowledge,
and has a q2-extractor E. Then q2 -Dss(1k), the q2-signature scheme derived applying
Construction 5.1 is existentially unforgeable under adaptive chosen message attacks.

32

— Internet: Portfolio 387

Vf(pk, σ, M)

Parse σ = (σ0, σ1, σ2)
(1) (r)Parse σ0 as σ0 = (com , . . . , com)

h1 ← H1(pk, M, σ0)
(1) (2) (r) (j)
1 1 1 1Parse h1 as h1 = (ch , ch , . . . , ch), ch ∈ C1

(1) (r)
Parse σ1 as σ1 = (resp1 , . . . , resp1)

h2 ← H2(pk, M, σ0, σ1)
(1) (2) (r) (j)

Parse h2 as h2 = (ch , ch , . . . , ch), ch ∈ C2

← Vf IDS(pk, com , ch , resp , ch , resp)

2 2 2 2

Parse σ2 as σ2 = (resp2 , . . . , resp2)
(1) (r)

For j ∈ {1, . . . , r} do

b(j) (j) (j) (j) (j) (j)
1 1 2 2

(1) (2) (r)b ← b ∧ b ∧ · · · ∧ b

Return b

Fig. 5.3: q2 -signature scheme: Signature verification

33

388 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

— Internet: Portfolio 389

Part II

MQDSS Specifications

390 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

— Internet: Portfolio 391

6

Notations

Throughout this part we will use the standard mathematical notations introduced in
Section 1.1. In addition, in Chapter 9 we will use the following notations:

• a + b - sum of a and b
• a − b - difference of a and b
• a · b - product of a and b
• a/b - quotient of a and b
• log2 a - logarithm to the base 2 of a
• a mod b - the non-negative remainder of the integer division of a and b
• a|b - a is a divisor of b
• dae - ceiling function, returns the smallest integer greater than or equal to a
• bac - floor function, returns the greatest integer larger than or equal to a

• a ← b - assignment operator, a takes the value of b
• a � b - logical left shift, with b being non-negative integer. It is equivalent to a · 2b

• a ∧ b - logical and operator
• a == b - logical equal test, returns true (1) if a = b and false (0) if a =6 b
• a <> b - 6logical non-equal test, returns true (1) if a = b and false (0) if a = b

• [] - empty array of bytes or bits
• a[i] - the i-th element of the array a. The indexing of elements starts from 0.
• [f(j)|j = 0..n − 1] - array with elements f(j), when j is iterated from 0 through n − 1
• len(a) - returns the length of a (the number of elements in a if we consider it as an
array)

• a||b - concatenation of a and b. If we look at a = [a[0], a[1], . . . , a[la]] and b =
[b[0], b[1], . . . , b[l2]] as arrays, then a||b is the array [a[0], a[1], . . . , a[la], b[0], b[1], . . . , b[l2]]

• append(a, b) - appends the element b to the end of the array a
• subarray(a, b, c) - returns the subarray of a from index b to c − 1, i.e. returns
[a[b], . . . , a[c − 1]]

• trunc(a, b) - truncates the b least significant bits of a, with a being a bit-array and b a
non-negative integer. If we look at a in its array representation a = [a[0], a[1], . . . , a[la]],
then trunc(a, b)=[a[0], a[1], . . . , a[b − 1]]. It is equivalent to subarray(a, 0, b), for a bit-
array a.

• trim(a, b) - truncates the b most significant bits of a, with a being a bit-array and b a
non-negative integer. It is equivalent to subarray(a,len(a) − b,len(a)), for a bit-array a.

• mask(a, b, c) - sets the bits a[b], . . . , a[c] to 0

392 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

• SHAKE256(seed, 136) - interface for the digest of SHAKE256 on input seed as stan-
dardized in FIPS 202, the SHA-3 standard [45].

• SHAKE256absorb(seed) - interface for the absorb phase of SHAKE256 for extendable
output

• SHAKE256squeeze(state)- interface for the squeeze phase of SHAKE256 for extendable
output. To obtain extendable output, repeatedly call SHAKE256squeeze(state) until
needed

38

— Internet: Portfolio 393

7

MQDSS High Level Description

In this chapter, we define the signature scheme MQDSS-q-n in generic terms by describing
the required parameters, the functions KGen, Sign and Vf, and the necessary auxiliary
functions. In Chapter 8 we will provide concrete parameters and in Chapter 9 we provide
a detailed instantiations of the auxiliary functions. A detailed low-level description will be
given in Chapter 9.

MQDSS-q-n is a digital signature scheme consisting of three algorithms KGen, Sign and
Vf, defined in Sections 7.2, 7.3 and 7.4. The global parameters and auxiliary functions are
defined in Section 7.1.

7.1 MQDSS Parameters Description and Auxiliary Functions

Let k be the security parameter.
MQDSS-q-n uses the following additional parameters:

• A positive integer n ∈ N - the number of variables and equations of the system F,
• A positive integer q ∈ N (a prime or a prime power) - the order of the finite field Fq,
• A positive integer r ∈ N - the number of rounds. This parameter is normally r = l m

2qk/ log2 , but it can also be chosen independently. q+1

MQDSS-q-n uses the following auxiliary functions:

• A pseudorandom generator PRGsk : {0, 1}k → {0, 1}3k used to randomly generate
three seeds.

• A pseudorandom generator PRGs : {0, 1}k → {0, 1}ndlog2 qe used to randomly generate
the secret key.

• A pseudorandom generator PRGrte : {0, 1}k × {0, 1}∗ → {0, 1}3rndlog2 qe used to gen-
erate pseudorandom values during the signature generation.

• An extendable output function XOFF : {0, 1}k → {0, 1}Flen , where for q = 2, Flen =
n · (n·(n−1) n · (n·(n+1)+ n) and for q > 2, Flen = + n) dlog2 qe. This function is used 2 2
for generating a multivariate system F by expanding a seed outputted by PRGsk.

• Three cryptographic hash functions H : {0, 1}∗ → {0, 1}k , H1 : {0, 1}∗ → Fq
r, and

H2 : {0, 1}∗ → {0, 1}r .
n n• A string commitment function Com0 : Fq × Fq × Fq

n → {0, 1}k and
n• A string commitment function Com1 : Fq × Fq

n → {0, 1}k ,

394 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

7.2 MQDSS Key Generation

The MQDSS-q-n key generation algorithm formally samples a MQ relation. Practically,
the algorithm is realized as shown in Figure 7.1.

KGen()

sk ←R {0, 1}k

SF, Ss, Srte ← PRGsk(sk)

F ← XOFF(SF)

s ← PRGs(Ss)

v ← F(s)

pk := (SF, v)

Return (pk, sk)

Fig. 7.1: MQDSS-q-n key generation

In more detail, given the security parameter k, the key generation algorithm KGen()
performs the following operations:

• Randomly sample a secret key of k bits sk ←R {0, 1}k .
• Use the secret key sk as input (seed) to PRGsk to derive the following values:

– SF, a seed of k bits from which the system parameter F is expanded;
– Ss, a seed of k bits from which the secret input to the MQ function is generated;

(i) (i) (i)
– a seed of k bits that is used to sample all vectors r , t and e , i ∈Srte, 0 0 0
{1, . . . , r}. Note that this seed is not yet needed during key generation, but is
required during signing.

• Expand the seed SF using XOFF to a Flen bits long string, where for q = 2, Flen =
(n·(n−1) (n·(n+1)n · + n) and for q > 2, Flen = n · + n) dlog2 qe. Parse the pseudorandom 2 2

string as an MQ system F ∈ MQ(n, n, Fq).
• Use the seed Ss as input to the PRGs to obtain s, a string of length n dlog2 qe bits,
that will be used as the secret input to the MQ function;

• Parse s as a vector s ∈ Fn, and evaluate the MQ system F(s) to obtain the vector q

v ∈ Fn .q

• Set pk := (SF, v) as the public key.
• Return the public/secret key pair (pk, sk). The public pk is of length k + n dlog2 qe
bits, and the secret sk of length k bits.

The obtained public key pk is of length k + n dlog2 qe bits, and the secret key sk of length
k bits.

7.3 MQDSS Signature Generation

For the MQDSS-q-n signing procedure Sign(), we assume as input a message M ∈ {0, 1}∗

and a secret key sk. The signing procedure is given in Figure 7.2.

40

— Internet: Portfolio 395

Sign(sk,M)

SF, Ss, Srte ← PRGsk(sk)

F ← XOFF(SF)

s ← PRGs(Ss)

pk := (SF, F(s))

R ← H(sk||M)

D ← H(pk||R||M)
(1) (r) (1) (r) (1) (r)
r , . . . , r , t , . . . , t , e , . . . , e ← PRGrte(Srte, D)0 0 0 0 0 0

For j ∈ {1, . . . , r} do
(j) (j)
r1 ← s − r0

(j) (j) (j) (j)
c ← Com0(r , t , e)0 0 0 0

(j) (j) (j) (j) (j)
c1 ← Com1(r1 , G(t0 , r1) + e0)

(j) (j) (j)
com := (c0 , c1)

(1) (2) (r)σ0 ← H(com ||com || . . . ||com)

ch1 ← H1(D, σ0)
(1) (2) (r) (j)Parse ch1 as ch1 = (α , α , . . . , α), α ∈ Fq

For j ∈ {1, . . . , r} do
(j) (j) (j) (j) (j) (j) (j) (j)
t ← α r − t , e ← α F(r) − e1 0 0 1 0 0

(j) (j) (j)
resp := (t , e)1 1 1

(1) (2) (r)
σ1 ← (resp ||resp || . . . ||resp)1 1 1

ch2 ← H2(D, σ0, ch1, σ1)
(1) (2) (r) (j)Parse ch2 as ch2 = (b , b , . . . , b), b ∈ {0, 1}

For j ∈ {1, . . . , r} do
(j) (j)

resp ← r2 b(j)

(1) (2) (r) (1) (2) (r)
2 2 2 1−b(1) 1−b(2) 1−b(r)

σ2 ← (resp ||resp || . . . ||resp ||c ||c || . . . ||c)

Return σ = (R, σ0, σ1, σ2)

Fig. 7.2: MQDSS-q-n signature generation

In more details, the signer:

• First effectively repeats the KGen() procedure i.e.,
– derives SF, Ss, Srte from PRGsk(sk),
– exapnds F = XOFF(SF) and s = PRGs(Ss) and
– derives the public key pk := (SF, F(s)).

• Derives a message dependent random value R = H(sk k M).
• Using this random value R, the signer computes the randomized message digest D =
H(R k m). The value R must be included in the signature, so that a verifier can derive
the same randomized digest.

• The signer then uses the pseudorandom generator PRGrte to sample the vectors
(1) (r) (1) (r) (1) (r)
r , . . . , r , t , . . . , t , e , . . . , e from Srte and D.0 0 0 0 0 0

• For each j ∈ {1, . . . , r}
(j) (j)

– Computes r as the difference s − r ,1 0

41

396 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

(j) (j) (j) (j) (j) (j) (j)
– Commits to (r , t , e) and to (r , G(t , r) + e) applying the commit-0 0 0 1 0 1 0

(j) (j)
ment functions Com0 and Com1 respectively, to obtain c0 and c1 respectively,

(j) (j)
– Sets com(j) := (c , c).0 1

• Computes the second part of the signature σ0 as a digest over the concatenation of all
commitments σ0 ← H(com(1)||com(2)|| . . . ||com(r)),

• Derives the first challenge ch1 = (α(1), α(2), . . . , α(r)) by applying H1 to (D, σ0).
(j) (j)• Using the α(j) as individual challenges per round, the signer computes t ← α(j)r −1 0

(j) (j) (j) (j)
t and e ← α(j)F(r) − e for all j ∈ {1, . . . , r},0 1 0 0

(j) (j) (j)• Sets the responses resp := (t , e) for all j ∈ {1, . . . , r}.1 1 1
(j)• The concatenation of all responses resp gives the third part of the signature σ1 ←1

(1) (2) (r)
(resp ||resp || . . . ||resp).1 1 1

• The signer computes ch2 by applying H2 to the tuple (D, σ0, ch1, σ1) and parses it as
r binary challenges b(j) ∈ {0, 1}.

(j) (j)• For all j ∈ {1, . . . , r}, the signer computes the second responses resp ← r2 b(j) .
• Finally, the signer computes the last part of the signature as

(1) (2) (r) (1) (2) (r)
σ2 ← (resp ||resp || . . . ||resp ||c ||c || . . . ||c), and 2 2 2 1−b(1) 1−b(2) 1−b(r)

• Outputs the signature σ = (R, σ0, σ1, σ2).

The complete signature is of the following form:

(1) (2) (r)
σ = (R, H(com(1)||com(2)|| . . . ||com(r)), (resp ||resp || . . . ||resp),1 1 1

(1) (2) (r) (1) (2) (r)
(resp ||resp || . . . ||resp ||c ||c || . . . ||c))2 2 2 1−b(1) 1−b(2) 1−b(r)

As each element of Fq requires dlog2 qe bits, the size of the signature is (2+r)k+3rn dlog2 qe
bits.

7.4 MQDSS Signature Verification

Upon receiving a message M , a signature σ = (R, σ0, σ1, σ2), and a public key pk = (SF, v),
the verifier performs the verification routine as listed in Figure 7.3.

In more detail, the main goal of the verification process is to reconstruct the missing
commitments, and calculate a value σ0

0 that will be verified against the inputted σ0. The
whole procedure is as follows:

• Using the pubic key pk = (SF, v) and the value R from the signature σ, compute
the system parameter F ← XOFF(SF) and the randomized message digest D ←
H(pk||R||M).

• Since the signature contains σ0, compute the first challenge ch1 as ch1 ← H1(D, σ0)
and parse it as ch1 = (α(1), α(2), . . . , α(r)), α(j) ∈ Fq

• Next, compute the challenge ch2 ← H2(D, σ0, ch1, σ1), from the two parts σ0, σ1

of the signature and the computed ch1 in the previous step. Parse it as ch2 =
(b(1), b(2), . . . , b(r)), b(j) ∈ {0, 1}.

(1) (2) (r)• Parse the two signature parts σ1 and σ2 as σ1 = (resp ||resp || . . . ||resp) and 1 1 1
(1) (2) (r) (1) (2) (r)

σ2 = (resp ||resp || . . . ||resp ||c ||c || . . . ||c) respectively. 2 2 2 1−b(1) 1−b(2) 1−b(r)

42

— Internet: Portfolio 397

Vf(pk, σ, M)

F ← XOFF(SF)

D ← H(pk||R||M)

ch1 ← H1(D, σ0)
(1) (2) (r) (j)Parse ch1 as ch1 = (α , α , . . . , α), α ∈ Fq

ch2 ← H2(D, σ0, ch1, σ1)
(1) (2) (r) (j)Parse ch2 as ch2 = (b , b , . . . , b), b ∈ {0, 1}
(1) (2) (r)
1 1 1Parse σ1 as σ1 = (resp ||resp || . . . ||resp)
(1) (2) (r) (1) (2) (r)

Parse σ2 as σ2 = (resp ||resp || . . . ||resp ||c ||c || . . . ||c)2 2 2 1−b(1) 1−b(2) 1−b(r)

For j ∈ {1, . . . , r} do
(j) (j) (j) (j)

Parse resp as resp = (t , e)1 1 1 1

(j)If b == 0
(j) (j)
r = resp0 2

(j) (j) (j) (j) (j) (j) (j) (j)
c ← Com0(r , α r − t , α F(r) − e)0 0 0 1 0 1

else
(j) (j)
r = resp1 2

(j) (j) (j) (j) (j) (j) (j)
c ← Com1(r , α (v − F(r)) − G(t , r) − e)1 1 1 1 1 1

(j) (j)
com(j) := (c0 , c1)

0 (1) (2) (r)σ0 ← H(com ||com || . . . ||com)

Return σ0 == σ00

Fig. 7.3: MQDSS-q-n signature verification

• Since the verifier knows the values b(j) from the previous step, he knows which of the
two parts of the commitments com(j) were included in σ2, and can now proceed to
recovering the other, missing part. This is done for all j ∈ {1, . . . , r} as follows:

(j) (j) (j)
– Parse resp to obtain (t , e), and 1 1 1

(j) (j) (j) (j) (j) (j) (j)
– if b(j) == 0 compute c as c ← Com0(r , α(j)r − t , α(j)F(r) − e),0 0 0 0 1 0 1

(j) (j) (j) (j) (j) (j) (j)
otherwise compute c as c ← Com1(r , α(j)(v − F(r)) − G(t , r) − e)1 1 1 1 1 1 1

(j) (j)
– Set com(j) := (c , c)0 1

0
0 (1)||com0 ← H(com

• Return the truth value of σ
• Calculate σ (j)(2)|| . . . ||com(r)) from the obtained commitments com

== σ0. This means that for verification to succeed, 0

σ0 0 = σ0 should hold.

43

398 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

— Internet: Portfolio 399

8

Parameter Sets

8.1 Reference Parameter Sets

Recall (c.f. Section 7.1) that MQDSS-q-n is parametrized by the parameters:

• A positive integer k ∈ N - the security parameter,
• A positive integer n ∈ N - the number of variables and equations of the system F,
• A positive integer q ∈ N (a prime or a prime power) - the order of the finite field Fq,
• A positive integer r ∈ N - the number of rounds.

We propose the following two parameter sets as reference parameter sets of MQDSS:

• MQDSS-31-48
– k = 256, q = 31, n = 48, r = 269;

• MQDSS-31-64
– k = 384, q = 31, n = 64, r = 403.

The following Table 8.1 summarizes the basic characteristics of these two parameter sets.

Security
category k q n r

Public key
size (bytes)

Secret key
size (bytes)

Signature
size (bytes)

MQDSS-31-48 1-2 256 31 48 269 62 32 32882
MQDSS-31-64 3-4 384 31 64 403 88 48 67800

Table 8.1: Basic characteristics of the refernce parameter sets

We have calculated the key sizes and the signature size based on the formulas provided
in Section 7.1: The public key is of length k + n dlog2 qe bits, the secret key sk of length k
bits and the signature of length (2 + r)k + 3rn dlog2 qe bits. The number of rounds r hasl m

2qbeen calculated as r = k/ log2 . q+1

We also summarize the strength of the reference parameter sets with respect to the
best classical and quantum attacks (see Chapter 10). The summary is given in Table 8.2.
For more detailed analysis of the algorithms see Chapter 2.

Best classical attack Best quantum attack

algorithm Field op. algorithm Gates Depth

MQDSS-31-48
MQDSS-31-64

HybridF5
HybridF5

2159

2205
Crossbread
Crossbread

299

2130
290

2120

Table 8.2: Best classical and quantum attacks against the reference parameter sets

400 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

As part of the submission package we provide reference (and additional) implementa-

tions for the two reference parameter sets MQDSS-31-48 and MQDSS-31-64. The details
of the implementations are given in Chapter 9 and Chapter 15.

We emphasize that the chosen reference parameter sets are not the only that are suit-
able for use, and that should be considered by NIST and the broader community in the
evaluation process. In the next section we provide additional parameter sets of comparable
performance and security strength but over different fields. We decided to keep the original
choice of the field as was initially proposed in [16], and to provide implementations only
for parameters over F31. We justify our decision in the next section. To match the security
levels identified by NIST, we changed the number of rounds in MQDSS-31-64 compared
to [16] from 269 to 403 to match Category 3 and 4, and additionally proposed the lower
security set MQDSS-31-48 (not in [16]). Furthermore, we decided not to include a param-

eter set for the Categories 5 and 6 defined by NIST. Over F31 this would be MQDSS-31-88
or even MQDSS-31-96. As can be seen from Table 8.3 this parameter set (or any for that
mater in the category) has signature size in the range of 120KB, which we find a bit out
of the practical range of parameters. Nevertheless, if NIST shows interest in such a pa-
rameter set, it is simple to extend our implementations and performance analysis to this
set as well.

We continue the discussion about the additional parameter sets in the next Section.

8.2 Additional Parameter Sets

In addition to MQDSS-31-48 and MQDSS-31-64 we recommend additional parameter sets
of comparable security strength i.e. Categories 1-4, as identified by NIST [46], but over
different fields. We also provide parameter sets for the much higher security categories 5
and 6. Their basic characteristics and best attacks are given in Tables 8.3 and 8.4. It is
important to note that for the additional recommended parameter sets, we do not provide
implementation.

It can be noticed that within a security category, the parameter sets over F16 and F32

are of very similar performance characteristics as the reference parameter sets over F31.
However, we decided not to include these in the reference parameter sets.

Our decision is based on two main observations: 1. The field F31 is the most natural
choice with respect to implementation of the field arithmetic, since any platform already
contains instructions for multiplication of natural numbers, but no instructions for F16 or
F32. For these fields in general we would have to design specific representations for fast
multiplication, or use table lookup intructions. 2. Our optimized implementation using
AVX2 instructions is much faster over F31 than F16 or F32. Although, NIST does not
require such an implementaion (at least at this stage of the standardisation process), we
believe that in practice it is very relevant.

On the other hand, as F16 and F32 are binary fields, these parameter sets are partic-
ularly interesting for hardware implementations. Therefore for hardware, we recommend
using them, particularly MQDSS-16-56 and MQDSS-16-72 rather than MQDSS-31-48 and
MQDSS-31-64.

Moe generally, in the evaluation process we encourage NIST and the community to treat
MQDSS-16-56, MQDSS-16-72, MQDSS-32-48 and MQDSS-32-64 with the same level of
attention as the reference parameter sets.

46

— Internet: Portfolio 401

Security Public key Secret key Signature
category k q n r

size (bytes) size (bytes) size (bytes)

1-2 256 4 88 378 54 32 37108
1-2 256 16 56 281 60 32 32660
1-2 256 32 48 268 62 32 32760
1-2 256 64 40 262 62 32 32028

3-4 384 4 128 567 80 48 81744
3-4 384 16 72 421 84 48 65772
3-4 384 32 64 402 88 48 67632
3-4 384 64 64 393 102 48 82626

5-6 512 4 160 756 104 64 139232
5-6 512 16 96 562 112 64 117024
5-6 512 31 88 537 119 64 123101
5-6 512 32 88 536 119 64 122872
5-6 512 64 88 524 130 64 137416

Table 8.3: Basic characteristics of the additional parameter sets

Security Best classical attack Best quantum attack

category q n algorithm Field op. algorithm Gates Depth

1-2 4 88 Crossbread 2152 Crossbread 293 283

1-2 16 56 Crossbread 2163 Crossbread 298 289

1-2 32 48 HybridF5 2159 Crossbread 296 288

1-2 64 40 HybridF5 2143 Crossbread 289 281

3-4 4 128 Crossbread 2226 Crossbread 2129 2119

3-4 16 72 HybridF5 2210 Crossbread 2123 2113

3-4 32 64 HybridF5 2205 Crossbread 2125 2115

3-4 64 64 HybridF5 2217 Crossbread 2136 2127

5-6 4 160 Crossbread 2287 Crossbread 2158 2147

5-6 16 96 HybridF5 2273 Crossbread 2162 2152

5-6 31 88 HybridF5 2273 Crossbread 2179 2168

5-6 32 88 HybridF5 2274 Crossbread 2174 2164

5-6 64 88 HybridF5 2291 Crossbread 2203 2192

Table 8.4: Best classical and quantum attacks against the additional parameter sets

47

402 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

— Internet: Portfolio 403

9

Low Level Description of MQDSS

In Chapter 7, we described the MQDSS scheme in general terms. Here, we complete the
specification by giving the byte-level details that should allow an implementer to write a
compatible implementation.

This low level description will focus on our reference parameter sets as defined in Sec-
tion 8.1. Thus, we will assume that q = 31, and the underlying field of operation is F31.
To provide a slightly more general framework, we will define all functions in terms of
parameters k, n ∈ N, such that 64|k and 8|n. (Such a description will allow application of
the following detailed specifications not only to the reference parameter sets, but also to
parameter sets over F31 of different security level.)

9.1 Auxiliary Functions

9.1.1 Secret Key Expansion

The secret key of MQDSS, denoted by sk is a k/8-byte string. It is used in the key
generation process (see Section 7.2) and in the signing process (see Section 7.3) where it
is first expanded to three separate values: SF, Ss and Srte. This is done by expanding to
3k/8 bytes, and interpreting the first k/8 bytes as SF, the second k/8 as Ss and the last
k/8 as Srte (see Algorithm 1).

Algorithm 1 SecretKeyExpansion(sk)
Input: sk

block ← SHAKE256(sk, 136)
SF ← subarray(block, 0, k/8)
Ss ← subarray(block, k/8, 2k/8)
Srte ← subarray(block, 2k/8, 3k/8)

Output: SF, Ss, Srte

9.1.2 Expanding SF, Ss and Srte

The functions XOFF, PRGs and PRGrte are instantiated using rejection sampling of
the output of the extendable output function SHAKE256 standardized in FIPS 202, the
SHA-3 standard [45]. The rejection sampling works as follows: For each output byte of
SHAKE256, we ignore the most significant three bits. We discard the resulting value if
it is equal to 31 when interpreted as an unsigned integer (i.e. all five bits are set). See
Algorithm 2 for details.

404 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Algorithm 2 RejectSample(seed, len)
Input: seed, len

array31 ← []
state ← SHAKE256absorb(seed)
while len(array31) < len do

block ← SHAKE256squeeze(state)
i ← 0
while i <len(block) ∧ len(array31) < len do

cand ← block[i]
if trunc(cand, 5) <> 11111 then

append(array31,mask(cand, 5, 7))
end if
i ← i + 1

end while
end while

Output: array31

Using Algorithm 2 we can easily expand all the necessary values. F is obtained by direct
application of the RejectSample algorithm. The output elements are then interpreted as
integers. The elements of F are in signed integers between -15 and 15, inclusive. We
bring the randomly sampled integer to this domain by subtracting 15. Algorithm 3 is our
wrapper for this function.

Algorithm 3 MQ system(SF)
Input: SF

F ←RejectSample(SF, n(
n(n

2
+1) + n))

for 0 6 i <len(F) do
F[i] ← F[i] − 15

end for
Output: F

The secret vector s is derived similarly, with the crucial difference that the secret key
elements are not transformed to signed integers. The random elements for the vectors r0,
t0 and e0 are derived from the seed Srte in exactly the same way as the secret vector.

(1) (2)
Note that we derive all vectors of the same type for all rounds consecutively, i.e. r0 , r0 ,
(3) (1) (2) (1) (2) (1) (1) (1) (2) (2) (3)
r , . . . , t , t , . . . , e , e , . . . rather than r , t , e , r , t , e , (See0 0 0 0 0 0 0 0 0 0 0
Algorithm 4 and Algorithm 5).

Algorithm 4 SecretVector(Ss)
Input: Ss

s ←RejectSample(SF, n)
Output: s

9.1.3 Evaluating F

At the core of the scheme lies evaluation of the F function, and its bilinear counterpart G.
The evaluation of F can roughly be divided in two parts: the generation of all quadratic
terms, and computation of the resulting polynomials for given terms.

For the generation of the quadratic terms, we construct the terms in a variant of
graded reverse lexicographic order. We note that for most platforms, this is not the most

50

— Internet: Portfolio 405

Algorithm 5 RTEexpand(Srte, D)
Input: Srte

arrayrte ←RejectSample(Srte||D, 3rn)
arrayr ←subarray(arrayrte, 0, rn)
arrayt ←subarray(arrayrte, rn, 2rn)
arraye ←subarray(arrayrte, 2rn, 3rn)
r ← [[0|i = 1 . . . n]|i = 1 . . . r]
t ← [[0|i = 1 . . . n]|i = 1 . . . r]
e ← [[0|i = 1 . . . n]|i = 1 . . . r]
for 0 6 i < rn; i ← i + n do

r[i] ← subarray(arrayr, i, i + n)
t[i] ← subarray(arrayt, i, i + n)
e[i] ← subarray(arraye, i, i + n)

end for
Output: r, t, e

efficient way to generate the quadratic terms [16], but it provides a reasonably straight-
forward method that has decent average performance. Adhering to the same order is crucial
for implementations to be compatible, as this determines which elements of the system
parameter coincide with which terms.

In order to somewhat accommodate platforms that have combined multiplication and
addition instructions, (e.g. the vpmaddubs instruction on AVX2), we process pairs of
quadratic terms rather than individual coefficients. This format is chosen to still be con-
venient to handle on platforms that cannot combine multiplications and additions. In par-
ticular, platforms with more traditional SIMD instructions can use unpack instructions to
de-interleave the vectors.

We describe the process in pseudo-code below, see Algorithm 6. Note that this includes
multiplication with elements in F over F31.

Algorithm 6 EvaluateF(u, F)
Input: u, F

terms ← []
for 0 6 i < n do

for 0 6 j < i do
append(terms, u[i] · u[j] mod 31)

end for
end for
r ← [0|j = 0..n − 1]
for 0 6 i < n; i ← i + 2 do

for 0 6 j < n do
r[j] ← r[j] + u[i] · F[i · n + 2 · j] mod 31
r[j] ← r[j] + u[i + 1] · F[i · n + 2 · j + 1] mod 31

end for
end for

n·(n+1)for 0 6 i <
2 ; i ← i + 2 do

for 0 6 j < n do
r[j] ← r[j] + terms[i] · F[n · m + i · m + 2 · j] mod 31
r[j] ← r[j] + terms[i + 1] · F[n · m + i · m + 2 · j + 1] mod 31

end for
end for

Output: r = F(u)

51

406 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

To evaluate the polar form function G, we use almost the same procedure. For com-

pleteness, we list it in Algorithm 7. Notably, the differences are limited to a different term
generation, and skipping of the square terms (as these cancel out).

Algorithm 7 EvaluateG(u, v, F)
Input: u, v, F

terms ← []
for 0 6 i < n do

for 0 6 j < i do
append(terms, u[i] · v[j] + u[j] · v[i] mod 31)

end for
end for
r ← [0|j = 1..n]

n·(n+1)for 0 6 i <
2 ; i ← i + 2 do

for 0 6 j < n do
r[j] ← r[j] + terms[i] · F[n · m + i · m + 2 · j] mod 31
r[j] ← r[j] + terms[i + 1] · F[n · m + i · m + 2 · j + 1] mod 31

end for
end for

Output: r = G(u, v)

9.1.4 Packing and unpacking F31 elements

All field elements included in the signature are stored in packed representation. This
means that, when storing a vector of F31 elements, each element is expressed using five
bits, representing the element using its smallest non-negative representation as an integer.
The first byte of the byte sequence represents the first five bits of the first element, and
the three least-significant bits of the next element. The next byte contains the remaining
two high bits of the second element, the complete third element, and the least-significant
bit of the forth element, etc. Note that for all parameters of MQDSS, we have restricted
the value of n to be a multiple of 8. Thus, there is no need to explicitly specify padding,
since this will result in byte arrays of exact multiples of eight bits. A vector of elements in
F31 is unpacked by applying the inverse of the above operation (see Algorithms 8 and 9).

Algorithm 8 PackArray31(u)
Input: u

bitstring ← []
for 0 6 i < len(u) do

bitstring ← bitstring||trunc(u[i],5)
end for
bytearray ← []
for 0 6 i <len(bitstring); i ← i + 8 do

append(bytearray,subarray(bitstring, i, i + 8))
end for

Output: bytearray

9.1.5 Commitment and hash functions

The commitments Com0 and Com1 and the Hash functions H, H1 and H2 are instantiated
also using SHAKE256. They take as input arrays of F31 elements that need to be in packed

52

— Internet: Portfolio 407

Algorithm 9 UnpackArray31(bytearray)
Input: bytearray

bitstring ← []
for 0 6 i < len(bytearray) do

bitstring ← bitstring||bytearray[i]
end for
u ← []
for 0 6 i <len(bitstring); i ← i + 5 do

append(u,subarray(bitstring, i, i + 5)||000)
end for

Output: u

form. The input to the commitment functions Com0 and Com1 is a sequence of three,
respectively two packed byte arrays. These are simply concatenated bytewise, starting
with the vector listed first. The same applies for the hash functions H, H1 and H2. Their
algorithmic description is given in Algorithms 10-14.

It should come as no surprise that the same rejection sampling method is applied to
sample the challenges α(i) ∈ F31. After absorbing the transcript into the SHAKE state, it
is repeatedly squeezed until sufficient elements have been extracted – as before, the least
significant 5 bits are considered as an unsigned integer, and is rejected if it is equal to 31.

The binary challenges are obtained by enumerating the bits of the hash output per
byte, from least to most significant. (see Algorithm 14.)

Algorithm 10 Com0(r, t, e)
Input: r, t, e

c0 ← []
seed ← (PackArray31(r)||PackArray31(t)||PackArray31(e))
state ← SHAKE256absorb(seed)
block ← SHAKE256squeeze(state)
c0 ← subarray(block, 0, k/8)

Output: c0

Algorithm 11 Com1(r, e)
Input: r, e

c1 ← []
seed ← (PackArray31(r)||PackArray31(e))
state ← SHAKE256absorb(seed)
block ← SHAKE256squeeze(state)
c1 ← subarray(block, 0, k/8)

Output: c1

Algorithm 12 Hash(bytearray)
Input: bytearray

state ← SHAKE256absorb(bytearray)
block ← SHAKE256squeeze(state)
digest ← subarray(block, 0, k/8)

Output: digest

53

408 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Algorithm 13 Hash1(D, σ0)
Input: D, σ0

seed ← D||σ0

ch1 ←RejectSample[seed, r]
Output: ch1

Algorithm 14 Hash2(D, σ0, ch1, σ1)
Input: D, σ0, ch1, σ1

seed ← D||σ0PackArray31(ch1)||σ1

state ← SHAKE256absorb(seed)
block ← SHAKE256squeeze(state)
ch2 ←[]
for 0 6 i < r do

temp = block[floor(i/8)]
append(ch2, temp[i mod 8])

end for
Output: ch2

9.2 Putting it all together - Pseudo code of KGen,Sign,Vf

Using the defined auxiliary functions from the previous section, we can provide a low
level algorithmic description of the defining algorithms of MQDSS - KGen,Sign,Vf (see
Chapter 7).

For the KGen algorithm of MQDSS, we assume the existence of a function rand() that
on input k ∈ N outputs k/8 bytes of strong randomness. It is given in Algorithm 15.

Algorithm 15 KGen(k)
Input: k

sk ←rand(k)
SF, Ss, Srte ← SecretKeyExpansion(sk)
F ←MQ system(SF)
s ←SecretVector(Ss)
v ←EvaluateF(s, F)
pk ← SF||PackArray31(v)

Output: (pk, sk)

An MQDSS signature is generated with the algorithm Sign (see Algorithm 16). It takes
as input a secret key sk and a message to be signed M .

An MQDSS signature is verified using the algorithm Vf (see Algorithm 17). It takes as
input a public key sk, a message M , and a signature σ.

54

— Internet: Portfolio 409

Algorithm 16 Sign(sk,M)
Input: sk,M

SF, Ss, Srte ← SecretKeyExpansion(sk)
F ←MQ system(SF)
s ←SecretVector(Ss)
v ←EvaluateF(s, F)
pk ← SF||PackArray31(v)
R ←Hash(sk||M)
D ←Hash(pk||R||M)
r0, t0, e0 ← RTEexpand(Srte, D)
r1 ← [[0|i = 1 . . . n]|i = 1 . . . r]
t1 ← [[0|i = 1 . . . n]|i = 1 . . . r]
e1 ← [[0|i = 1 . . . n]|i = 1 . . . r]
c0 ← [[0|i = 1 . . . k/8]|i = 1 . . . r]
c1 ← [[0|i = 1 . . . k/8]|i = 1 . . . r]
com ← []
for 0 6 i < r do

r1[i] ← s − r0[i]
c0[i] ←Com0(r0[i], t0[i], e0[i])
c1[i] ←Com1(r1[i],EvaluateG(t0[i], r1[i], F) + e0[i])
com ← com||PackArray31(c0[i])||PackArray31(c1[i])

end for
σ0 ←Hash(com)
ch1 ←Hash1(D, σ0)
σ1 ← []
for 0 6 i < r do

t1[i] ← ch1[i] · r0[i] − t0[i]
e1[i] ← ch1[i]·EvaluateF(r0[i], F)−e0[i]
σ1 ← σ1||PackArray31(t1[i])||PackArray31(e1[i])

end for
ch2 ←Hash2(D, σ0, ch1, σ1)
σ2 ← []
for 0 6 i < r do

if ch2[i] == 0 then
σ2 ← σ2||PackArray31(r0[i])

else
σ2 ← σ2||PackArray31(r1[i])

end if
end for
for 0 6 i < r do

if ch2[i] == 0 then
σ2 ← σ2||c1[i]

else
σ2 ← σ2||c0[i]

end if
end for

Output: σ = R||σ0||σ1||σ2

55

410 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Algorithm 17 Vf(pk, σ, M)
Input: pk, σ, M

R ←subarray(σ, 0, k/8)
σ0 ←subarray(σ, k/8, 2 · k/8)
σ1 ←subarray(σ, 2 · k/8, (2 · k + 10 · n · r)/8)
σ2 ←subarray(σ, (2 · k + 10 · n · r)/8, len(σ))
SF ←subarray(pk, 0, k/8)
F ←MQ system(SF)
D ←Hash(pk||R||M)
ch1 ←Hash1(D, σ0)
ch2 ←Hash2(D, σ0, ch1, σ1)
resp1 ←UnpackArray31(σ1)
resp2 ←UnpackArray31(subarray(σ2, 0, 5 · n · r/8))
c ←subarray(σ2, 5 · n · r/8, len(σ2))
com ← []
for 0 6 i < r do

t1 ← resp1[2i]
e1 ← resp1[2i + 1]
if ch2[i] == 0 then

r0 ← resp2[i]
c0 ←Com0(r0, ch1[i] · r0 − t1, ch1[i]·EvaluateF(r0, F) − e1)
c1 ←subarray(c, i · k/8, (i + 1) · k/8)

else
r1 ← resp2[i]
c1 ←Com1(r1, ch1[i] · (v−EvaluateF(r1, F))−EvaluateG(t1, r1, F) − e1)
c0 ←subarray(c, i · k/8, (i + 1) · k/8)
com ← com||c0||c1

end if
end for
σ0 0 ←Hash(com)

Output: σ0
0 == σ0

56

— Internet: Portfolio 411

10

Security of MQDSS

10.1 EU-CMA security of MQDSS

The security of MQDSS was proven in [16]. The security reduction is in the random oracle
model and builds on the results obtained for q2 signature schemes (see Appendix A,
Section A.1). For completeness we provide the full proof in Appendix A, Section A.2.

Theorem 10.1. MQDSS is EU-CMA-secure in the random oracle model, if the following
conditions are satisfied:

• the search version of the MQ problem is intractable in the average case,
• the hash functions H, H1, and H2 are modeled as random oracles,
• the commitment functions Com0 and Com1 are computationally binding, computation-

ally hiding, and have O(k) bits of output entropy,
• the function XOFF is modeled as random oracle and
• the pseudorandom generators PRGsk, PRGs and PRGrte have outputs computationally
indistinguishable from random for any polynomial time adversary.

10.2 Attacks Against MQDSS

Having shown the EU-CMA security of MQDSS, the best attacks against the cryptosystem
are against the conditions that provide the security. Thus, an adversary could:

• Attack the MQ problem,
• Attack the computationally binding property of the commitments
• Attack the computationally hiding property of the commitments
• Attack the hash functions
• Attack the pseudo-random generators

Since the commitment functions, the hash functions and the pseudo-random generators
are all instantiated using SHAKE256, all the attacks apart from the first boil down to
attacking SHAKE256.

One could compromise the security of MQDSS if one breaks the preimage resistance
(this will break the hiding property of the commitments), the collision resistance (this will
break the binding property of the commitments) or if one finds properties that distinguish
the output of SHAKE256 from random. A substantial amount of research has been devoted
to the security of SHAKE and the SHA3 standard. The public scrutiny gives confidence

412 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

in its security, however the details are out of the scope of this document. We refer the
interested reader to [45, 11].

This leaves attacks against the MQ problem as the point of interest. Since the public
key is randomly generated (from a random seed by expanding the seed), the obtained
system can be considered as semiregular, i.e. we can be confident that there are no hid-
den structural weaknesses. This means that the generic algebraic methods are the best
algorithms against the MQ instance in MQDSS and therefore against the system. For
details see 2. Based on these conclusions, the security of the proposed parameter sets can
be estimated as in Table 8.2. Additional parameters security estimate is given in Table 8.4,
and scaled-down parameters estimate in Table 13.3.

58

— Internet: Portfolio 413

11

Design Rationale

In this chapter we discuss all relevant design choices that we made and provide appropriate
justification for these choices.

11.1 Parameters

In choosing appropriate parameters for MQDSS, the most important criteria was of course
the level of security these parameters provide. In the previous chapters we provided a
complete security analysis of MQDSS. We

• proved the security of MQDSS in the random oracle model (cf. Section 10.1),
• analyzed the practical security of the MQ problem by investigating the state of the
art classical and quantum algorithms for solving it (c.f. Section 2.2 and Section 2.3),
and

• used known results about the security of the extendable output function SHAKE256,
which we used to instantiate the commitments, the pseudo-random generators and
hash functions.

Since our security reduction in the ROM is very loose, we found it impractical to use con-
crete expressions from the reduction in our choice of parameters. Instead, the parameters
are based on the best known attacks against the MQ problem and against SHAKE256.
In particular,

• We choose the number of variables and equations in F to be the same i.e m = n, as
this gives effectively the hardest instances of the MQ problem.

• Using the analysis from Section 2.2, we estimate the lower bound of the number of
0variables n in order for the resulting MQ instance to satisfy a particular security

level/category (as defined in [46]) in terms of classical field operations of the best
classical attacks,

• Using the analysis from Section 2.3, we estimate the lower bound of the number of
00variables n in order for the resulting MQ instance to satisfy a particular security

level/category (as defined in [46]) in terms of quantum circuit size and depth of the
best quantum attacks,

• The number of variables n is then chosen as n = max{n0, n00}.
• We choose the parameter k such that the output of the hash functions H, H1, H2 is
large enough to satisfy collision resistance security of the level specified by Categories
2,4 and 6.

414 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

• Finally, the number of rounds r is chosen such that the parallel composition of r rounds
of the SSH 5-pass IDS has soundness error < 1/2k .

11.2 5-pass over 3-pass SSH Identification Scheme

In [41], Sakumoto, Shirai and Hiwatari propose also a 3-pass scheme whose security also
provably relies on the MQ problem and is defined solely over F2. One could argue that
this one is a much more natural choice. Indeed, it is a 3-pass scheme, so one can directly
apply the Fiat-Shamir transform that has been scrutinized for decades by the community.
In addition it is defined over the Boolean domain, so implementation is particularly easy.
However, a careful analysis shows that it has a serious drawback, that make it clearly
inferior compared to the 5-pass SSH Identification scheme.

The 3-pass SSH scheme has a soundness error of 2/3 which is greater than q+1 (the 5-2q
pass SSH soundness error) for any q > 2. Thus for example, in order to satisfy Categories
1-2, the number of rounds would have to be 438, which is much larger than 269 - the
number of rounds in MQDSS-31-48 (Security categories 1-2). Now, for Categories 1-2, the
number of variables in the MQ system needs to be at least n = 160, which amounts to
a signature of size 2k + r(3n + k) = 40360 bytes (see [16] for derivation of this formula)
which is more than 7 KB larger than MQDSS-31-48. For Categories 3-4 the difference is
even larger - more than 8KB, since we now need at least r = 657 and n = 224 which gives
a signature of size 76276 bytes.

11.3 Optimizations

In the definition of MQDSS (see Chapter 7) we have used an optimization proposed already
in [41]: It is not necessary to include all 2r commitments in the transcript. Instead, we in-
clude a digest over the concatenation of all commitments σ0 = H(com(1)||com(2)|| . . . ||com(r))

(1) (2) (r)
and also the commitments c , c , . . . , c that the verifier can not recompute.

1−b(1) 1−b(2) 1−b(r)

This optimization saves (r −1)k bits from the final signature which is more than 8.5KB for
MQDSS-31-48 and more than 19KB for MQDSS-31-64. This modification does not cause
any problems, since we have shown (c.f.Chapter 10) that it does not disturb the security
arguments.

11.4 Other Functions

In order to instantiate the commitment functions, pseudorandom generators and extend-
able output function, we rely on SHAKE-256, as standardized in FIPS 202, the SHA-3
standard. This gives us a sufficiently large security margin that its preimage and second
preimage resistance is not relevant for the overall security level. In general, this means
that we simply concatenate the defined inputs as byte arrays, and absorb them into the
SHAKE state. Chapter 9 provides some more detail on specific usage.

60

— Internet: Portfolio 415

12

Performance Analysis

12.1 Performance on Intel x64-86

In order to obtain benchmarks, we evaluate our reference implementation on a machine
using the Intel x64-86 instruction set. In particular, we use a single core of a 3.5 GHz Intel
Core i7-4770K CPU. We follow the standard practice of disabling TurboBoost and hyper-
threading. The system has 32 KiB L1 instruction cache, 32 KiB L1 data cache, 256 KiB L2
cache and 8192 KiB L3 cache. Furthermore, it has 32GiB of RAM, running at 1333 MHz.
When performing the benchmarks, the system ran on Linux kernel 4.9.0-4-amd64, Debian
9 (Stretch).

We compiled the code using GCC version 6.3.0-18, with the compiler optimization
flag -O3. The median resulting cycle counts are listed in the table below.

keygen signing verification

MQDSS-31-48 1 206 730 52 466 398 38 686 506

MQDSS-31-64 2 806 750 169 298 364 123 239 874

12.2 Performance on Intel x64-86 AVX2

Since the evaluation of the MQ function is the most costly part of the computation but also
benefits greatly from parallelism, we thought it useful to also provide benchmarks when
the scheme is implemented using AVX2 instructions. We used the same system described
above to obtain the following measurements, this time including the -mavx2 compiler flag.

keygen signing verification

MQDSS-31-48 1 069 536 6 369 484 3 951 838

MQDSS-31-64 2 485 394 14 584 882 9 619 442

12.3 Size

As the private key is merely a seed that is used to generate the required secret material,
this is 32 respectively 48 bytes for the given parameter sets. The public key contains a
public seed, but also F(s), making it 62 and 88 bytes respectively.

The stack space consumption is largely determined by the size of the signature and the
expanded version of F. A straight-forward implementation constructs the transcript in

416 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

memory before evaluating the hash function that determines the challenges. More memory-

conservative implementations could keep an intermediate hash function state, instead, and
stream through the transcript as it is constructed.

The expanded version of F requires some active memory. Naively, it benefits from hav-
ing 57 KiB or 100 KiB (for the different parameter sets, respectively) of active memory
available. More memory-constrained implementations could reschedule the different com-

putations in a way that F only needs to be parsed once, however, and can thus also make
use of a streaming API.

For the given parameter sets, the signature size is respectively 32882 and 67800 bytes
(i.e. 32.1 KiB and 66.21 KiB). Since the signature primarily consists of transcripts of rounds
of the non-interactive identification protocol, it scales linearly in the number of rounds and
in the size of the vectors (see Chapter 5 for more details on this).

62

— Internet: Portfolio 417

13

Security v.s. Performance

MQQDSS depends on four parameters q, k, n, r. The first parameter q determines the un-
derlying field, and changing it has mostly to do with performance, since all the arithmetic
operations are performed using different types of instructions which may influence speed
for example. In some cases, the choice of q may introduce different dedicated attacks for
the particular field, as in the case of q = 2, which may have slightly better performance
(see Chapter 2 for detailed analysis of the known algorithms against the MQ problem).
For a fixed value of q by increasing or decreasing the parameters k and n we increase or
decrease the resistance of the system against known attacks. Note that we have specified l m

2qearlier r = k/ log2 but it is possible (if one wants) to independently tune this pa-q+1

rameter (for example to increase the performance). We will not consider this possibility
in this document, and assume that r is not an independent parameter.

Based on the NIST call document [46], in a similar fashion to the 6 provided security
categories, we identify 4 down-scaled categories

• BLOKCIPHER64 (Category 0.1) - the security level of a generic block cipher with 64
bit key.

• HASHFUNCTION128 (Category 0.2) - the security level of a generic hash function
with 128 bit output.

• BLOKCIPHER96 (Category 0.3) - the security level of a generic block cipher with 96
bit key.

• HASHFUNCTION192 (Category 0.4) - the security level of a generic hash function
with 192 bit output.

Our estimate of the concrete security level these provide in terms of classical and
quantum gates, assuming black box treatment of the primitives (i.e. the best attacks are
the generic ones) is given in Table 13.1.

Security category Classical
Gates

Quantum
Gates

Quantum
circuit depth

0.1
0.2
0.3
0.4

BLOKCIPHER64
HASHFUNCTION128
BLOKCIPHER96
HASHFUNCTION192

274

277

2108

2110

250

266

246

262

Table 13.1: Basic characteristics of the scalled down parameter sets

418 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

We identify the following parameter sets that satisfy the scaled down security categories
0.1-0.4.

Security Public key Secret key Signature
category k q n r

size (bytes) size (bytes) size (bytes)

0.1-0.2 128 4 48 189 28 16 9860
0.1-0.2 128 16 32 141 32 16 9056
0.1-0.2 128 31 24 135 31 16 8267
0.1-0.2 128 32 24 134 31 16 8206
0.1-0.2 128 64 24 131 34 16 9202

0.3-0.4 192 4 64 284 40 24 20496
0.3-0.4 192 16 40 211 44 24 17772
0.3-0.4 192 31 40 202 49 24 20046
0.3-0.4 192 32 40 201 49 24 19947
0.3-0.4 192 64 32 197 48 24 18960

Table 13.2: Basic characteristics of the scalled down parameter sets

Security Best classical attack Best quantum attack

category q n algorithm Field op. algorithm Gates Depth

0.1-0.2 4 48 Crossbread 279 Crossbread 257 248

0.1-0.2 16 32 Crossbread 282 Crossbread 259 251

0.1-0.2 31 24 Crossbread 277 Crossbread 259 250

0.1-0.2 32 24 Crossbread 278 Crossbread 253 245

0.1-0.2 64 24 Crossbread 290 Crossbread 260 252

0.3-0.4 4 64 Crossbread 2106 Crossbread 271 262

0.3-0.4 16 40 Crossbread 2106 Crossbread 272 263

0.3-0.4 31 40 Crossbread 2128 Crossbread 286 276

0.3-0.4 32 40 Crossbread 2129 Crossbread 283 273

0.3-0.4 64 32 Crossbread 2116 Crossbread 273 264

Table 13.3: Best classical and quantum attacks against the scalled down parameter sets

Since the signature size of MQDSS is the most critical performance characteristic,
it is natural to consider it over other characteristics when estimating the security vs.
performance trade-off. For better visual judgement, we have plotted this trade-off for
q = 31, which is the chosen value of our reference parameter sets (see Section 8.1).

27

26

25

24

23

S
ig
n
a
tu
re

 S
iz
e
in

 K
B

 (
lo
g

 s
ca
le
)

0.1 0.3 1 3 5

Security Category

Fig. 13.1: Security category v.s. signature size

64

— Internet: Portfolio 419

14

Strengths and Weaknesses

For any cryptographic design, the final product is a result based on decisions made to
satisfy a certain security level, while maintaining desired properties such as performance
and usability. This trade-off necessarily introduces weaknesses, but the designers’ goal is
to preserve enough good features to make the schemes attractive.

MQDSS is not an exception. In this chapter, we summarize and discuss the strengths
and weaknesses of our proposal.

Strengths of MQDSS:

• Small keys. MQDSS has extremely small keys, comparable to contemporary schemes
such as ECDSA that provide only classical security. On the other hand, they are several
orders of magnitudes smaller than the keys of other MQ schemes.

• Provably secure MQ signature, with reduction from the MQ problem. MQDSS is the
first multivariate signature scheme that is provably secure, and whose security relies
solely on the MQ problem. The lack of security proofs throughout the history of MQ
cryptography has made its representatives extremely prone to cryptanalysis and unfor-
tunately the whole area has obtained bad reputation because of this. We believe that
MQDSS together with the SSH schemes [41] are a step towards regaining confidence
in MQ cryptography.

• Flexible parameters. All four parameters q, n, k, r can be easily tuned to match different
security levels and platforms. Even more the number of variables is independent of the
number of rounds, so in case of improvement in algebraic attacks against the MQ
problem only the number of variable could be changed.

• Simple design. The underlying IDS uses a simple splitting technique based on the
bilinearity of the polar form. The rest is a slightly more general Fiat-Shamir transform
to turn the interactive protocol into a signature. The design does not utilize complicated
algebraic structures (possibly even mathematically poorly understood), there is no
dependence on possibly vulnerable distribution samplers, and in general there is very
little room for flawed deployment.

• Suitable for hardware implementation. Due to the flexible parameters, it is possible to
define MQDSS over fields of characteristic 2, such as F16 that are especially suitable
for hardware implementation.

• Naturally parallelizable. The computations within a round are independent of the other
rounds so it is straightforward to perform in parallel all rounds.

420 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

• Inherently constant-time. The straight-forward way of implementing the scheme is
inherently protected against timing attacks. Evaluating the MQ function can tradi-
tionally be done in ways that depend on the input, but this is typically an additional
optimization effort. Moreover, our chosen parameter set makes this unattractive on
most platforms.

Weaknesses of MQDSS:

• Large signature size. Probably the biggest weakness of MQDSS is its signature size.
Compared to traditional signature schemes the signature is at least 100 times larger.
The same is true for other multivariate schemes. However, traditional MQ schemes
have ad-hoc designs, without proof of security. Even more, in a typical usage scenario
of signatures such as PKI, what matters is actually the size of the public key plus the
signature. In such a setting MQDSS is still better, beating traditional MQ schemes by
a factor of 2-20 depending on the scheme. On the other hand, provably secure schemes
that provide post-quantum security tend to have much larger signatures, and for the
schemes we are aware, the signatures are in the same range as MQDSS.

• Security proof in the ROM, and not in the QROM. In Section A.1 we showed in the
random oracle model that q2 -signature schemes are EU-CMA secure when the under-
lying IDS satisfies certain conditions. However, similar to the standard Fiat-Shamir
transform, our proof relies on a forking lemma, which introduces two serious problems
in the post-quantum setting (i.e. in the quantum accessible random oracle model):
rewinding of the adversary, and adaptively programming the random oracle. While it
is known how to deal with the latter [54], the former seems to be a serious obstacle
[2]. The only known way to fix the Fiat-Shamir transform in the QROM setting [23]
is using oblivious commitments, which are a certain kind of trapdoor commitments,
effectively avoiding rewinding at the cost of introducing the necessity of a trapdoor
function. This makes the solution not applicable in our setting as there are no known
trapdoor functions with a reduction from the MQ-problem.
It is however possible to use a different transform that overcomes the problems of the
forking lemma in the QROM. In [17], the authors generalize the Unruh transform [54],
and apply it to the 5-pass SSH of Sakumoto et al.. The obtained signature scheme is
secure in the ROM, but at a huge cost - the signature size becomes ≈ 120KB which
in our opinion is not in the range of desired practicality.

• Security proof not tight. Another weakness of our security proof is that is not at all
tight. This is again an inherent weakness introduced by the rewinding technique of the
forking lemma. Therefore, in order to produce a tight security reduction for MQDSS
one would have to base the proof on different techniques. At the moment, we are not
aware of such techniques that we could use.

66

— Internet: Portfolio 421

15

Additional AVX2 Implementation of MQDSS

To demonstrate performance, we have also implemented the scheme using AVX2 vec-
tor instructions. As mentioned above, this makes convenient use of the structure of the
terms, allowing implementations to benefit from the vpmaddubs instruction to combine
two multiplications with an addition. In one instruction, this computes two 8 bit SIMD
multiplications and a 16 bit SIMD addition. This also underlines the benefit of details such
as elements in F in signed representation, since this allows accumulating more additions
in vectorized 16-bit words before performing a reduction.

When arranging reductions, we must strike a careful balance between preventing over-
flow and not reducing more often than necessary. As we make extensive use of vpmaddubsw,
which takes both a signed and an unsigned operand to compute the quadratic monomials,
we ensure that the input variables for the MQ function are unsigned values (in particular:
{0, . . . , 31}). For the coefficients in the system parameter F, we can then freely assume the
values are in {−15, . . . , 15}, as these are the direct result of a pseudo-random generator.

It turns out to be efficient to immediately reduce the quadratic monomials back to
{0, . . . , 31} when they are computed. When we now multiply such a product with an
element from the system parameter and add it to the accumulators, the maximum value
of each accumulator word will be at most1 64 · 31 · 15 = 29760. As this does not exceed
the maximum value of 32768, we only have to perform reductions on each individual
accumulator at the very end.

For the smaller parameter set, i.e. n = 48, these constraints are less pressing, but the
maximum value accumulators remains in the same ballpark. Both n = 48 and n = 64
benefit from the fact that these parameters are multiples of 16, which results in a very
similar optimal implementation strategy and convenient code reuse.

1 This follows from the fact that we combine 64 such monomials in two YMM registers.

422 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

References

1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to signatures via the fiat-
shamir transform: Minimizing assumptions for security and forward-security. In: Knudsen, L.R. (ed.)
Advances in Cryptology — EUROCRYPT 2002: International Conference on the Theory and Appli-

cations of Cryptographic Techniques Amsterdam, The Netherlands, April 28 – May 2, 2002 Proceed-
ings. pp. 418–433. Springer Berlin Heidelberg, Berlin, Heidelberg (2002), https://doi.org/10.1007/
3-540-46035-7_28

2. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof systems: The hardness of
quantum rewinding. In: FOCS 2014. pp. 474–483 (2014), http://eprint.iacr.org/2014/296

3. Amy, M., Maslov, D., Mosca, M.: Polynomial-time t-depth optimization of clifford+t circuits via
matroid partitioning. IEEE Trans. on CAD of Integrated Circuits and Systems 33(10), 1476–1489
(2014), https://doi.org/10.1109/TCAD.2014.2341953

4. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis
of depth-optimal quantum circuits. IEEE Trans. on CAD of Integrated Circuits and Systems 32(6),
818–830 (2013), https://doi.org/10.1109/TCAD.2013.2244643

5. Bardet, M., Faugère, J., Salvy, B.: On the complexity of the F5 Gröbner basis algorithm. Journal of
Symbolic Computation 70, 49–70 (2015), https://hal.inria.fr/hal-01064519/document

6. Bardet, M., Faugère, J., Salvy, B., Spaenlehauer, P.: On the complexity of solving quadratic boolean
systems. Journal of Complexity 29(1), 53–75 (2013), www-polsys.lip6.fr/~jcf/Papers/BFSS12.pdf

7. Bardet, M., Faugère, J.C., Salvy, B., Yang, B.Y.: Asymptotic Behaviour of the Degree of Regularity
of Semi-Regular Polynomial Systems. In: Proc. of MEGA 2005, Eighth International Symposium on
Effective Methods in Algebraic Geometry (2005)

8. Bardet, M., Faugre, J.C., Salvy, B.: On the complexity of the F5 Gröbner basis algorithm. Journal of
Symbolic Computation 70(Supplement C), 49 – 70 (2015), http://www.sciencedirect.com/science/
article/pii/S0747717114000935

9. Beauregard, S., Brassard, G., Fernandez, J.M.: Quantum arithmetic on galois fields (2003)
10. Bernstein, D.J.: Multi-user schnorr security, revisited. Cryptology ePrint Archive, Report 2015/996

(2015), https://eprint.iacr.org/2015/996
11. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference (2011), http://keccak.

noekeon.org/
12. Bettale, L., Faugère, J., Perret, L.: Solving polynomial systems over finite fields: improved analysis of

the hybrid approach. In: van der Hoeven, J., van Hoeij, M. (eds.) Proceedings of the 37th International
Symposium on Symbolic and Algebraic Computation – ISSAC ’12. pp. 67–74. ACM (2012), https:
//hal.inria.fr/hal-00776070/document

13. Bouillaguet, C., Chen, H.C., Cheng, C.M., Chou, T., Niederhagen, R., Shamir, A., Yang, B.Y.: Fast
exhaustive search for polynomial systems in F2. In: Mangard, S., Standaert, F.X. (eds.) Cryptographic
Hardware and Embedded Systems – CHES 2010. LNCS, vol. 6225, pp. 203–218. Springer (2010),
http://dx.doi.org/10.1007/978-3-642-15031-9_14, https://eprint.iacr.org/2010/313

14. Boyer, M., Brassard, G., Hyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschritte
der Physik 46(4-5), 493–505 (1998), http://dx.doi.org/10.1002/(SICI)1521-3978(199806)46:4/
5<493::AID-PROP493>3.0.CO;2-P

15. Buchberger, B.: Bruno Buchberger’s PhD thesis 1965: An algorithm for finding the basis elements
of the residue class ring of a zero dimensional polynomial ideal. J. Symb. Comput. 41(3-4), 475–511
(2006)

— Internet: Portfolio 423

16. Chen, M.S., Hülsing, A., Rijneveld, J., Samardjiska, S., Schwabe, P.: From 5-pass MQ-based identi-
fication to MQ-based signatures. In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology – ASI-

ACRYPT 2016. LNCS, vol. 10032, pp. 135–165. Springer (2016), http://eprint.iacr.org/2016/708
17. Chen, M.S., Hülsing, A., Rijneveld, J., Samardjiska, S., Schwabe, P.: Sofia: Mq-based signatures in the

qrom. Cryptology ePrint Archive, Report 2017/680 (2017), https://eprint.iacr.org/2017/680
18. Cheung, D., Maslov, D., Mathew, J., Pradhan, D.K.: On the design and optimization of a quan-

tum polynomial-time attack on elliptic curve cryptography. In: Kawano, Y., Mosca, M. (eds.) Theory
of Quantum Computation, Communication, and Cryptography: Third Workshop, TQC 2008 Tokyo,
Japan, January 30 - February 1, 2008. Revised Selected Papers. pp. 96–104. Springer Berlin Heidelberg,
Berlin, Heidelberg (2008), https://doi.org/10.1007/978-3-540-89304-2_9

19. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. In: Proceedings of
the Nineteenth Annual ACM Symposium on Theory of Computing. pp. 1–6. STOC ’87, ACM, New
York, NY, USA (1987), http://doi.acm.org/10.1145/28395.28396

20. Coppersmith, D.: Solving homogeneous linear equations over GF(2) via block Wiedemann algorithm.
Mathematics of Computation 62, 333–350 (1994)

21. Courtois, N., Klimov, E., Patarin, J., Shamir, A.: Efficient algorithms for solving overdefined systems
of multivariate polynomial equations. In: Preneel, B. (ed.) Advances in Cryptology – EUROCRYPT
2000. LNCS, vol. 1807, pp. 392–407. Springer (2000), www.iacr.org/archive/eurocrypt2000/1807/
18070398-new.pdf

22. Courtois, N.T.: Efficient zero-knowledge authentication based on a linear algebra problem MinRank. In:
Boyd, C. (ed.) Advances in Cryptology – ASIACRYPT 2001. LNCS, vol. 2248, pp. 402–421. Springer
(2001), https://eprint.iacr.org/2001/058

¨ 23. Dagdelen, O., Fischlin, M., Gagliardoni, T.: The Fiat–Shamir transformation in a quantum world.
In: Sako, K., Sarkar, P. (eds.) Advances in Cryptology - ASIACRYPT 2013. LNCS, vol. 8270, pp.
62–81. Springer (2013), http://dx.doi.org/10.1007/978-3-642-42045-0_4, https://eprint.iacr.
org/2013/245

24. Diem, C.: The XL-algorithm and a conjecture from commutative algebra. In: Lee, P.J. (ed.) Advances
in Cryptology – ASIACRYPT 2004. LNCS, vol. 3329, pp. 323–337. Springer (2004), https://www.
iacr.org/archive/asiacrypt2004/33290320/33290320.pdf

25. Ding, J., Hu, L., Yang, B.Y., Chen, J.M.: Note on design criteria for rainbow-type multivariates.
Cryptology ePrint Archive, Report 2006/307 (2006), https://eprint.iacr.org/2006/307

26. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure and
Applied Algebra 139, 61–88 (1999), http://www-polsys.lip6.fr/~jcf/Papers/F99a.pdf

27. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F5).
In: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation – ISSAC
’02. pp. 75–83. ACM (2002), http://www-polsys.lip6.fr/~jcf/Papers/F02a.pdf

28. Faugère, J.C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of MinRank. In: Wagner, D. (ed.) Advances
in Cryptology – CRYPTO 2008. LNCS, vol. 5157, pp. 280–296. Springer (2008), http://www-polsys.
lip6.fr/~jcf/Papers/crypto08.pdf

29. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems.
In: Odlyzko, A.M. (ed.) Advances in Cryptology — CRYPTO’ 86: Proceedings. pp. 186–194. Springer
Berlin Heidelberg, Berlin, Heidelberg (1987), https://doi.org/10.1007/3-540-47721-7_12

30. Fusco, G., Bach, E.: Phase transition of multivariate polynomial systems. In: Cai, J.Y., Cooper,
B.S., Zhu, H. (eds.) International Conference on Theory and Applications of Models of Computa-

tion – TAMC 2007. LNCS, vol. 4484, pp. 632–645. Springer (2007), https://minds.wisconsin.edu/
bitstream/handle/1793/60544/TR1588.pdf

31. Galbraith, S., Malone-Lee, J., Smart, N.P.: Public key signatures in the multi-user setting. Inf. Process.
Lett. 83(5), 263–266 (Sep 2002), http://dx.doi.org/10.1016/S0020-0190(01)00338-6

32. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman and Company (1979)

33. Giesbrecht, M., Lobo, A., Saunders, B.D.: Certifying inconsistency of sparse linear systems. In: Pro-
ceedings of the 1998 International Symposium on Symbolic and Algebraic Computation – ISSAC
’98. pp. 113–119 (1998), http://doi.acm.org/10.1145/281508.281591, https://cs.uwaterloo.ca/

~mwg/files/incons.pdf
34. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adap-

tive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308 (1988), https:
//people.csail.mit.edu/silvio/Selected%20Scientific%20Papers/Digital%20Signatures/
A_Digital_Signature_Scheme_Secure_Against_Adaptive_Chosen-Message_Attack.pdf

69

424 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

35. Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying grover’s algorithm to aes: Quan-

tum resource estimates. In: Takagi, T. (ed.) Post-Quantum Cryptography: 7th International Workshop,
PQCrypto 2016, Fukuoka, Japan, February 24-26, 2016, Proceedings. pp. 29–43. Springer International
Publishing, Cham (2016), https://doi.org/10.1007/978-3-319-29360-8_3

36. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-
eighth Annual ACM Symposium on Theory of Computing – STOC ’96. pp. 212–219. ACM (1996),
https://arxiv.org/pdf/quant-ph/9605043v3.pdf

37. Joux, A., Vitse, V.: A crossbred algorithm for solving boolean polynomial systems. Cryptology ePrint
Archive, Report 2017/372 (2017), http://eprint.iacr.org/2017/372

38. Kepley, S., Steinwandt, R.: Quantum circuits for f
2n

-multiplication with subquadratic gate
count. Quantum Information Processing 14(7), 2373–2386 (2015), https://doi.org/10.1007/
s11128-015-0993-1

39. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identification schemes.
In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology – CRYPTO 2016: 36th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part
II. pp. 33–61. Springer Berlin Heidelberg, Berlin, Heidelberg (2016), https://doi.org/10.1007/
978-3-662-53008-5_2

40. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar signature schemes. In: Stern, J.
(ed.) Advances in Cryptology – EUROCRYPT ’99. LNCS, vol. 1592, pp. 206–222. Springer (1999),
http://www.goubin.fr/papers/OILLONG.PDF

41. KoichiSakumoto, Shirai, T., Hiwatari, H.: Public-key identification schemes based on multivariate
quadratic polynomials. In: Rogaway, P. (ed.) Advances in Cryptology – CRYPTO 2011. LNCS,
vol. 6841, pp. 706–723. Springer (2011), https://www.iacr.org/archive/crypto2011/68410703/
68410703.pdf

42. Lazard, D.: Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations. In:
van Hulzen, J.A. (ed.) EUROCAL. Lecture Notes in Computer Science, vol. 162, pp. 146–156. Springer
(1983)

43. Lokshtanov, D., Paturi, R., Tamaki, S., Williams, R.R., Yu, H.: Beating brute force for systems of
polynomial equations over finite fields. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19.
pp. 2190–2202 (2017), https://doi.org/10.1137/1.9781611974782.143

44. Montgomery, P.L.: A block lanczos algorithm for finding dependencies over gf(2). In: Guillou, L.C.,
Quisquater, J.J. (eds.) Advances in Cryptology — EUROCRYPT ’95: International Conference on the
Theory and Application of Cryptographic Techniques Saint-Malo, France, May 21–25, 1995 Proceed-
ings. pp. 106–120. Springer Berlin Heidelberg, Berlin, Heidelberg (1995), https://doi.org/10.1007/
3-540-49264-X_9

45. NIST: FIPS PUB 202 – SHA-3 standard: Permutation-based hash and extendable-output functions
(2015), http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

46. NIST: Submission requirements and evaluation criteria for the post-quantum cryptography standard-
ization process. Cryptology ePrint Archive, Report 2015/996 (2016), http://csrc.nist.gov/groups/
ST/postquantum-crypto/documents/call-for-proposals-final-dec-2016.pdf

47. Ohta, K., Okamoto, T.: On concrete security treatment of signatures derived from identification. In:
Krawczyk, H. (ed.) Advances in Cryptology — CRYPTO ’98: 18th Annual International Cryptology
Conference Santa Barbara, California, USA August 23–27, 1998 Proceedings. pp. 354–369. Springer
Berlin Heidelberg, Berlin, Heidelberg (1998), https://doi.org/10.1007/BFb0055741

48. Patarin, J.: Hidden field equations (HFE) and isomorphisms of polynomials (IP): Two new families
of asymmetric algorithms. In: Maurer, U. (ed.) Advances in Cryptology – EUROCRYPT ’96. LNCS,
vol. 1070, pp. 33–48. Springer (1996), http://www.minrank.org/hfe.pdf

49. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U. (ed.) Advances in
Cryptology – EUROCRYPT ’96, LNCS, vol. 1070, pp. 387–398. Springer (1996), https://www.di.
ens.fr/~pointche/Documents/Papers/1996_eurocrypt.pdf

50. Stern, J.: A new paradigm for public key identification. IEEE Transactions on Information Theory
42(6), 1757–1768 (1996), https://www.di.ens.fr/users/stern/data/St55b.pdf

51. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13(4), 354–356 (Aug 1969), http:
//dx.doi.org/10.1007/BF02165411

52. Thomae, E.: About the Security of Multivariate Quadratic Public Key Schemes. Ph.D. the-

sis, Ruhr-University Bochum, Germany (2013), https://www.iacr.org/phds/116_EnricoThomae_
AboutSecurityMultivariateQuadr.pdf

70

— Internet: Portfolio 425

53. Thomae, E., Wolf, C.: Solving underdetermined systems of multivariate quadratic equations revisited.
In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) Public Key Cryptography – PKC 2012: 15th In-
ternational Conference on Practice and Theory in Public Key Cryptography, Darmstadt, Germany,
May 21-23, 2012. Proceedings. pp. 156–171. Springer Berlin Heidelberg, Berlin, Heidelberg (2012),
https://doi.org/10.1007/978-3-642-30057-8_10

54. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle model. In: Oswald,
E., Fischlin, M. (eds.) Advances in Cryptology – EUROCRYPT 2015. LNCS, vol. 9056, pp. 755–
784. Springer (2015), http://dx.doi.org/10.1007/978-3-662-46803-6_25, http://eprint.iacr.
org/2014/587

55. Unruh, D.: Post-quantum security of fiat-shamir. Cryptology ePrint Archive, Report 2017/398, to
appear in Advances in Cryptology - ASIACRYPT 2017 (2017), https://eprint.iacr.org/2017/398

56. Westerbaan, B., Schwabe, P.: Solving binary MQ with grover’s algorithm. In: Carlet, C., Hasan,
A., Saraswat, V. (eds.) Security, Privacy, and Advanced Cryptography Engineering. LNCS, vol. 10076.
Springer (2016), document ID: 40eb0e1841618b99ae343ffa073d6c1e, http://cryptojedi.org/papers/
#mqgrover

57. Williams, V.V.: Multiplying matrices faster than coppersmith-winograd. In: Proceedings of the Forty-
fourth Annual ACM Symposium on Theory of Computing. pp. 887–898. STOC ’12, ACM, New York,
NY, USA (2012), http://doi.acm.org/10.1145/2213977.2214056

58. Yang, B., Chen, J.: Theoretical analysis of XL over small fields. In: Wang, H., Pieprzyk,
J., Varadharajan, V. (eds.) Information Security and Privacy. LNCS, vol. 3108, pp. 277–288.
Springer (2004), http://dx.doi.org/10.1007/978-3-540-27800-9_24, http://www.iis.sinica.
edu.tw/papers/byyang/2386-F.pdf

59. Yang, B.Y., Chen, J.M.: All in the XL family: Theory and practice. In: sik Park, C., Chee, S. (eds.) In-
formation Security and Cryptology – ICISC 2004. pp. 67–86. Springer (2005), http://by.iis.sinica.
edu.tw/by-publ/recent/xxl.pdf

60. Yeh, J.Y.C., Cheng, C.M., Yang, B.Y.: Operating Degrees for XL vs. F4/F5 for Generic MQ with
Number of Equations Linear in That of Variables. In: Fischlin, M., Katzenbeisser, S. (eds.) Number
Theory and Cryptography: Papers in Honor of Johannes Buchmann on the Occasion of His 60th
Birthday. pp. 19–33. Springer (2013), http://www.iis.sinica.edu.tw/papers/byyang/17377-F.pdf

71

426 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

— Internet: Portfolio 427

A

Security proofs

A.1 Security of q2-signature schemes.

For completeness of this document, we provide in full the security reduction for Construc-
tion 5.1 in the random oracle model, and the proof of EU-CMA security of the obtained
signature scheme.

To prove this claim, we proceed in several steps. The proof builds on techniques in-
troduced by Pointcheval and Stern [49] (see Section 4.2 for a brief description of the
technique). As the reduction is far from being tight, we refrain from doing an exact proof
as it does not gain us anything but a complicated statement. We first recall an important
tool from [49] called the splitting lemma.

Lemma A.1 (Splitting lemma [49]). Let A ⊂ X × Y , such that
Pr[A(x, y)] > �. Then, there exists Ω ⊂ X, such that

Pr[x ∈ Ω] > �/2,

Pr[A(a, y)|a ∈ Ω] > �/2.

We next present a forking lemma for q2-signature schemes. The lemma shows that
we can obtain four valid signatures which contain four valid transcripts of the underlying
IDS, given a successful key-only adversary. Moreover, these four transcripts fulfill a certain
requirement on the challenges (here the related parts of the hash function outputs) that
we need later.

In the lemma and in the rest of the chapter, we model the functions H1 and H2 as
independent random oracles O1 and O2. Furthermore, for ease of exposition in our proofs,
we use a “full” version of a signature, including the outputs h1 and h2 of H1 and H2, i.e.,
instead of σ = (σ0, σ1, σ2), we assume a signature has the form σ = (σ0, h1, σ1, h2, σ2).
(Note that h1 and h2 need not be included in the signatures because they can be easily
reconstructed from the other values.)

Lemma A.2 (Forking lemma for q2-signature schemes). Let Dss(1k) be a q2-
signature scheme with security parameter k ∈ N. If there exists a PPT adversary A that
can output a valid signature message pair (M, σ) with non-negligible success probability,
given only the public key as input, then, with non-negligible probability, rewinding A a
polynomial number of times with the same random tape but different oracles, outputs 4
valid message signature pairs (M, σ = (σ0, h1, σ1, h2, σ2)), (M, σ0 = (σ0, h1

0 , σ1
0 , h2

0 , σ2
0)),

428 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

(σ0, h00 1 , h
00 (σ0, h000 1 , h

000(M, σ00 = 1, σ
00

2 , σ2
00)), (M, σ000 = 1 , σ

000
2 , σ2

000)), such that there exists
j ∈ {1, . . . , r} such that:

(ch1)
(j) = (ch0 1)

(j) 6 1)
(j) = (ch000 1)

(j),= (ch00
(A.1)

(ch2)
(j) = (ch00 2)

(j) 6 2)
(j) = (ch000 2)

(j),= (ch0

(1) (2) (r) (1) (2) (r)
where h1 = (ch , ch , . . . , ch) and h2 = (ch , ch , . . . , ch) and similarly for 1 1 1 2 2 2
h0 1, h1

00 , h000 2, h2
00 , h000and h0 1 2 .

Proof. To prove the Lemma we need to show that we can rewind A three times (and
adaptability program the random oracles) and at the same time, the probability that A
succeeds in forging a (different) signature in all four runs is non-negligible. Moreover, we
have to show that the signatures have the additional property claimed in the Lemma,
again with non-negligible probability.

Let ω ∈ Rw be A’s random tape with Rw the set of allowable random tapes. During
the attack A may ask polynomially many queries (in the security parameter k) Q1(k) and
Q2(k) to the random oracles O1 and O2. Let q1,1, q1,2, . . . , q1,Q1 and q2,1, q2,2, . . . , q2,Q2

be the queries to O1 and O2, respectively. Moreover, let (r1,1, r1,2, . . . , r1,Q1) ∈ (Cr
1)

Q1 and
(r2,1, r2,2, . . . , r2,Q2) ∈ (Cr

2)
Q2 the corresponding answers of the oracles.

Denote by F the event that A outputs a valid message signature pair (M, σ =
(σ0, h1, σ1, h2, σ2)). Per assumption, this event occurs with non-negligible probability, i.e.,

1Pr[F] = , for some polynomial P (k). In addition, F implies h1 = O1(M, σ0) and P (k)
h2 = O2(M, σ0, h1, σ1). As h1, h2 are chosen uniformly at random from exponentially
large sets Cr

1, C
r
2, the probability that A did not query O1 with (M, σ0) and O2 with

(M, σ0, h1, σ1) is negligible. Hence, there exists a polynomial P 0 such that the event F0

that F occurs and A queried O1 with (M, σ0) and O2 with (M, σ0, h1, σ1) has probability

Pr[F0] =
1

.
P 0(k)

For the moment consider only the second oracle. From the previous equation, there
exists at least one β 6 Q2 such that

Pr[F0 ∧ q2,β = (M, σ0, h1, σ1)] >
1

Q2(k)P 0(k)

where the probability is taken over the random coins of A and all answers from O2, i.e. over
the set B = {(ω, r2,1, r2,2, . . . , r2,Q2)|ω ∈ Rw ∧ (r2,1, r2,2, . . . , r2,Q2) ∈ (Cr

2)
Q2 ∧ F0 ∧ q2,β =

(M, σ0, h1, σ1)}.
(Informally, the following steps just show that the success of an algorithm with non-

negligible success probability cannot be conditioned on an event that occurs only with
negligible probability (i.e. the outcome of the q2,β query landing in some negligible subset).)

The last equation implies that there exists a non-negligible set of “good” random tapes
Ωβ ⊆ Rω for which A can provide a valid signature and q2,β is the oracle query determining
h2. Applying the splitting lemma, we get that

1
Pr[w ∈ Ωβ] >

2Q2(k)P 0(k)
1

Pr[(ω, r2,1, r2,2, . . . , r2,Q2) ∈ B|w ∈ Ωβ] >
2Q2(k)P 0(k)

Applying the same reasoning again we can derive from the later probability being non-
negligible that there exists a non-negligible subset Ωβ,ω of the “good” oracle responses

74

— Internet: Portfolio 429

(r2,1, r2,2, . . . , r2,β−1) such that (ω, r2,1, r2,2, . . . , r2,Q2) ∈ B. Applying the splitting lemma
again, we get

1
Pr[(r2,1, . . . , r2,β−1) ∈ Ωβ,ω] >

4Q2(k)P 0(k)
1

Pr[(ω, r2,1, . . . , r2,Q2) ∈ B|(r2,1, . . . , r2,β−1) ∈ Ωβ,ω)] >
4Q2(k)P 0(k)

This means that rewinding A to the point where it made query q2,β and running it with
0 0new, random r2,β , . . . , r has a non-negligible probability of A outputting another valid 2,Q2

signature. Therefore, we can use A to find with non-negligible probability two valid mes-

sage signature pairs (M, σ = (σ0, h1, σ1, h2, σ2)), (M, σ0 = (σ0, h1
0 , σ1

0 , h2
0 , σ2

0)), such that
= h0(σ0, h1, σ1) = (σ0, h0 1, σ1

0). and h2 6 2.
We now rewind the adversary again using exactly the same technique as above but now

considering the queries to O1 and its responses. In the replay we change the responses of
O1 to obtain a third signature that differs from the previously obtained ones in the first
associated hash value. In the same manner, it can be shown that with non-negligible

σ00 (σ0, h00 1 , h
00probability A will output a third signature on M , = 1, σ

00
2 , σ2

00), such that
h00 = h0 1 6 1 = h1.

Finally, we rewind the adversary a third time, keeping the responses of O1 from the last
rewind and focusing on O2 again. Again, with non-negligible probability A will produce yet

(σ0, h000 1 , h
000 (σ0, h000another signature on M , σ000 = 1 , σ

000
2 , σ2

000) such that (σ0, h00 1, σ1
00) = 1 , σ1

000)
= h000and h00 6 2 .2

Summing up , rewinding the adversary three times, we can find four valid signatures

σ, σ0, σ00, σ000 with non-negligible success probability
1

for some polynomial P (k). Let
P (k)

us denote this event by Eσ. So we have that

1
Pr[Eσ] > .

P (k)

What remains is to show that the obtained signatures satisfy the particular structure from
the lemma (Equation A.1) with non-negligible probability.

Let H be the event that for (σ, σ0, σ00.σ000) there exists a j ∈ {1, . . . , r} such that (A.1)
is satisfied. For the probability that A outputs a valid signature with this property, we
have that

1
Pr[Eσ ∧H] = Pr[Eσ] − Pr[¬H ∧ Eσ] > − Pr[¬H ∧ Eσ]

P (k)

Now, let σ, σ0, σ00, σ000 be the four valid signatures that A outputs under the event
¬H ∧ Eσ. This means that (A.1) is not satisfied for σ, σ0, σ00, σ000 for any j ∈ {1, . . . , r}.

2, h
00
2, h

000Consider the set S¬H of all tuples (h1, h1
00 , h2, h0 2) ∈ (Cr

1)
2 × (Cr

2)
4 where h1 =

(1) (2) (r) (1) (2) (r)
(ch , ch , . . . , ch) ∈ Cr

1, (similarly for h1
0), and h2 = (ch , ch , . . . , ch) ∈ Cr

2,1 1 1 2 2 2

2, h
00
2, h

000(similarly for h0 2), and such that for every j ∈ {1, . . . , r} at least one of the following
is true:

2)
(j) = (ch000i.(ch1)

(j) = (ch0 1)
(j); ii.(ch2)

(j) = (ch0 2)
(j); iii.(ch00 2)

(j).

2, h
00
2 , h

000It is clear that the hash value tuple (h1, h00 1, h2, h
0

2) in A’s output under the event
¬H ∧ Eσ must be in S¬H. Indeed if the hash value tuple does not come from S¬H, then
there exists a j ∈ {1, . . . , r}, such that none of i., ii., iii., holds true, i.e., for this j

75

430 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

(ch1)
(j) 6 1)

(j) ∧ (ch2)
(j) = (ch0 6 .= (ch0 6 2)

(j) ∧ (ch00 2)
(j) = (ch000 2)

(j)

A little thought reveals that the last is equivalent to (A.1), which is a contradiction to the
assumption that the tuple comes under the event ¬H ∧ Eσ.

Recall that for q2 -signatures, C1 has size q and C2 size 2. Now, the cardinality of S¬H

can be calculated to be |S¬H| = (4q(3q + 1))r, whereas the cardinality of (Cr
1)

2 × (Cr
2)

4 is
(16q2)r. This means that

� �r(4q(3q + 1))r 3q + 1
Pr[¬H ∧ Eσ] 6 = ,

(16q2)r 4q

which is negligible in k since according to Construction 5.1, the number of rounds r must
be super-logarithmic (in k), to fulfill Cr

2 being exponentially large (in k).
Finally,

� �r1 3q + 1 1
Pr[Eσ ∧H] = Pr[Eσ] − Pr[¬H ∧ Eσ] > − = − negl(k)

P (k) 4q P (k)

and hence, the conditions from the lemma are satisfied with non-negligible probability. ut

With Lemma A.2 we can already establish unforgeability under key only attacks:

Theorem A.3 (KOA security of q2-signature schemes). Let k ∈ N, IDS(1k) a q2-
IDS that has a key relation R, is KOW secure, and has a q2-extractor. Then q2 -Dss(1k),
the q2-signature scheme derived applying Construction 5.1 is unforgeable under key-only
attacks.

Proof. Let A be a PPT algorithm that forges a signature in a KOA setting, i.e., given
only the public key pk outputs a valid message-signature pair (M, σ) with non-negligible
probability �. We show how to construct an algorithm MA that given IDS public key and
oracle access to A breaks the KOW security of IDS in essentially the same running time
as the given A and with negligibly different success probability.

On input the IDS public key pk, MA runs A(pk) which outputs a valid message-

signature pair (M, σ) for q2 -Dss. Using the technique from Lemma A.2, rewinding A,
MA obtains four valid signatures that with overwhelming probability contain four valid
transcripts that satisfy Equation (A.1). These are exactly the type of transcripts needed
for the q2-extractor to extract a valid secret key sk’. Since (pk, sk0) ∈ R, MA breaks the
KOW security of IDS. ut

For EU-CMA security, we still have to deal with signature queries. The following lemma
shows that a reduction can produce valid responses to the adversarial signature queries if
the identification scheme is honest-verifier zero-knowledge.

Lemma A.4. Let k ∈ N the security parameter, IDS(1k) a q2-IDS that is honest-verifier
zero-knowledge. Then any PPT adversary B against the EU-CMA-security of q2 -Dss(1k),
the q2-signature scheme derived by applying Construction 5.1, can be turned into a key-
only adversary A against q2 -Dss with the properties described in Lemma A.2. A runs in
polynomial time and succeeds with essentially the same success probability as B.

Proof. By construction. We show how to construct an oracle machine AB,S,O1,O2 that has
access to B, an honest-verifier zero-knowledge simulator S, and random oracles O1, O2.

76

— Internet: Portfolio 431

A produces a valid signature for q2 -Dss(1k) given only a public key running in time
polynomial in k and achieving essentially the same success probability (up to a negligible
difference) as B.

Upon input of public key pk, A runs BO1
0 ,O2

0 ,Sign(pk) simulating the random oracles
(ROs) O1

0 , O2
0 , as well as the signing oracle Sign towards B. When B outputs a forgery

(M∗, σ∗), A just forwards it.
To simulate the ROs, A keeps two initially empty tables of query-response pairs, one

per oracle. Whenever B queries Ob
0 , A first checks if the table for Ob

0 already contains a
pair for this query. If such a pair exists, A just returns the stored response. Otherwise, A
forwards the query to its own Ob.

As IDS is honest-verifier zero-knowledge there exists a PPT simulator S that upon input
of a IDS public key generates a valid transcript that is indistinguishable of the transcripts
generated by honest protocol executions. Whenever B queries the signature oracle with
message m, A runs S r times, to obtain r valid transcripts. A combines the transcripts to
obtain a valid signature σ = (σ0, h1, σ1, h2, σ2). Before outputting σ, A checks if the table
for O0 already contains an entry for query (M, σ0). If so, A aborts. Otherwise, A adds1

the pair ((M, σ0), h1). Then, A checks the second table for query (M, σ0, h1, σ1). Again, A
aborts if it finds such an entry and adds ((M, σ0, h1, σ1), h2), otherwise.

The probability that A aborts is negligible in k. When answering signature queries, A
verifies that certain queries were not made before. Both queries contain σ1 which takes
any given value only with negligible probability. On the other hand, the total number of
queries that B makes to all its oracles is polynomially bounded. Hence, the probability
that one of the two queries was already made before is negligible. If A does not abort,
it perfectly simulates all oracles towards B. Hence, B – and thereby A – succeeds with
the same probability as in the real EU-CMA game in this case. Hence, A succeeds with
essentially the same probability as B. ut

We now got everything we need to prove EU-CMA security. The proof is a straight
forward application of Lemma A.2 and Lemma A.4.

Theorem A.5 (EU-CMA security of q2-signature schemes). Let k ∈ N, IDS(1k)
a q2-IDS that has a key relation R, is KOW secure, is honest-verifier zero-knowledge,
and has a q2-extractor E. Then q2 -Dss(1k), the q2-signature scheme derived applying
Construction 5.1 is existentially unforgeable under adaptive chosen message attacks.

Proof. Towards a contradiction, assume that there exists a PPT adversary A against the
EU-CMA-security of q2 -Dss succeeding with non-negligible probability. We show how to
construct a PPT algorithm MA that given the IDS public key and oracle access to A
breaks the KOW security of IDS. Applying Lemma A.4, MA can construct a PPT key-
only forger B, with essentially the same success probability as A. Given a public key for
IDS (which is a valid q2 -Dss public key) MA runs B as described in Lemma A.2. That
way MA can use B to obtain four signatures that per (A.1) lead to four transcripts as
required by the q2-extractor E . Running E , MA can extract a valid secret key sk0 that
breaks the KOW security of IDS.
MA just runs B and E , two PPT algorithms. Consequently, MA runs in polynomial

time. Also, B and E both have non-negligible success probability implying that MA also
succeeds with non-negligible probability. ut

77

432 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

A.2 Proof of Theorem 10.1 [EU-CMA security of MQDSS]

Before we present the proof, note that as our results from Section A.1 are non-tight we
only prove an asymptotic statement. While this does not suffice to make any statement
about the security of a specific parameter choice, it provides evidence that the general
approach leads to a secure scheme.

To prove this theorem we would like to apply Theorem 5.2 (the same as Theorem A.5).
However, Theorem 5.2 was formulated for a slightly more generic construction (see Con-
struction 5.1). The point is that we apply an optimization originally proposed in [50].
So, in our actual proposal (see Chapter 7), the parallel composition of the IDS is slightly
different as, instead of the commitments, only the hash of their concatenation is sent (c.f.
σ0 in Figure 7.2). Also, the last message (c.f. σ2 in Figure 7.2) now contains the remaining
commitments. Let’s call this optimized version opt - q2 -Dss(1k).

Note that since MQDSS is an opt - q2 -Dss(1k) signature scheme, we could have focused
our attention solely to opt - q2 -Dss(1k) schemes already in Chapter 5. However, this would
have limited the general applicability of the result, as the above optimization is only
applicable to schemes with a certain, less generic, structure such as MQDSS.

As the next Corollary shows, it is easy to verify that the results from Chapter 5 hold
for the optimized opt - q2 -Dss(1k) scheme as well.

Corollary A.6 (EU-CMA security of q2-signature schemes). Let k ∈ N, IDS(1k) a
q2-IDS that has a key relation R, is KOW secure, is honest-verifier zero-knowledge, and
has a q2-extractor E. Then opt - q2 -Dss(1k), the optimized q2-signature scheme derived by
applying Construction 5.1 and the optimization explained above, is existentially unforgeable
under adaptive chosen message attacks.

Proof. Regarding Lemma A.2, note that by removing duplicate information from the signa-
ture, we do not affect the ability to extract in any way, and thus the probability of success of
the adversary remains exactly the same. Thus Lemma A.2 also holds for opt - q2 -Dss(1k).

For Lemma A.4, the arguments are exactly the same with the exception that the
probability of abort of A may now be different, but nevertheless, still negligible. Indeed,
the proof of Lemma A.4 uses the fact that the first signature element σ1 only takes a given
value with negligible probability. This follows from the fact that the commitment scheme
has big enough output entropy – and thereby also takes a given value with negligible
probability. In the case of opt - q2 -Dss(1k), this statement follows from the same property
of the commitment scheme but also from the randomness of the RO that we used to model
the hash function H. Hence, the proof of Lemma A.4 also goes through for opt - q2 -Dss(1k).

Now, the rest of the proof proceeds exactly the same as in Theorem 5.2. ut

Based on this corollary we can now prove Theorem 10.1.

Proof (of Theorem 10.1). Towards a contradiction, assume there exists an adversary A
that wins the EU-CMA game against MQDSS with non-negligible success probability.
We show that this implies the existence of an oracle machine MA that solves the MQ
problem, breaks a property of one of the commitment schemes, or distinguishes the outputs
of one of the pseudorandom generators from random. We first define a series of games and
argue that the difference in success probability of A between these games is negligible. We
assume that M runs A in these games.

78

— Internet: Portfolio 433

Game 0: Is the EU-CMA game for MQDSS.
Game 1: Is Game 0 with the difference that M replaces the outputs of PRGrte by random

bit strings.
Game 2: Is Game 1 with the difference that M replaces the outputs of PRGsk and PRGs

by random bit strings.
Game 3: Is Game 2 with the difference that M takes as additional input a random equa-

tion system F. M simulates XOFF towards A, programming XOFF such that it returns
the coefficients representing F upon input of SF and uniformly random values on any
other input.

Per assumption, A wins Game 0 with non-negligible success probability. Let’s call this
�. If the difference in A’s success probability playing Game 0 or Game 1 was non-negligible,
we could use A to distinguish the outputs of PRGrte from random. The same argument
applies for the difference between Game 1 and Game 2, and PRGsk and PRGs. Finally, the
output distribution of XOFF in Game 3 is the same as in previous games. Hence, there is
no difference for A between Game 2 and Game 3. Accordingly, A’s success probability in
these two games is equal.

Now, Game 3 is exactly the EU-CMA game for the optimized opt - q2 signature scheme
that is derived from MQ - IDS, the 5-pass IDS from [41].

Next, recall that under the assumption of intractability of the MQ problem on average
and assuming computationally binding and computationally hiding properties of Com0

and Com1, MQ - IDS is KOW (c.f. Theorem 3.1), is HVZK (c.f. Theorem 4) and has a
q2-extractor (c.f. Theorem 7). We can now apply Corollary A.6 on MQ - IDS, and obtain
that the opt - q2 signature scheme derived from MQ - IDS is EU-CMA secure. This is a
contradiction to the assumption that A wins Game 3 with non-negligible probability. ut

79

434 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

— Internet: Portfolio 435

NewHope

Algorithm Specifcations and Supporting Documentation

Erdem Alkim, Roberto Avanzi, Joppe Bos, Léo Ducas,
Antonio de la Piedra, Thomas Pöppelmann, Peter Schwabe, Douglas Stebila

Version 1.0 - November 30, 2017

1

436 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Contents
1 Written specifcation 3

1.1 Mathematical background . 3
1.1.1 Basic defnitions . 3
1.1.2 Computational problems on lattices . 3
1.1.3 Ring-LWE problem . 4

1.2 Algorithm description . 4
1.2.1 IND-CPA-secure public key encryption scheme . 5
1.2.2 Interconversion to IND-CPA KEM . 10
1.2.3 Transform from IND-CPA PKE to IND-CCA KEM 12
1.2.4 IND-CCA-secure key encapsulation mechanism . 13
1.2.5 Interconversion to IND-CCA PKE . 13

1.3 Design rationale . 13
1.4 Parameters . 17

1.4.1 NewHope512 and NewHope1024 . 17
1.4.2 Toy/challenge parameters . 18
1.4.3 Cryptographic primitives . 18
1.4.4 Provenance of constants and tables . 18

2 Performance analysis 19
2.1 Estimated performance on the NIST PQC reference platform 19
2.2 Performance on x86 processors using vector extensions . 20
2.3 Performance estimation on ARM Cortex-M0 and M4 . 21
2.4 Performance on MIPS64 . 22

3 Known Answer Test values 25

4 Justifcation of security strength 25
4.1 Provable security reductions . 25

4.1.1 Binomial noise distribution . 25
4.1.2 Security of IND-CCA KEM . 26
4.1.3 Security of IND-CPA PKE . 27

4.2 Cryptanalytic attacks . 27
4.2.1 Methodology: the core SVP hardness . 27
4.2.2 Enumeration versus quantum sieve . 28
4.2.3 Primal attack . 29
4.2.4 Dual attack . 29
4.2.5 Security analysis . 29
4.2.6 Cost model and margins . 31
4.2.7 Failure analysis and attack exploiting failure . 32

5 Expected security strength 32

6 Advantages and limitations 33
6.1 Summary . 33
6.2 Compatibility with existing deployments and hybrid schemes 34
6.3 Ease of implementation and hardware implementations . 34
6.4 Side-channel resistance . 34

2

— Internet: Portfolio 437

1 Written specifcation

1.1 Mathematical background

1.1.1 Basic defnitions
1Let Z be the ring of rational integers. We defne for an x ∈ R the rounding function bxe = bx + c ∈ Z. Let 2

Zq, for an integer q ≥ 1, denote the quotient ring Z/qZ. We defne R = Z[X]/(Xn + 1) as the ring of integer
polynomials modulo Xn + 1. By Rq = Zq [X]/(X

n + 1) we mean the ring of integer polynomials modulo
$

Xn +1 where each coeÿcient is reduced modulo q. In case χ is a probability distribution over R, then x ← χ
means the sampling of x ∈ R according to χ.

$For a probabilistic algorithm A we denote by y ← A that the output of A is assigned to y and that A is
running with randomly chosen coins. We recall the discrete Gaussian distribution DZ,σ, which is parametrized
by the Gaussian parameter σ ∈ R and defned by assigning a weight proportional to exp(−x 2

) to all integers 2σ2

x. pPn 2The Euclidean length kvk of a vector v = (v1, . . . vn) ∈ Rn is defned as kvk = i . A lattice i=1 v
is a discrete subgroup of a fnite dimensional Euclidean vector space, i.e. a discrete subgroup L ⊂ Rn .
The minimal distance of a lattice is defned as the Euclidean length of its shortest non-zero vector, namely
λ1(L) = minv∈L\{0} kxk.

1.1.2 Computational problems on lattices

The shortest vector problem (SVP) and the closest vector problem (CVP) are two fundamental problems in
lattices and their conjectured intractability is the foundation for a large number of cryptographic applications
of lattices.

The (Approximate) Shortest Vector Problem, (SVP), statement from [106]. The shortest vector
problem (SVP) asks, given a lattice basis B, to fnd a shortest nonzero lattice vector, i.e., a vector v ∈ L(B)
with kvk = λ1(L(B)). In the γ-approximate SVPγ , for γ ≥ 1, the goal is to fnd a shortest nonzero lattice
vector v ∈ L(B) \ {0} of norm at most kvk ≤ γ · λ1(L(B)).

The SVP asks for a shortest nonzero vector in a lattice, but not the shortest nonzero vector as several short
vectors can exist. The approximate SVPγ is more diÿcult for a small factor γ and becomes easier for an
increasing γ. An algorithm that solves SVP in polynomial time and with exponential approximation factor
2O(n) is the Lenstra, Lenstra, Lovász (LLL) algorithm [96], which was extended in works like [135, 134, 64]
(see [113] for a survey). Algorithms that achieve an exact solution or approximate solutions of SVP within
poly(n) factors either run in 2O(n) and require exponential space [4] or in 2O(n log n) and require only polynomial
space [89]. Based on these observations Micciancio and Regev conclude that “there is no polynomial time
algorithm that approximates lattice problems to within polynomial factors” [108].

The (Approximate) Closest Vector Problem, (CVP), statement from [106]. The closest vector
problem (CVP) asks, given a lattice basis B and target vector t, to fnd the lattice vector v ∈ L(B)
such that the distance to the target kv − tk is minimized. In the γ-approximate CVPγ , for γ ≥ 1, the goal is
to fnd a lattice vector v ∈ L(B) such that kv − tk ≤ γ · dist(t, L(B)) where dist(t, Λ) = inf{kv − tk : v ∈ Λ}
is the distance of t to Λ.

The CVP is the inhomogeneous version of the SVP and can also be formulated as syndrome decoding
problem for full rank lattices [106]. The NP-hardness of SVP was shown by van Emde Boas in [140] for
the ̀ ∞ norm. Ajtai then proved that SVP is NP-hard for the ̀ 2 norm using randomized reductions [3] and
that the corresponding decision problem is NP-complete. It was also shown in [140] that CVP is NP-hard.
However, when building cryptosystems in practice only subclasses of CVP or SVP are used that are not
supposed to be NP-hard (see [84, Remark 6.24.]). A comprehensive discussion of the hardness of SVP, CVP,
and its variants can be found in [141, Section 2.3] and [107]. In [77] Hanrot et al. provide a survey on the
history and state-of-the-art of solvers for SVP and CVP.

3

438 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

1.1.3 Ring-LWE problem

The Learning with Errors (LWE) problem was popularized by Regev [126] who showed that, under a quantum
reduction, solving a random LWE instance is as hard as solving certain worst-case instances of certain
lattice problems. The LWE problem can be seen as a generalization of the learning parity with noise (LPN)
problem [29] and is related to hard decoding problems [108]. In general, to solve the LWE problem, one
has to recover a secret vector s ∈ Zn when given a sequence of approximate random linear equations on s.q
Non-quantum reductions from variants of the shortest vector problem to variants of the LWE problem have
also been shown [118]. The LWE problem is usually used to build primitives such as CPA or CCA-secure
public-key encryption, identity-based encryption (IBE), or fully-homomorphic encryption schemes [128]. It
can be defned as a search problem (sLWE) where the task is to recover the secret vector s or as a decision
problem (dLWE) that asks to distinguish LWE samples from uniformly random samples.

The Learning With Errors Problem [126], (sLWE), search version. The learning with errors prob-
lem, search version, sLWEn,m,q,χ, with n unknowns, m ≥ n samples, modulo q and with error distribution χ
is as follows: for a random secret s uniformly chosen in Zn, and given m samples of the form (a, b = hs, ai + eq

$
mod q) where e ← χ and a is uniform in Zn, recover the secret vector s.q

The Learning With Errors Problem [126], (dLWE), decisional version. The learning with errors
problem, decisional version, dLWEn,m,q,χ, with n unknowns, m ≥ n samples, modulo q and with error
distribution χ is as follows: for a random secret s uniformly chosen in Zn, and given m samples either all q

$ $of the form (a, b = hs, ai + e mod q) where e ← χ, or from the uniform distribution (a, b) ← U(Zn × Zq),
decide if the samples come from the former or the latter case.

An interesting property of the LWE problem is the equivalence of the (search) sLWE problem and the
(decisional) dLWE problem. While it is clear that a solver for the sLWE problem can be used to solve the
dLWE problem, it is also possible to solve the sLWE problem if the dLWE problem can be solved.

Theorem 1.1 (Decision to Search Reduction for LWE) For any integers n and m, any prime q ≤
poly(n), and any distribution χ over Zq , if there exists a PPT algorithm that solves dLWEn,m,q,χ with non-

0negligible probability, then there exists a PPT algorithm that solves sLWEn,m0,q,χ for some m = m · poly(n)
with non-negligible probability.

Variants of the LWE problem relying on the ring of integer of a number feld (or polynomial rings) were later
defned and studied [138, 103]. More specifcally, the lattices underlying this problem are module lattices, as
in NTRU [83, 137], and its hardness can be related to the worst case hardness of fnding short vectors in
ideal lattices [138, 103]. The Ring-LWE problem may be defned over the ring of integers of an arbitrary
number-feld [104, 121]. The general defnition is rather intricate involving the so-called co-di˙erent ideal R∨ .
For simplicity we restrict our defnition to the case of cyclotomic number feld with a power-of-two conductor.

The Ring Learning With Errors Problem [126], dRLWE, decisional version Let R denote the ring
Z[X]/(Xn + 1) for n a power of 2, and Rq the residue ring R/qR. The ring learning with errors problem,
decisional version, dRLWEm,q,χ, with m unknowns, m ≥ 1 samples, modulo q and with error distribution χ is

$as follows: for a uniform random secret s ← U(Rq), and given m samples either all of the form (a, b = a · s + e
mod q) where the coeÿcients of e are independently sampled following the distribution χ, or from the uniform

$distribution (a, b) ← U(Rq × Rq), decide if the samples come from the former or the latter case.

We will in fact rely on a variant of the above problem, where the secret s follows the same distribution χn as
the error e. These variants can be proven to be equivalent to the original problem by putting the system in
systematic form, as done in [13].

1.2 Algorithm description

The NewHope cryptosystem is a suite of key encapsulation mechanisms (KEM) denoted as NewHope-
CPA-KEM and NewHope-CCA-KEM that are based on the conjectured quantum hardness of the RLWE

4

— Internet: Portfolio 439

problem. Both schemes are based on a variant of the previously proposed NewHope-Simple [8] scheme
modeled as semantically secure public-key encryption (PKE) scheme with respect to adaptive chosen plaintext
attacks (CPA) that we refer to as NewHope-CPA-PKE. However, in this submission NewHope-CPA-
PKE is only used inside of NewHope-CPA-KEM and NewHope-CCA-KEM and not intended to be an
independent CPA-secure PKE scheme, in part because it does not accept arbitrary length messages. For our
proposed NewHope-CPA-KEM we provide a transformation of NewHope-CPA-PKE into a passively
secure KEM. For NewHope-CCA-KEM we show how to realize a semantically secure key encapsulation
with respect to adaptive chosen ciphertext attacks (CCA) based on NewHope-CPA-PKE. In this section
we only provide a functional description of the algorithms and refer to Section 1.3 for more background on
our design decisions. Note that some algorithms, especially the ones dealing with encoding and decoding,
are optimized for dimensions n = 512 or n = 1024 that we are supporting in NewHope. Moreover, the
algorithms are designed for q = 12289 and k = 8 (parameter of the noise distribution). Further information
on the supported parameters can be found in Section 1.4.

1.2.1 IND-CPA-secure public key encryption scheme

For our intermediate building block, the passively secure PKE scheme NewHope-CPA-PKE with a
fxed message space of 256 bits, we defne key generation in Algorithm 1 (NewHope-CPA-PKE.Gen),
encryption in Algorithm 2 (NewHope-CPA-PKE.Encrypt), and decryption in Algorithm 3 (NewHope-
CPA-PKE.Decrypt). All sub-functions used in NewHope-CPA-PKE are described in this section. Note
that we assume in every function implicit access to the global parameters n, q, γ that are determined by the
chosen parameter set.

Sampling, randomness, byte arrays and SHAKE. Besides polynomials in Rq and vectors, the main
other data structure we use are byte arrays. As an example, all randomness is sampled as byte arrays. In key

$generation, seed ← {0, . . . , 255}32 denotes the sampling of a byte array with 32 uniform integer elements in
the range 0 to 255 from a random number generator. This random number generator shall be unpredictable
and should thus be using a physical source of entropy or other means.

As strong hash function we use SHAKE256 as specifed in [112]. The SHAKE256(l, d) function takes as
input an integer l that specifes the number of output bytes and an input data byte array d. The amount
of data to be absorbed is the length of d. As an example, in key generation we use SHAKE256 to compute
v ← SHAKE256(64, seed) where we hash a 32 byte random seed denoted as seed and output a byte array v
with 64 elements in the range {0, . . . , 255}.

To access byte arrays we use the bracket notation where v[i] for a positive integer i denotes the i-th byte
in the array v. To access ranges of bytes we use the notation x ← v[i : j] for positive integers i ≤ j where
x is assigned byte i to j of v. By r ← {0, . . . , 255}x we declare that r is a byte array of length x. Using a
similar notation, by r ← Rq we declare that a variable r is a polynomial in Rq where all coeÿcients are zero.
For bit-operations we use the operators �, �, |, and & as in the context of the C programming language.
Thus x � i for positive integers i, x denotes a right-shift by i. The same operator can be applied to a byte
of a byte array so that y[j] � i for positive integer i, j represents a right shift by i of the j-th byte of the
byte array y. A left shift is denoted as x � i for positive integers i, y and implicit modular reduction modulo
232 is assumed (equal to writing (x � i) mod 232). When the left shift operator is applied to the j-th byte
of the byte array y as y[j] � i for positive integer i, j an implicit reduction modulo 28 is assumed (equal
to writing (y[j] � i) mod 28). The a | b operator denotes a bit-wise ‘or’ while the a & b operator denotes a
bitwise ‘and’ of two positive integers a, b or of two bytes in a byte array. To convert a byte a[i] in a byte
array a to a positive integer z we use z = b2i(a[i]). To denote positive integers in hexadecimal representation
we use the prefx 0x such that 0x01010101 = 16843009. To compute the Hamming weight, the sum of all
bits that are set to one in binary notation, of a byte or integer b we write HW(b).

Note that NewHope-CPA-PKE.Encrypt does not directly access a random number generator as all
pseudo-random data is derived by expansion of a 32-byte user supplied seed coin ∈ {0, . . . , 255}32 that has
to be obtained from a true random value generator. This is required to allow the straightforward use of
NewHope-CPA-PKE.Encrypt in standard CCA transformations. Decryption is deterministic and does
not need random values. For the distribution of the RLWE secret and error we use the centered binomial
distribution ψk of parameter k = 8. In general, one may sample from ψk for integer k > 0 by computing Pk−1

bi − b0 , where the bi, b0 i ∈ {0, 1} are uniform independent bits. The distribution ψk is centered (its mean i=0 i

5

440 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Algorithm 1 NewHope-CPA-PKE Key Generation

1: function NewHope-CPA-PKE.Gen()
$

2: seed ← {0, . . . , 255}32

3: z ← SHAKE256(64, seed)
4: publicseed ← z[0:31]
5: noiseseed ← z[32:63]
6: â← GenA(publicseed)
7: s ← PolyBitRev(Sample(noiseseed, 0))
8: ŝ ← NTT(s)
9: e ← PolyBitRev(Sample(noiseseed, 1))

10: ê← NTT(e)
ˆ11: b ← â ◦ ̂s + ê

12: return (pk = EncodePK(b̂, publicseed), sk = EncodePolynomial(s))

Algorithm 2 NewHope-CPA-PKE Encryption

1: function NewHope-CPA-PKE.Encrypt(pk ∈ {0, . . . , 255}7·n/4+32 , µ ∈ {0, . . . , 255}32 ,
coin ∈ {0, . . . , 255}32)

2: (b̂, publicseed) ← DecodePk(pk)
3: â← GenA(publicseed)
4: s0 ← PolyBitRev(Sample(coin, 0))
5: e0 ← PolyBitRev(Sample(coin, 1))
6: e00 ← Sample(coin, 2)
7: t̂ ← NTT(s0)
8: û← â ◦ ̂t + NTT(e0)
9: v ← Encode(µ)

0010: v0 ← NTT−1(b̂ ◦ ̂t) + e + v
11: h ← Compress(v0)
12: return c = EncodeC(û, h)

Algorithm 3 NewHope-CPA-PKE Decryption

4 +3 n
1: function NewHope-CPA-PKE.Decrypt(c ∈ {0, . . . , 255}7 n

8 , sk ∈ {0, . . . , 255}7·n/4)
2: (û, h) ← DecodeC(c)
3: ŝ ← DecodePolynomial(sk)
4: v0 ← Decompress(h)
5: µ ← Decode(v0 − NTT−1(û ◦ ̂s))
6: return µ

p
is 0), has variance k/2 and we set k = 8 in all instantiations. This gives a standard deviation of ς = 8/2.
We describe sampling from ψ8 in Algorithm 4 as the function Sample that takes as input a 32 byte seed
seed and an integer parameter 0 ≤ nonce < 28 for domain separation. This way one seed can be used to
sample multiple polynomials. The output is a polynomial r ∈ Rq where all n coeÿcients are independently
distributed according to ψ8.

Polynomials and the NTT. The main mathematical objects that are manipulated in NewHope are
[X]/(Xn ˆ 0 0 00 ˆ 0polynomials in Rq = Zq + 1) like s, e, ̂s, â, b, s , e , e , t, û, ê, v, v . For a polynomial c ∈ RqPn−1where c = ciX

i we denote by ci the i-th coeÿcient of c for integer i ∈ {0, . . . , n − 1}. We use i=0
the same notation to access elements of vectors that are not necessary in Rq . Addition or subtraction of
polynomials in Rq (denoted as + or −, respectively) is the usual coeÿcient-wise addition or subtraction,

6

— Internet: Portfolio 441

Algorithm 4 Deterministic sampling of polynomials in Rq from ψn
8

1: function Sample(seed ∈ {0, . . . , 255}32, positive integer nonce)
2: r ← Rq

3: extseed ← {0, . . . , 255}34

4: extseed[0:31] ← seed[0:31]
5: extseed[32] ← nonce
6: for i from 0 to (n/64) − 1 do
7: extseed[33] ← i
8: buf ← SHAKE256(128, extseed)
9: for j from 0 to 63 do

10: a ← buf [2 ∗ j]
11: b ← buf [2 ∗ j + 1]
12: r64∗i+j = HW(a) + q − HW(b) mod q

13: return r ∈ Rq

P P Pn−1 n−1 n−1such that for a = aiX
i ∈ Rq and b = biX

i ∈ Rq we get a + b = (ai + bi mod q)Xi
i=0 i=0 i=0Pn−1and a − b = (ai − bi mod q)Xi . In general, fast quasi-logarithmic algorithms exist for polynomial i=0

multiplication. We explicitly specify how to use the Number Theoretic Transform (NTT); some polynomials
are also transmitted in a transformed representation. However, an implementer may choose a di˙erent
algorithm for polynomial multiplication, like Karatsuba or Schoolbook multiplication, and then transform the
result into the NTT domain such that it is compliant with this specifcation. Moreover, here we just describe
the basic defnition and refer to [76, 2] and Section 2 for details on the eÿcient implementation of the NTT.

With the NTT, a polynomial multiplication for elements in Rq = Zq[X]/(X
n + 1) can be performed

by computing c = NTT−1(NTT(a) ◦ NTT(b)) for a, b, c ∈ Rq . The ◦ operator denotes coeÿcient-wise Pn−1multiplication of two polynomials a, b ∈ Rq such that a ◦ b = (ai · bi mod q)Xi. The NTT defned in i=0
Rq can be implemented very eÿciently if n is a power of two and q is a prime for which it holds that q ≡ 1√
mod 2n. This way a primitive n-th root of unity ω and its square root γ = ω mod q exist. By multiplying
coeÿcient-wise by powers of γ before the NTT computation and after the reverse transformation by powers
of γ−1 mod q, no zero padding is required and an n-point NTT can be used to transform a polynomial with
n coeÿcients. Pn−1For a polynomial g = giX

i ∈ Rq we defne i=0

n−1X
NTT(g) = ĝ = ĝiX

i , with
i=0

n−1X
ĝi = γj gj ω

ij mod q,
j=0

√
where ω is an n-th primitive root of unity and γ = ω mod q.

Note that most implementations will use an in-place NTT algorithm which usually requires bit-reversal
operations that are not included in the previously given straightforward description of the NTT. As an
optimization, we allow implementations to skip these bit-reversals for the forward transformation as all
inputs are only random noise. Thus, and slightly counter-intuitive, we defne bit-reversal and perform
it on polynomials that go into the NTT. With bit-reversal and our straightforward NTT defnition, im-
plementers do not need to apply a reversal when using an in-place NTT. Note that in key generation
this optimization is transparent to the protocol, but due to the re-encryption implementers have to fol-
low our instructions. For a positive integer v and a power of two n we formally defne bit-reversal as Plog2(n)−1BitRev(v) = (((v � i)&1) � (log2(n) − 1 − i)). For polynomials s, z ∈ Rq the bit-reversal of a i=0

n−1polynomial s is z = PolyBitRev(s) =
P

siX
BitRev(i).i=0

The function NTT−1 is the inverse of the function NTT. The computation of NTT−1 is essentially the
same as the computation of NTT, except that it uses ω−1 mod q, multiplies by powers of γ−1 mod q after

7

442 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

−1the summation, and also multiplies each coeÿcient by the scalar n mod q so that

n−1X
NTT−1(ĝ) = g = giX

i , with
i=0⎛ ⎞

n−1X −1γ−i gj ω
−ijgi = ⎝n ˆ ⎠ mod q.

j=0

Note that we defne the x mod q operation for integers x, q to always produce an output in the range [0, q − 1].
Unless otherwise stated, when we access an element ai of a polynomial a ∈ Rq we always assume that ai is
reduced modulo q and in the range [0, q − 1].

Defnition of GenA. The public parameter a is generated by GenA which takes as input a 32 byte array
seed. The function is described in Algorithm 5. The resulting polynomial a (denoted as â) is considered
to be in the NTT domain. This is possible because the NTT transforms uniform polynomials to uniform
polynomials. Inside of GenA we use the SHAKE128 hash function [112] to expand the pseudorandom seed and
we defne a function that absorbs a byte array into the internal state of SHAKE128 and then we use another
function to obtain pseudorandom data by squeezing the internal state. The state ← SHAKE128Absorb(d)
functions takes as input a byte array d. It outputs a byte array of length 200 that represents the state after
absorbing d. To obtain pseudorandom values buf, state ← SHAKE128Squeeze(j, state) is used. As input the
function takes a positive integer j determining the amount of output blocks of SHAKE128 to be produced
and the 200 byte state. It outputs a byte array buf of length 168 · j and a byte array state of length 200.

Algorithm 5 Deterministic generation of â by expansion of a seed

1: function GenA(seed ∈ {0, . . . , 255}32)
2: â← Rq

3: extseed ← {0, . . . , 255}33

4: extseed[0 : 31] ← seed[0:31]
5: for i from 0 to (n/64) − 1 do
6: ctr ← 0
7: extseed[32] ← i
8: state ← SHAKE128Absorb(extseed)
9: while ctr < 64 do

10: buf, state ← SHAKE128Squeeze(1, state)
11: j ← 0
12: for j < 168 and ctr < 64 do
13: val ← b2i(buf [j]) |(b2i(buf [j + 1]) � 8)
14: if val < 5 · q then
15: âi∗64+ctr ← val
16: ctr ← ctr + 1
17: j ← j + 2
18: return â ∈ Rq

Encoding and decoding of the secret and public key. Note that polynomials are transmitted in the
NTT domain and thus for interoperability our defnition and parametrization of the NTT has to be used.

To encode a polynomial in Rq into an array of bytes we use EncodePolynomial as described in Algorithm 6.
The function DecodePolynomial as described in Algorithm 7 converts a byte array into an element in Rq .
The secret key consists only of one polynomial s ∈ Rq and thus we can directly apply EncodePolynomial(ŝ).
The secret key is then either encoded into an array of 869 bytes (n = 512) or 1792 bytes (n = 1024). The
public key is encoded as an array of 928 bytes (n = 512) or 1824 bytes (n = 1024) by EncodePK(b̂, seed)
described in Algorithm 8. It takes as input a polynomial b̂ ∈ Rq and a byte array seed with 32 elements.
The DecodePk(pk) function decodes the public key and is provided in Algorithm 9.

8

— Internet: Portfolio 443

Algorithm 6 Encoding of a polynomial in Rq to a byte array

1: function EncodePolynomial(ŝ)
2: r ← {0, . . . , 255}7·n/4

3: for i from 0 to n/4 − 1 do
4: t0 ← ŝ4∗i+0 mod q
5: t1 ← ŝ4∗i+1 mod q
6: t2 ← ŝ4∗i+2 mod q
7: t3 ← ŝ4∗i+3 mod q
8: r[7 ∗ i + 0] ← t0&0xff
9: r[7 ∗ i + 1] ← (t0 � 8) |(t1 � 6)&0xff

10: r[7 ∗ i + 2] ← (t1 � 2)&0xff
11: r[7 ∗ i + 3] ← (t1 � 10) |(t2 � 4)&0xff
12: r[7 ∗ i + 4] ← (t2 � 4)&0xff
13: r[7 ∗ i + 5] ← (t2 � 12) |(t3 � 2)&0xff
14: r[7 ∗ i + 6] ← (t3 � 6)&0xff

15: return r ∈ {0, . . . , 255}7·n/4

Algorithm 7 Decoding of a polynomial represented as a byte array into an element in Rq

1: function DecodePolynomial(v ∈ {0, . . . , 255}7·n/4)
2: for i from 0 to n/4 − 1 do
3: r ← Rq

4: r4∗i+0 ← b2i(v[7 ∗ i + 0])k((b2i(v[7 ∗ i + 1]) & 0x3f) � 8)
5: r4∗i+1 ← (b2i(v[7 ∗ i + 1]) � 6)k(b2i(v[7 ∗ i + 2]) � 2)k((b2i(v[7 ∗ i + 3]) & 0x0f) � 10)
6: r4∗i+2 ← (b2i(v[7 ∗ i + 3]) � 4)k(b2i(v[7 ∗ i + 4]) � 4)k((b2i(v[7 ∗ i + 5]) & 0x03) � 12)
7: r4∗i+3 ← (b2i(v[7 ∗ i + 5]) � 2)k(b2i(v[7 ∗ i + 6]) � 6)

8: return r ∈ Rq

Algorithm 8 Encoding of the public key

1: function EncodePK(b̂ ∈ Rq , publicseed ∈ {0, . . . , 255}32)
2: r ← {0, . . . , 255}7·n/4+32

3: r[0 : 7 · n/4 − 1] ← EncodePolynomial(b̂)
4: r[7 · n/4 : 7 · n/4 + 31] ← publicseed[0 : 31]
5: return r ∈ {0, . . . , 255}7·n/4+32

Algorithm 9 Decoding of the public key

1: function DecodePk(pk ∈ {0, . . . , 255}7·n/4+32)
2: b̂← DecodePolynomial(pk[0 : 7 · n/4 − 1])
3: seed ← pk[7 · n/4 : 7 · n/4 + 31])
4: return (b̂ ∈ Rq , seed ∈ {0, . . . , 255}32)

9

444 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Encoding and decoding of the ciphertext. The ciphertext encoding is described in Algorithm 13. The
ciphertext c is encoded as an array of 1088 bytes (n = 512) or 2176 bytes (n = 1024) by EncodeC(û, h) that
takes as input a polynomial in û ∈ Rq and an array h of 3 · n/8 bytes that was generated by Compress(v0) as
given in Algorithm 12. The compression and decompression functions simply perform coeÿcient-wise modulus
switching between modulus q and modulus 8 by multiplying by the new modulus and then performing a
rounding division by the old modulus. To decode the ciphertext the DecodeC function is used that outputs
û ∈ Rq and a byte array h that is then given to Decompress to obtain v0 ∈ Rq.

In NewHope-CPA-PKE the 256-bit message µ represented as an array of 32 bytes has to be encoded
into an element in Rq during encryption and decoded from an element in Rq into a byte array during
decryption. To allow robustness against errors each bit of the 256-bit message µ ∈ {0, . . . , 255}32 is encoded
into bn/256c coeÿcients by Encode (see Algorithm 10). The decoding function Decode (see Algorithm 11)
maps from bn/256c coeÿcients back to the original key bit. For example, for n = 1024, take 4 = b1024/256c
coeÿcients (each in the range {0, . . . , q − 1}, subtract bq/2c from each of them, accumulate their absolute
values, and set the key bit to 0 if the sum is larger than q or to 1 otherwise.

Algorithm 10 Message encoding

1: function Encode(µ ∈ {0, . . . , 255}32)
2: v ← Rq

3: for i from 0 to 31 do
4: for j from 0 to 7 do
5: mask ← −((msg[i] � j) & 1)
6: v8∗i+j+0 ← mask &(q/2)
7: v8∗i+j+256 ← mask &(q/2)
8: if n equals 1024 then
9: v8∗i+j+512 ← mask &(q/2)

10: v8∗i+j+768 ← mask &(q/2)

11: return v ∈ Rq

Algorithm 11 Message decoding

1: function Decode(v ∈ Rq)
2: µ ← {0, . . . , 255}32

3: for i from 0 to 255 do
4: t ← |(vi+0 mod q) − (q − 1)/2|
5: t ← t + |(vi+256 mod q) − (q − 1)/2|
6: if n equals 1024 then
7: t ← t + |(vi+512 mod q) − (q − 1)/2|
8: t ← t + |(vi+768 mod q) − (q − 1)/2|
9: t ← ((t − q))

10: else
11: t ← ((t − q/2))

12: t ← t � 15
13: µ[i � 3] ← µ[i � 3] |(t � (i & 7))

14: return µ ∈ {0, . . . , 255}32

1.2.2 Interconversion to IND-CPA KEM

NewHope-CPA-PKE can be converted to an IND-CPA-secure key encapsulation mechanism by using the
public key encryption scheme to convey a secret, K. The PKE’s coins and the secret K are computed by

10

— Internet: Portfolio 445

Algorithm 12 Ciphertext compression

1: function Compress(v0 ∈ Rq)
2: k ← 0
3: t ← {0, . . . , 255}8

4: h ← {0, . . . , 255}3·n/8

5: for ̀ from 0 to n/8 − 1 do
6: i ← 8 · `
7: for j from 0 to 7 do

08: t[j] ← v mod qi+j
9: t[j] ← ((b2i(t[j] � 3) + q/2)/q)& 0x7

10: h[k + 0] ← t[0] |(t[1] � 3) |(t[2] � 6)
11: h[k + 1] ← (t[2] � 2) |(t[3] � 1) |(t[4] � 4) |(t[5] � 7)
12: h[k + 2] ← (t[5] � 1) |(t[6] � 2) |(t[7] � 5)
13: k+ ← 3
14: return r in{0, . . . , 255}3·n/8

Algorithm 13 Ciphertext encoding

1: function EncodeC(û ∈ Rq, h ∈ {0, . . . , 255}3·n/8)
2: c[0 : (7 · n/4 − 1)] ← EncodePolynomial(û)
3: c[(7 · n/4) : (7 · n/4 + 3 · n/8 − 1)] ← h
4: return c ∈ {0, . . . , 255}7·n/4+3·n/8

Algorithm 14 Ciphertext decoding

1: function DecodeC(c ∈ {0, . . . , 255}7·n/4+3·n/8)
2: û← DecodePolynomial(c[0 : (7 · n/4 − 1)])
3: h ← c[(7 · n/4) : (7 · n/4 + 3 · n/8 − 1)]
4: return (û ∈ Rq , h ∈ {0, . . . , 255}3·n/8)

Algorithm 15 Ciphertext decompression

1: function Decompress(h ∈ {0, . . . , 255}3·n/8)
2: k ← 0
3: for ̀ from 0 to n/8 − 1 do
4: i ← 8 · `
5: ri+0 ← a[k + 0]& 7
6: ri+1 ← (a[k + 0] � 3) & 7
7: ri+2 ← (a[k + 0] � 6) |((a[1] � 2) & 4)
8: ri+3 ← (a[k + 1] � 1) & 7
9: ri+4 ← (a[k + 1] � 4) & 7

10: ri+5 ← (a[k + 1] � 7) |((a[2] � 1) & 6)
11: ri+6 ← (a[k + 2] � 2) & 7
12: ri+7 ← (a[k + 2] � 5)
13: k ← k + 3
14: for j from 0 to 7 do
15: ri+j ← (ri+j ∗ q + 4) � 3

16: return v0 ∈ Rq

11

446 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

hashing random coins, rather than using random coins directly, to protect against attacks involving disclosure
of system randomness. The fnal shared secret is derived from the secret K by hashing. The resulting
algorithms for NewHope-CPA-KEM are shown in Algorithms 16, 17, and 18.

Algorithm 16 NewHope-CPA-KEM Key Generation

1: function NewHope-CPA-KEM.Gen()
$

2: (pk, sk) ← NewHope-CPA-PKE.Gen()
3: return (pk, sk)

Algorithm 17 NewHope-CPA-KEM Encapsulation

1: function NewHope-CPA-KEM.Encaps(pk)
2:
3:
4:

$
coin ← {0, . . . , 255}32

Kkcoin0 ← SHAKE256(64, coin) ∈ {0, . . . , 255}32+32

c ← NewHope-CPA-PKE.Encrypt(pk, K; coin0)
5: ss ← SHAKE256(32, K)
6: return (c, ss)

Algorithm 18 NewHope-CPA-KEM Decapsulation

1: function NewHope-CPA-KEM.Decaps(c, sk)
2: K 0 ← NewHope-CPA-PKE.Decrypt(c, sk)
3: return ss = SHAKE256(32,K 0)

1.2.3 Transform from IND-CPA PKE to IND-CCA KEM1

The Fujisaki–Okamoto transform [59] constructs an IND-CCA2-secure public-key encryption scheme from a
one-way-secure public key encryption scheme in the classical random oracle model (with an assumption on
the distribution of ciphertexts for each plaintext being suÿciently close to uniform). Targhi and Unruh [139]
gave a variant of the Fujisaki–Okamoto transform and showed its IND-CCA2 security against a quantum
adversary in the quantum random oracle model under similar assumptions. The results of both FO and TU
proceed under the assumption that the public key encryption scheme has perfect correctness, which is not
the case for lattice-based schemes. Hofheinz, Hövelmanns, and Kiltz [85] gave a variety of constructions in a
modular fashion. We apply their QFO 6⊥ transform which constructs an IND-CCA-secure key encapsulation m
mechanism from an IND-CPA public key encryption scheme and three hash functions; following [32], we
make the following modifcations, denoting the resulting transform QFO 6⊥0:m

• A single hash function (with longer output) is used to compute K, coin0, and d.
• The computation of K, coin0, and d also takes the public key pk as input.
• The computation of the shared secret ss also takes the encapsulation c and d as input.

QFO6⊥0 transform Let PKE = (KeyGen, Encrypt, Decrypt) be a public key encryption scheme with message m
space M and ciphertext space C, where the randomness space of Encrypt is RE . Let lens, lenK , lend, lenss

be parameters. Let G : {0, . . . , 255}∗ → {0, . . . , 255}lenK × RE × {0, . . . , 255}lend and F : {0, . . . , 255}∗ →
{0, . . . , 255}lenss be hash functions. Defne QKEM6⊥0 = QFO 6⊥0[PKE, G, F] be the key encapsulation mechanism m m
with QKEM 6⊥0 .KeyGen, QKEM 6⊥0 .Encaps and QKEM6⊥0 .Decaps as shown in Figure 1.m m m

1The text in this section is shared with the FrodoKEM submission.

12

— Internet: Portfolio 447

1: function QKEM 6⊥0 .KeyGen() 1: function QKEM 6⊥0 .Decaps((c, d), (sk, pk, s))m m
$

2: (pk, sk) ← PKE.KeyGen() 2: µ0 ← PKE.Decrypt(c, sk)
$ 3: (K 0, coin00, d0) ← G(pkkµ0)3: s ← {0, . . . , 255}lens

4: if c = PKE.Encrypt(pk, µ0; coin00) and d = d0 then4: sk ← (sk, pk, s)
5: return ss0 ← F (K 0kckd)5: return (pk, sk)
6: else
7: return ss0 ← F (skckd)1: function QKEM 6⊥0 .Encaps(pk)m

$
2: µ ←M
3: (K, coin0, d) ← G(pkkµ)
4: c ← PKE.Encrypt(pk, µ; coin0)
5: ss ← F (Kkckd)
6: c ← (c, d)
7: return (c, ss)

Figure 1: Construction of an IND-CCA-secure key encapsulation mechanism QKEM6⊥0 = QFO 6⊥0[PKE, G, F]m m
from a public key encryption scheme PKE and hash functions G and F .

1.2.4 IND-CCA-secure key encapsulation mechanism

NewHope-CCA-KEM is derived from NewHope-CPA-PKE by applying the QFO 6⊥0 transformation.m
The hash functions G and F are both taken to be SHAKE256. The length parameters are taken as
lens = lenK = lend = lenss = 32. The randomness space is {0, . . . , 255}32 . The message space M is
{0, . . . , 255}32 . The ciphertext component c to F is instead computed as SHAKE256(c) for eÿciency (a
new bu˙er does not need to be allocated). The KEM public key also caches a hash of the public key to
save on computation. Finally, some random values (seed, rand in NewHope-CCA-KEM.Gen and µ in
NewHope-CCA-KEM.Encaps) are computed by hashing random coins, rather than using random coins
directly, to protect against attacks involving disclosure of system randomness. The resulting algorithms for
NewHope-CCA-KEM are shown in Algorithms 19, 20, and 21.

1.2.5 Interconversion to IND-CCA PKE

NewHope-CCA-KEM can be converted to an IND-CCA-secure public key encryption scheme using standard
conversion techniques as specifed by NIST. In particular, shared secret ss can be used as the encryption key
in an appropriate data encapsulation mechanism in the KEM/DEM (key encapsulation mechanism / data
encapsulation mechanism) framework [46].

1.3 Design rationale

Currently, we see two main approaches to build practical lattice-based PKEs. One is to base the schemes on
NTRU or a related assumption [83, 137]. The other approach we are using in this work is the LWE/RLWE
assumption [102]. However, usage of the LWE assumption comes with a cost as keys become rather large. This
can be avoided by relying on ideal lattices and the Ring-Learning With Errors (RLWE) assumption. While
RLWE certainly features more structure than LWE, no algorithms are known that can exploit this structure
and that are thus working more eÿciently on RLWE than on LWE. When restricting the design space to
ideal lattices due to smaller key sizes, then the seminal work by Lyubashevsky, Peikert and Regev [103, 102]
(from now on referred to as LPR10) can be considered as the core basis for follow-up work like [31, 50, 120].

The traditional approach for passively secure LWE-based (and Ring-LWE-based) key encapsulation (KEM)
or key exchange is derived straight-forwardly from LWE-based (or Ring-LWE-based) encryption schemes like
the ones described in [127, 99, 70]: Alice generates a key pair (skA, pkA), sends pkA to Bob; Bob chooses a
(symmetric) key k, encrypts this key under pkA and sends it to Alice; Alice decrypts to obtain k. See, for
example, [118, Sec. 4.2] for an adaptation of the passively secure lattice-based cryptosystem from [69] to this
KEM setting. We will in the following refer to this approach as a Key Transport Mechanism (KTM) or as
the encryption-based approach for RLWE-based key exchange.

13

448 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Algorithm 19 NewHope-CCA-KEM Key Generation

1: function NewHope-CCA-KEM.Gen()
$

2: (pk, sk) ← NewHope-CPA-PKE.Gen()
3:
4:

s
$← {0, . . . , 255}32

return (pk, sk = skkpkkSHAKE256(32, pk)ks)

Algorithm 20 NewHope-CCA-KEM Encapsulation

1: function NewHope-CCA-KEM.Encaps(pk)
2:
3:
4:
5:

$
coin ← {0, . . . , 255}32

µ ← SHAKE256(32, coin) ∈ {0, . . . , 255}32

Kkcoin0kd ← SHAKE256(96, µkSHAKE256(32, pk)) ∈ {0, . . . , 255}32+32+32

c ← NewHope-CPA-PKE.Encrypt(pk, µ; coin0)
6: ss ← SHAKE256(32, KkSHAKE256(32, ckd))
7: return (c = ckd, ss)

Algorithm 21 NewHope-CCA-KEM Decapsulation

1: function NewHope-CCA-KEM.Decaps(c, sk)
2: ckd ← c ∈ {0, . . . , 255}32+32

skkpkkhks ← sk ∈ {0, . . . , 255}32+32+32+323:
4: µ0 ← NewHope-CPA-PKE.Decrypt(c, sk)
5: K 0kcoin00kd0 ← SHAKE256(96, µ0kh) ∈ {0, . . . , 255}32+32+32

6: if c = NewHope-CPA-PKE.Encrypt(pk, µ0; coin00) and d = d0 then
7: fail ← 0
8: else
9: fail ← 1

10: K0 ← K 0

11: K1 ← s
12: return ss = SHAKE256(32,KfailkSHAKE256(32, ckd))

A slightly di˙erent approach is what we will in the following call the reconciliation-based approach. Instead
of letting Bob choose a secret key, Alice and Bob compute a noisy shared secret value and then use some
reconciliation mechanism that allows them to agree on the same shared key (often also referred to as key
agreement mechanism in the literature). This idea of a reconciliation mechanism to extract an exact shared
value from noisy data is essentially the idea of a fuzzy extractor [52], known, for example, from physically
unclonable functions. See, for example, [34, 80].

The reconciliation-based approach for Ring-LWE-based key agreement was listed as a special instance
of “Noisy Diÿe Hellman” by Gaborit (presenting joint work with Aguilar, Lacharme, Schrek, and Zémor)
in his talk at PQCrypto 2010 [61, Slide 6]. It was also described by Lindner and Peikert as “(approximate)
key agreement” [99, Sec. 3.1] and was already mentioned vaguely in an invited lecture of Peikert at TCC
2009 [119, Slide 14]. In [48] Ding described an instantiation of a reconciliation-based approach of LWE-based
key exchange. The reconciliation mechanism can be used on top of a matrix form of LWE (as already used
earlier, for example in [68] and [99, Sec. 2.2 and 3.1]) or on top of RLWE [102]. Neither of [61, 99, 119]
describe a concrete reconciliation mechanism; the frst reconciliation mechanism was the one described by
Ding in [48, Sec 1.3] and [50]. Note that later and revised versions of [50] also list Lin [49] and Xie and
Lin [51] as authors. Peikert in [120] tweaked Ding’s reconciliation mechanism to obtain unbiased keys; the
approach by Ding inevitably produces slightly biased key bits.

The main reason for the reconciliation-based approach is a reduced bandwidth requirement. For exam-

14

— Internet: Portfolio 449

ple, [120] advertises “nearly halving the ciphertext size”. This estimate comes from the fact that (in a naive
version of the encryption-based approach) the second ciphertext polynomial has coeÿcients in {0, . . . , q − 1}
whereas the coeÿcients are in {0, 1} (for [50, 49, 51] and [120]) or in {0, 1, 2, 3} (for [9]) when using the
reconciliation approach.

Our proposal: NewHope. Our submission, NewHope, is based on NewHope-Simple [8] which is
a variant of NewHope-Usenix [9]. The main di˙erence is that NewHope-Simple uses the encryption-
based approach while NewHope-Usenix is based on the reconciliation-based approach. Alternatively, our
submission could also be described as a variant of the scheme by Lyubashevsky, Peikert and Regev [103, 102]
to which we apply the modifcations from NewHope-Usenix [9] and the ciphertext size reduction technique
from [123].

The basic NewHope-CPA-PKE scheme is a semantically secure public-key encryption with respect to
adaptive chosen plaintext attacks. This allows us to apply standard transformations to build passively and
actively secure KEMs and PKEs. This enables the use of our submission in unauthenticated key-exchange
protocol but also in settings where a CCA-secure KEM or PKE is required. As a consequence, in this
section we mainly focus on the properties of NewHope-CPA-PKE for which we defne key generation in
Algorithm 1 encryption in Algorithm 2 and decryption in Algorithm 3.

Parameter choices. We fx q = 12289 and k = 8 and provide two parameter sets that di˙er in only one
parameter. For our NewHope512 with a bit-security level of 101 we set n = 512 and for NewHope1024 with
a bit-security level of 233 we choose n = 1024. However, for long-term security we recommend NewHope1024.
As k is fxed the same binomial sampler can be used for implementations of both parameter sets. Due to
the fact that the security level grows with the noise-to-modulus ratio, it makes sense to choose the modulus
as small as possible, improving compactness and eÿciency together with security. As noise parameter k ofPkthe binomial distribution ψk = bi − b0 we set k = 8 for both parameter sets. This way we achieve a i=1 i
negligible error probability for both parameter sets. We chose the modulus q = 12289 as it is the smallest
prime for which it holds that q ≡ 1 mod 2n so that the number-theoretic transform (NTT) can be realized
eÿciently and that we can transfer polynomials in NTT encoding (see Section 1.2.1). The choice is also
appealing as the prime is already used by some implementations of Ring-LWE encryption [132, 47, 100] and
BLISS signatures [54, 122]; thus sharing of some code (or hardware modules) between our proposal and an
implementation of BLISS would be possible.

Error correction and reconciliation. The reconciliation technique of NewHope-Usenix [9] is generalizing
and improving the previous approaches and extracts a single key bit from multiple polynomial coeÿcients. It
relies on non-trivial lattice-codes and lattice-quantizers [43]. It is eÿcient, but fairly complex. Due to the
complexity of the reconciliation approach in NewHope-Usenix [9] we propose the usage of the encryption-
based approach. The di˙erence in bandwidth requirements for NewHope-Usenix and NewHope is much
smaller than one might expect. Specifcally, the message from Bob to Alice (the ciphertext) in NewHope-
Simple requires only 2176 bytes (compared to 2048 bytes in NewHope-Usenix); the message from Alice to
Bob (the public key) has the same size (1824 bytes) for both variants. We obtain this result by carefully
analyzing and optimizing a technique that is known since at least [118, Sec. 4.2] and has also been used
in [123], for lattice-based signatures in [75], in the context of fully homomorphic encryption in [36, Sec. 4.2]
and [33, Sec. 5.4] and for lattice-based PRFs in [18] and that was also applied in works like [88]. The idea of
this technique is that the low bits of each coeÿcient of v mainly carry noise and contribute very little to the
successful recovery of the plaintext. One can thus decide to “discard” (i.e, not transmit) those bits and thus
shorten the length of v. This can also be seen as switching to a smaller modulus and is therefore also called
“modulus switching”.

We combine this technique with a simple technique to encode one key bit into 4 coeÿcients that was frst
described by Güneysu and Pöppelmann in [123] and minimize the ciphertext size under the constraint that
the failure probability of NewHope-Simple does not exceed the failure probability of NewHope.

Noise distribution. We do not use discrete Gaussians as the noise distribution but instead use the centred
binomial distribution ψk of parameter k = 8 for the secret and error term. The reason is that it turns out to
be challenging to implement a discrete Gaussian sampler eÿciently and protected against timing attacks
(see [31, 9]). On the other hand, sampling from the centered binomial distribution is easy and does not require Pk−1high-precision computations or large tables as one may sample from ψk by computing bi − b0 , where the i=0 i

15

450 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

bi, b
0 ∈ {0, 1} are uniform independent bits. The distribution ψk is centered (its mean is 0), has variance k/2i p

and for k = 8 this gives a standard deviation of ς = 8/2. In Section 4.1.1 a justifcation of the security of
this design decision is given. As explained in Section 4.2, our choice of parameters in NewHope1024 leaves
a comfortable margin to the targeted 128 bits of post-quantum security (NIST level 5), which accommodates
for the slight loss in security indicated by Theorem 4.1 due to the use of the binomial distribution. Even
more important from a practical point of view is that no known attack makes use of the di˙erence in error
distribution; what matters for attacks are entropy and standard deviation.

No backdoor. One serious concern in lattice-based cryptography may be the presence of constant polynomials,
e.g., the fxed system parameter a in [31]. As described in Section 1.2.1, our proposal includes pseudorandom
generation of this parameter for every key exchange. In the following we discuss the reasons for this decision.

In the worst scenario, the fxed parameter a could be backdoored. For example, inspired by NTRU
trapdoors [83, 137], a dishonest authority may choose mildly small f , g such that f = g = 1 mod p for
some prime p ≥ 4 · 8 + 1 and set a = gf−1 mod q. Then, given (a, b = as + e), the attacker can compute
bf = afs + fe = gs + fe mod q, and, because g, s, f , e are small enough, compute gs + fe in Z. From this he
can compute t = s + e mod p and, because the coeÿcients of s and e are smaller than 8, their sums are in
[−2 · 8, 2 · 8]: knowing them modulo p ≥ 4 · 8 + 1 is knowing them in Z. It now only remains to compute
(b − t) · (a − 1)−1 = (as − s) · (a − 1)−1 = s mod q to recover the secret s.

One countermeasure against such backdoors is the “nothing-up-my-sleeve” process, which would, for
example, choose a as the output of a hash function on a common universal string like the digits of π. Yet,
even this process may be partially abused [22], and when not strictly required it seems preferable to avoid it.

All-for-the-price-of-one attacks. Even if this common parameter has been honestly generated, it is still
rather uncomfortable to have the security of all connections rely on a single instance of a lattice problem. The
scenario is an entity that discovers an unforeseen cryptanalytic algorithm, making the required lattice reduction
still very costly, but say, not impossible in a year of computation, given its outstanding computational power.
By fnding once a good enough basis of the lattice Λ = {(a, 1)x + (q, 0)y|x, y ∈ R}, this entity could then
compromise all communications, using for example Babai’s decoding algorithm [15].

This idea of massive precomputation that is only dependent on a fxed parameter a and then afterwards
can be used to break all key exchanges is similar in favor to the 512-bit “Logjam” DLP attack [1]. This
attack was only possible in the required time limit because most TLS implementations use fxed primes for
Diÿe-Hellman. One of the recommended mitigations by the authors of [1] is to avoid fxed primes.

Against all authority. Fortunately, all those pitfalls can be avoided by having the communicating parties
generate a fresh a at each instance of the protocol (as we propose). If in practice it turns out to be too
expensive to generate a for every connection, it is also possible to cache a on the server side2 for, say a few
hours without signifcantly weakening the protection against all-for-the-price-of-one attacks. Additionally, the
performance impact of generating a is reduced by sampling a uniformly directly in NTT format (recalling
that the NTT is a one-to-one map), and by transferring only a short 256-bit seed for a.

A subtle question is to choose an appropriate primitive to generate a “random-looking” polynomial a
out of a short seed. For a security reduction, it seems to the authors that there is no way around the
(non-programmable) random oracle model (ROM). It is argued in [62] that such a requirement is in practice
an overkill, and that any pseudorandom generator (PRG) should also work. And while it is an interesting
question how such a reasonable pseudo-random generator would interact with our lattice assumption, the
cryptographic notion of a PRG is not helpful to argue security. Indeed, it is an easy exercise3 to build (under
the NTRU assumption) a “backdoored” PRG that is, formally, a legitimate PRG, but that makes our scheme
insecure. Instead, we prefer to base ourselves on a standard cryptographic hash-function, which is the typical
choice of an “instantiation” of the ROM. As a suitable option we see Keccak [27], which has recently been
standardized as SHA3 in FIPS-202 [112], and which o˙ers extendable-output functions (XOF) named SHAKE.
This avoids costly external iteration of a regular hash function and directly fts our needs. We use SHAKE128
for the generation of a, which o˙ers 128-bits of (post-quantum) security against collisions and preimage
attacks. With only a small performance penalty we could have also chosen SHAKE256, but we do not see any

0 02But recall that the secrets s, e, s , s , e00 have to be sampled fresh for every connection.
3Consider a secure PRG p, and parse its output p(seed) as two small polynomial (f , g): an NTRU secret-key. Defne

0p0(seed) = gf −1 mod q: under the decisional NTRU assumption, p is still a secure PRG. Yet revealing the seed does reveal
(f , g) and provides a backdoor as detailed above.

16

— Internet: Portfolio 451

Table 1: Parameters of NewHope512 and NewHope1024 and derived high-level properties.

Parameter Set NewHope512 NewHope1024

Dimension n
Modulus q
Noise parameter k
NTT parameter γ

512
12289

8
49

1024
12289

8
7

Decryption error probability
Claimed post-quantum bit-security
NIST Security Strength Category

2−213

101
1

2−216

233
5

Table 2: Sizes of public keys, secret keys, and ciphertexts of our NewHope instantiations in bytes.

Parameter Set |pk| |sk| |ciphertext|
NewHope512-CPA-KEM 928 869 1088
NewHope1024-CPA-KEM 1824 1792 2176
NewHope512-CCA-KEM 928 1888 1120
NewHope1024-CCA-KEM 1824 3680 2208

reason for such a choice, in particular because neither collisions nor preimages lead to an attack against the
proposed scheme.

Short-term public parameters. NewHope does not rely on a globally chosen public parameter a as the
eÿciency increase in doing so is not worth the measures that have to be taken to allow trusted generation of
this value and the defense against backdoors [22]. Moreover, this approach avoids the rather uncomfortable
situation that all connections rely on a single instance of a lattice problem (see Section 1.3) in the favor of
the “Logjam” DLP attack [1].

1.4 Parameters

1.4.1 NewHope512 and NewHope1024

For our NewHope cryptosystem we specify the two parameter sets NewHope512 and NewHope1024 in
Table 1. These parameter sets are used to instantiate the NewHope-CPA-KEM or NewHope-CCA-KEM
scheme. In case the security level should be specifed together with the scheme we use the exemplary
notation NewHope1024-CPA-KEM to refer to the NewHope-CPA-KEM scheme instantiated with the
NewHope1024 parameter set. In Table 2 we provide public key, secret key, and ciphertext sizes for our two
KEMs that support the transmission of a 256-bit message or key. For the justifcation of the NIST level we
refer to Section 5 and for the justifcation of the post-quantum bit-security we refer to Section 4.2.

The parameters in Table 1 fully defne NewHope and all other intermediary parameters can be calculated
from there. For convenience, we list intermediary parameters:
• NewHope512: γ =

√
ω = 49; ω = 2401; ω−1 mod q = 11813; γ−1 mod q = 1254; n−1 mod q = 12265 √ • NewHope1024: γ = ω = 7; ω = 49; ω−1 mod q = 1254; γ−1 mod q = 8778; n−1 mod q = 12277

Note that the parameters of NewHope cannot be freely chosen. The dimension n has to be an integer
power of two to support eÿcient NTT algorithms and to maintain the security properties of RLWE. Degrees
that are not power of 2 are also possible, but come with several complications [104, 121], in particular the
defning polynomial of the ring can not have the form Xn + 1 anymore.

Additionally, n has to be greater or equal than 256 due to our choice of the encoding function that needs
to embed a 256-bit message into an n-dimensional polynomial in NewHope-CPA-PKE. The modulus q
has to be chosen as integer prime q such that q ≡ 1 mod 2n to support eÿcient NTT algorithms. The
integer parameter k of the noise distribution has to be chosen such that the probability of decryption errors
is negligible. On a high-level, the fnal security of NewHope depends on (q, n, k) where a larger n and a

17

452 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

klarger lead to a higher security level. The choice of γ does not have an impact on the security but is need q

for correctness (see Section 1.2) and is simply the smallest possible value.
In the unlikely case that a higher security level is required while confdence in the RLWE assumption

remains, it is straightforward to choose a NewHopeLudicrous parameter set with dimension n = 2048 and
k = 8. This would basically double execution times and the size of public keys, ciphertexts, secrete keys
(maybe). A small increase in security for the NewHope-CPA-KEM is also possible. As the scheme should
in practice only be used in an ephemeral setting where decryption errors are less critical it might be possible
to slightly increase k (e.g., k = 16 as in NewHope-Usenix).

We do not belief that a larger modulus q will result in a performance beneft or better performance/security
tradeo˙. However, in case q is increased, the parameter k has to be adapted as well. Choosing n not as a
power of two would render the scheme insecure. In general, RLWE-based schemes do not requires a prime
modulus q for security or performance. However, as NewHope directly uses properties of a negacyclic NTT,
parameters have to be chosen so that q is prime and that q ≡ 1 mod 2n. A scheme without restrictions
regarding the modulus q would look quite di˙erent than NewHope from an implementers perspective.

1.4.2 Toy/challenge parameters

We do no encourage the use of smaller dimensions that n = 512 for practical applications. As toy parameter
set for cryptanalysis we propose NewHopeToy1 with n = 256, q = 7681, k = 4. An even smaller toy
parameter NewHopeToy2 set with n = 128, q = 256, k = 1 could also be a target for cryptanalysis but
would require the reduction of the length of the message supported by NewHope-CPA-PKE to 128-bit.

1.4.3 Cryptographic primitives

NewHope relies on the SHAKE hash function [112] for several purposes:
• NewHope-CPA-PKE uses SHAKE128 to generate the public parameters â from a public seed seed.

In this instance the assumption is that SHAKE128 acts as a public random function for the given output
length. Additionally, SHAKE256 is used to hash and extend the output of the random number generator
in key generation.

• NewHope-CPA-KEM uses SHAKE256 to derive intermediate random values and the shared secret.
The assumption is that SHAKE256 is a pseudorandom function.

• NewHope-CCA-KEM uses SHAKE256 to derive random keys, intermediate random values, and the
shared secret; and to hash the public key and ciphertext. When hashing the public key pk and ciphertext
c, the assumption is that SHAKE256 is collision-resistant. When deriving seed, rand, s, µ, and ss, the
assumption is that SHAKE256 is a pseudorandom function.

No padding is used in the derivations above. Multiple inputs are combined by concatenating bitstrings;
lengths of the concatenated values are fxed.

1.4.4 Provenance of constants and tables

The following constants are used in NewHope:
• Dimension n: Selected as a power of two to support eÿcient NTT algorithms and to maintain the

security of RLWE.
• Modulus q: Selected as the smallest prime such that q ≡ 1 mod 2n so that the number-theoretic

transform (NTT) can be realized eÿciently.
• Noise parameter k: Selected so that the probability of decryption errors is negligible.
• NTT parameter γ: Must be n-th primitive root of unity; we select the smallest such value.
• Domain separation in calls to SHAKE: â is generated pseudorandomly using SHAKE128 from a seed;

domain separators are used internally in this generation, and are simply selected as counters.

18

— Internet: Portfolio 453

2 Performance analysis

2.1 Estimated performance on the NIST PQC reference platform

In this section we provide details on our reference implementation written in C and estimate its perfor-
mance on the NIST PQC reference platform. In Table 3 we list the directory in which the code of our
reference implementation located in the submission fle. The respective Gen (crypto_kem_keypair), Encaps
(crypto_kem_enc), and Decaps (crypto_kem_dec) functions for each instantiation are defned in the fle
kem.c in the respective directory. Note that the code of reference and optimized implementation is identical
but we provide two directory structures for completeness. The size of the produced keys and ciphertexts is
not dependent on the platform and the numbers can be found in Table 2.

Table 3: Directories of the code of our reference implementation.

Reference Implementation
NewHope512-CPA-KEM
NewHope512-CCA-KEM
NewHope1024-CPA-KEM
NewHope1024-CCA-KEM

Reference_Implementation/crypto_kem/newhope512cpa
Reference_Implementation/crypto_kem/newhope512cca
Reference_Implementation/crypto_kem/newhope1024cpa
Reference_Implementation/crypto_kem/newhope1024cca

The main emphasis in the C reference implementation is on simplicity and portability. It does not use
any foating-point arithmetic and outside of the Keccak (SHAKE256 and SHAKE128) implementation only
needs 16-bit and 32-bit integer arithmetic.

NTT Implementation. All polynomial coeÿcients are represented as unsigned 16-bit integers. Our in-
place NTT implementation transforms from bit-reversed to natural order using Gentleman-Sande butterfy
operations [67, 42]. One would usually expect that each NTT is preceded by a bit-reversal, but all inputs to
NTT are noise polynomials that we can simply consider as being already bit-reversed. This is supported in
the description of the algorithm. As explained earlier, the NTT−1 operation still involves a bit-reversal. For
n = 1024 the core of the NTT and NTT−1 operation consists of 10 layers of transformations, each consisting
of 512 butterfy operations of the form described in Listing 2.

Montgomery arithmetic and lazy reductions. The performance of operations on polynomials is largely
determined by the performance of NTT and NTT−1. The main computational bottleneck of those operations
are 2304 (n = 512) or 5120 (n = 1024) butterfy operations, each consisting of one addition, one subtraction
and one multiplication by a precomputed constant. Those operations are in Zq ; recall that q is a 14-bit
prime. To speed up the modular-arithmetic operations, we store all precomputed constants in Montgomery
representation [111] with R = 218, i.e., instead of storing ωi, we store 218ωi (mod q). After a multiplication
of a coeÿcient g by some constant 218ωi, we can then reduce the result r to gωi (mod q) with the fast
Montgomery reduction approach. In fact, we do not always fully reduce modulo q, it is suÿcient if the
result of the reduction has at most 14 bits. The fast Montgomery reduction routine given in Listing 1a
computes such a reduction to a 14-bit integer for any unsigned 32-bit integer in {0, . . . , 232 − q(R − 1) − 1}.
Note that the specifc implementation does not work for any 32-bit integer; for example, for the input
232 − q(R − 1) = 1073491969 the addition a=a+u causes an overfow and the function returns 0 instead of the
correct result 4095. In the following we establish that this is not a problem for our software.

Aside from reductions after multiplication, we also need modular reductions after addition, which, for
the sake of simplicity and readability, are written as the C modulo operator %). An alternative and faster
approach is to use use “short Barrett reduction” [19] as detailed in Listing 1b. Again, this routine does not
fully reduce modulo q, but reduces any 16-bit unsigned integer to an integer of at most 14 bits which is
congruent modulo q.

In the context of the NTT and NTT−1, we make sure that inputs have coeÿcients of at most 14 bits. This
allows us to avoid reductions after addition on every second level, because coeÿcients grow by at most one bit
per level and the short Barrett reduction (and the % operator) can handle 16-bit inputs. Let us turn our focus
to the input of the Montgomery reduction (see Listing 2). Before subtracting a[j+d] from t we need to add a

19

454 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

multiple of q to avoid unsigned underfow. Coeÿcients never grow larger than 15 bits and 3 · q = 36867 > 215 ,
so adding 3 · q is suÿcient. An upper bound on the expression ((uint32_t)t + 3*12289 - a[j+d]) is
obtained if t is 215 −1 and a[j+d] is zero; we thus obtain 215 +3 ·q = 69634. All precomputed constants are in
{0, . . . , q − 1}, so the expression (W * ((uint32_t)t + 3*12289 - a[j+d]), the input to the Montgomery
reduction, is at most 69634 · (q − 1) = 855662592 and thus safely below the maximum input that the
Montgomery reduction can handle.

Listing 1 Reduction routines used in the reference implementation.
(a) Montgomery reduction (R = 218). (b) Short Barrett reduction.

uint16_t mred(uint32_t a) { uint16_t bred(uint16_t a) {
uint32_t u; uint32_t u;
u = (a * 12287); u = ((uint32_t) a * 5) >> 16;
u &= ((1 << 18) - 1); a -= u * 12289;
a += u * 12289; return a;
return a >> 18; }

}

Listing 2 The Gentleman-Sande butterfy inside odd levels of our NTT computation. All a[j] and W are of
type uint16_t.

W = omega[jTwiddle++];
t = a[j];
a[j] = bred(t + a[j+d]);
a[j+d] = mred(W * ((uint32_t)t + 3*12289 - a[j+d]));

Fast random sampling. As a frst step before performing any operations on polynomials, both Alice and
Bob need to expand the seed to the polynomial a using SHAKE256. The implementation we use is based on
the “simple” implementation by Van Keer for the Keccak permutation and slightly modifed code taken from
the “TweetFIPS202” implementation [26] for everything else.

Implementation of GenA. The public parameter a is generated from a 32-byte seed through the extendable-
output function SHAKE128 [112, Sec. 6.2]. The approach described here slightly di˙ers from the approach
described in [9]. Specifcally, the coeÿcients of a are generated in n/64 independent blocks of 64 coeÿcients
each. To generate block i (of coeÿcients ranging from a64i to a64i+63) is generated by concatenating the
32 − byte seed with a one-byte value of i and feeding the resulting 33-byte extended seed to SHAKE128 is then
considered as an array of 16-bit, unsigned, little-endian integers. Each of those integers is used as a coeÿcient
of a if it is smaller than 5q and rejected otherwise. The frst such 16-bit integer is used as the coeÿcient a64i,
the next one as coeÿcient of a64i+1 and so on. Each block needs a total of 64 coeÿcients, so at least 128
bytes of output from SHAKE128. The probability that a 16-bit value is smaller than 5q is 93.75%, so the
expected number of bytes of SHAKE128 output per block of a is 137. One block of output of SHAKE128 has
168 bytes, so with very large probability only one block of SHAKE128 output is required for each block of a.

Performance results. Benchmark results for our reference implementation are reported in Table 4 and were
obtained on an Intel Core i7-4770K (Haswell) running at 3491.953 MHz with Turbo Boost and Hyperthreading
disabled. We compiled our C reference implementation with gcc-4.9.2 and fags -O3 -fomit-frame-pointer
-march=native. For all other routines we report the median of 1000 runs.

2.2 Performance on x86 processors using vector extensions

Intel processors since the “Sandy Bridge” generation support Advanced Vector Extensions (AVX) that operate
on vectors of 8 single-precision or 4 double-precision foating-point values in parallel. With the introduction
of the “Haswell” generation of CPUs, this support was extended also to 256-bit vectors of integers of various
sizes (AVX2). It is not surprising that the enormous computational power of these vector instructions has
been used before to implement very high-speed crypto (see, for example, [23, 74, 24]) and also our optimized
reference implementation targeting Intel Haswell processors uses those instructions to speed up multiple

20

— Internet: Portfolio 455

Table 4: Cycle counts of our NewHope C reference implementation compiled with gcc-4.9.2 on an Intel Core
i7-4770K (Haswell) with Turbo Boost and Hyperthreading disabled.

Operation NH-512-CPA-KEM NH-512-CCA-KEM NH-1024-CPA-KEM NH-1024-CCA-KEM

NTT
NTT−1

GenA

21,772
23,384
16,012

21,772
23,420
16,052

49,920
53,596
32,248

49,772
53,408
32,240

Gen
Encaps
Decaps

106,820
155,840
40,988

117,128
180,648
206,244

222,922
330,828
87,080

244,944
377,092
437,056

Table 5: Cycle counts of an additional NewHope implementation using AVX extensions compiled with
gcc-4.9.2 on an Intel Core i7-4770K (Haswell) with Turbo Boost and Hyperthreading disabled.

Operation NH-512-CPA-KEM NH-512-CCA-KEM NH-1024-CPA-KEM NH-1024-CCA-KEM

NTT
NTT−1

GenA

4888
6352

10,804

4820
6344

10,808

8416
11,708
21,308

8496
11,680
21,480

Gen
Encaps
Decaps

56,236
85,144
19,472

68,080
109,836
114,176

107,032
163,332
35,716

129,670
210,092
220,864

components of the key exchange. We have done an implementation of NewHope targeting such a vectorized
architecture.

NTT optimizations. The AVX instruction set has been used before to speed up the computation of
lattice-based cryptography, and in particular the number-theoretic transform. Most notably, Güneysu, Oder,
Pöppelmann and Schwabe achieve a performance of only 4 480 cycles for a dimension-512 NTT on Intel Sandy
Bridge [76]. For arithmetic modulo a 23-bit prime, they represent coeÿcients as double-precision integers.

We experimented with multiple di˙erent approaches to speed up the NTT in AVX. For example, we
vectorized the Montgomery arithmetic approach of our C reference implementation and also adapted it to
a 32-bit-signed-integer approach. In the end it turned out that foating-point arithmetic beats all of those
more sophisticated approaches, so we are now using an approach that is very similar to the approach in [76].
One computation of a dimension-1024 NTT takes ≈ 8 450 cycles, unlike the numbers in [76] this does include
multiplication by the powers of γ and unlike the numbers in [76], this excludes a bit-reversal.

Fast sampling. For the computation of SHAKE-128 we use the same code as in the C reference implementa-
tion. One might expect that architecture-specifc optimizations (for example, using AVX instructions) are able
to o˙er signifcant speedups, but the benchmarks of the eBACS project [25] indicate that on Intel Haswell,
the fastest implementation is the “simple” implementation by Van Keer that our C reference implementation
is based on. The reasons that vector instructions are not very helpful for speeding up SHAKE (or, more
generally, Keccak) are the inherently sequential nature and the 5 × 5 dimension of the state matrix that
makes internal vectorization hard.

Performance results. Benchmark results for our AVX implementation are reported in Table 5 and were
obtained on an Intel Core i7-4770K (Haswell) running at 3491.953 MHz with Turbo Boost and Hyperthreading
disabled. -no-pie -O3 -fomit-frame-pointer -msse2avx -mavx2 -march=native

2.3 Performance estimation on ARM Cortex-M0 and M4

For the performance estimation of NewHope on ARM Cortex-M0 and M4 micrcontrollers we refer to
the implementation of NewHope-Usenix by Alkim, Jakubeit, and Schwabe [10]. Their work shows that
an implementation of NewHope-Usenix can outperform an implementation of Curve25519 [21] for the

21

456 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Table 6: Cycle counts of a NewHope-Usenix implementation on a Cortex-M0 and Cortex-M4 microcontroller
obtained from [10].

Operation Cortex-M0 Cortex-M4

NTT
NTT−1

Generation of a

148,517
167,405
380,855

87,223
97,789
293,975

Key generation (equiv. to Gen)
Key gen + shared key (equiv. to Encaps)
Shared key (equiv. to Decaps)

1,168,224
1,738,922
298,877

964,440
1,418,124
178,874

ROM usage (bytes) 30,178 22,828

Table 7: Cycle counts of an implementation of a CPA or CCA-secure public-key encryption scheme that is
similar to NewHope (both use n = 1024, q = 12289, k = 8) on a Cortex-M0 and Cortex-M4 microcontroller
obtained from [116].

Operation Cycle Counts
Unmasked Masked

Key generation 2,669,559 -
CCA2-secure encryption 4,176,684 -
CCA2-secure decryption 4,416,918 25,334,493
CPA-secure encryption 3,910,871 19,315,432
CPA-secure decryption 163,887 550,038
SHAKE128 87,738 201,997
NTT 83,906 -
NTT−1 104,010 -
Uniform sampling (TRNG) 60,014 -
Noise sampling (PRNG) 1,142,448 6,031,463
PRNG (64 bytes) 88,778 202,454

Cortex-M0, like the one presented in [55], by more than a factor of two. Their cycle counts are given in
Table 6.

Additionally, we also refer to the work by Oder, Schneider, Pöppelmann, and Güneysu [116] who describe
an implementation of CCA2-secure public-key encryption that is similar to NewHope with and without
side-channel countermeasures. In Table 7 we provide their results on a Cortex-M4. The instantiated scheme
is ring-LWE public-key encryption (n = 1024, q = 12289, and binomial distribution with parameter k = 8)
parametrized for negligible decryption errors so that the Fujisaki-Okamoto [59] transformation by Targhi
and Unruh can be used [139]. The CCA2-secure encryption takes 4,176,684 cycles, which translates to 25
milliseconds when operating at a clock frequency of 168 MHz. Key generation takes 16 ms at 168 MHz. The
application of the CCA2-conversion to the decryption causes a much higher overhead due to the necessary
re-encryption. In the unmasked case, it requires 27 times more cycles.

2.4 Performance on MIPS64

Starting as an academic project in Stanford in the 1980s, the MIPS architecture is nowadays, typically utilized
in network equipment, laser printers and consumer electronics. It was formerly part of superscalar processors
(e.g. the MIPS I R2000 and R3000 of 32-bits, the R4000 of 64 bits (MIPS III) and the R10000 (MIPS IV))
and video game consoles (e.g. PlayStation 1–2 and Nintendo64). Developed by MIPS Technologies, Inc. (now
Imagination Technologies4), the MIPS architecture is based on the RISC instruction set.

4https://www.imgtec.com/mips/

22

— Internet: Portfolio 457

From year 2000, several synthesizable cores has appeared such as the 32-bit 4k, 24k and 64-bit 5k.
Afterwards the MIPS325 and MIPS646 specifcations were created. Nowadays, companies such as Loongson
Technology, Cavium, Broadcom and Toshiba have licenses for MIPS64. Given the availability of the MIPS64
in the market in a myriad of di˙erent network routers, we have selected the MIPS64r3 release for optimizing
NewHope1024 and NewHope512. Besides, the size of the available registers makes it ideal for vectorizing
the polynomial arithmetic of the algorithm as well as for reducing memory access (this is the case, for instance,
of our implementation of the Keccak-f[1600] permutation).

Our target device is a 28 nm cnMIPS III core from a CN7130 SoC, based on the MIPS64r3 architecture,
clocked at 1.6 GHz and equipped with 78K instruction cache, 32K data cache and a foating point unit.

The MIPS64r3 architecture. The MIPS64r3 architecture has 32 64-bits registers and standardizes three
co-processor encoding regions: CP0 for CPU confguration, cache control, interrupt control and memory
management, CP1 is the FPU and CP2 available to other peripherals. The register fle is comprised of 64-bit
32 registers where 27 can be used: v0-v1 (value returned by subroutines), a0-a3 (subroutine parameters), t0-t9
(temporary), s0-s8 (subroutine registers), gp (global pointer) and ra (return address). Further, co-processor
CP1 provides an additional set of 32 64-bit registers, typically part of the FPU.

NTT optimization. As mentioned before, our choice for a 64-bits architecture instead of the MIPS32 one
is largely based on the idea of vectorizing the NTT implementation. In so doing, we apply the following
strategy: frst, we parallelize the NTT by vectorizing the butterfy operation, second, and directly related to
the former idea, we merge the layers of the NTT. Also both the Montgomery and Barrett reductions have
been adapted for dealing with 64-bit integers.

Our approach is to parallelize the execution of the NTT by processing more than one coeÿcient (16 bits)
in the architecture registers of 64-bit length. Out of the 32 registers of the MIPS64 architecture, only 27 are
available to us for processing the 1,024 or 512 coeÿcients of the NTT. This way, we could execute one NTT’s
butterfy operation for n pairs of coeÿcients in parallel. However, due to the overfow bits of the butterfy
operations (addition and multiplication) we can store 2 coeÿcients in 1 register. In our implementation, we
use 16 registers for storing the coeÿcients, meaning that is actually possible to process 2 · 16 = 32 coeÿcients
at a time, merging at most log2 32 = 5 layers. Nonetheless due to the fact that after the 5th layer the blocks
of coeÿcients must be chosen from a di˙erent block of coeÿcients, that is, not from an adjacent one, we
merge 4 layers.

Table 8: Performance fgures of the NTT on MIPS64 in number of cycles.

Implementation no optimization (#cycles) -O2 (#cycles) -O3 (#cycles) opt (#cycles)

NTT1024 (NewHope1024 c32)
NTT512 (NewHope512 c32)
NTT1024 (vectorized)
NTT512 (vectorized)

439,970
197,296
-
-

196,989
86,651
-
-

196,990
86,647
-
-

-
-
85,348
38,755

Polynomial arithmetic vectorization. The same approach we utilized for optimizing the NTT can be
applied to implement the polynomial arithmetic operations of NewHope1024 and NewHope512. However,
in order to perform coeÿcients multiplication and pointwise multiplication via vectorization, both 128-
bit registers and respective SIMD instructions are required in order to avoid overfows. Since our target
architecture lacks both components we have only addressed the vectorization of the coeÿcient addition whose
overfow can be controlled. Further, in order to reduce the impact of our strategy, we reused the coeÿcient
storage method describe in the prior subsection. In this respect, we can perform two coeÿcient additions
using a single addition instruction after an NTT has been performed.

Keccak. The XOF SHAKE used in NewHope relies on the Keccak-f[1600] permutation [27]. Since the
main operations against internal state of 5x5 are performed on 64-bit words, MIPS64 is ideal for doing the
permutation directly on 64-bit registers. Besides, loading words into the state is also done using 64-bit words

5https://www.imgtec.com/mips/architectures/mips32/
6https://www.imgtec.com/mips/architectures/mips64/

23

458 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

and cycle reduction is achieved by (1) maintaining the 25 64-bit words of the state in registers exploiting the
large amount of registers available in the MIPS64 architecture during the ρ and χ layers and (2) reducing
memory access in the computation of the ρ layer by storing the input values directly from the θ layer.

However, when comparing our implementation with other architectures, the lack of a Bitwise Bit Clear
BIC instruction in the MIPS64r3 ISA (available for instance in the ARMv7-M architecture7) creates a small
performance penalty, since every operation of the χ layer requires three instructions (that is, one and, one or
and one xor operation).

Performance results. In order to estimate the number of cycles required by each primitive of NewHope1024
and NewHope512 we rely on the performance counters of the coprocessor 0 (CP0). In so doing, we set up
the performance counters in the before the start of of the primitive and measure again after the execution
has fnished.

Table 9: Performance fgures of NewHope1024 and NewHope512 (CPA) on MIPS64 in number of cycles.

Implementation no optimization (#cycles) -O2 (#cycles) -O3 (#cycles) opt (#cycles)

NewHope1024
NewHope-CPA-KEM Key Generation
NewHope-CPA-KEM Encapsulation
NewHope-CPA-KEM Decapsulation

8,421,677
2,948,707
4,378,938
1,093,115

3,099,586
1,114,148
1,645,474
339,177

2,456,793
857,679
1,277,601
322,128

1,705,203
589,613
882,443
232,543

NewHope512
NewHope-CPA-KEM Key Generation
NewHope-CPA-KEM Encapsulation
NewHope-CPA-KEM Decapsulation

4,079,865
1,425,656
2,123,245
530,569

1,518,736
544,466
806,941
167,074

1,186,890
413,041
617,037
156,203

864,812
299,922
448,791
115,767

Table 10: Performance fgures of NewHope1024 and NewHope512 (CCA) on MIPS64 in number of cycles.

Implementation no optimization (#cycles) -O2 (#cycles) -O3 (#cycles) opt (#cycles)

NewHope1024
NewHope-CCA-KEM Key Generation
NewHope-CCA-KEM Encapsulation
NewHope-CCA-KEM Decapsulation

14,466,351
3,329,101
5,078,734
6,058,512

5,524,430
1,298,382
1,481,606
2,244,514

4,290,417
981,655
1,517,853
1,791,563

2,871,081
651,810
1,021,702
1,197,556

NewHope512
NewHope-CCA-KEM Key Generation
NewHope-CCA-KEM Encapsulation
NewHope-CCA-KEM Decapsulation

7,029,073
1,611,787
2,485,018
2,931,568

2,702,808
633,120
979,139
1,089,937

2,063,742
470,209
734,888
858,111

1,473,698
334,100
530,373
609,107

Our performance fgures suggest that it is possible to achieve a reduction of 196,990 - 85,348 = 111,642
cycles in the NTT computation from NewHope1024 (that is, a speed up of factor 2.3) and a reduction of
86,647 - 38,755 = 47,892 cycles in the NTT computation from NewHope1024 (that is, a speed up of factor
1.8) (See Table 8). With opt we refer to the implementations based on the optimization techniques described
in this section. Besides, we noticed an overall reduction of factor 1.49 and factor 1.40 in the computation
of the whole protocol (NewHope1024 and NewHope512 respectively (CCA-KEM)). These improvements
were obtained by comparing our results with a compilation of NewHope1024/ NewHope512 using an
aggressive optimization option (-O3)8 (Table 10).

7http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c/index.html
8Using gcc version 4.7.0 for cross-compiling on Linux 4.12.0-2-amd64

24

— Internet: Portfolio 459

3 Known Answer Test values
All KAT values are included in subdirectories of the directory KAT of the submission package. Specifcally, the
KAT values of NewHope512-CPA-KEM are in the subdirectory KAT/newhope512cpa, the KAT values of
NewHope512-CCA-KEM are in the subdirectory KAT/newhope512cca, the KAT values of NewHope1024-
CPA-KEM are in the subdirectory KAT/newhope1024cpa, and the KAT values of NewHope1024-CCA-
KEM are in the subdirectory KAT/newhope1024cca. Each of those directories contains the KAT values as
generated by the PQCgenKAT_kem program provided by NIST. Specifcally, those fles are:
• KAT/newhope512cpa/PQCkemKAT_896.req
• KAT/newhope512cpa/PQCkemKAT_896.rsp
• KAT/newhope512cca/PQCkemKAT_1888.req
• KAT/newhope512cca/PQCkemKAT_1888.rsp
• KAT/newhope1024cpa/PQCkemKAT_1792.req
• KAT/newhope1024cpa/PQCkemKAT_1792.rsp
• KAT/newhope1024cca/PQCkemKAT_3680.req
• KAT/newhope1024cca/PQCkemKAT_3680.rsp

4 Justifcation of security strength

4.1 Provable security reductions

A summary of the provable security reductions underlying the security of NewHope-CCA-KEM is as
follows:

1. Using the centred binomial distribution ψk instead of a discrete Gaussian distribution provides negligible
advantage to an adversary. Section 4.1.1 gives a justifcation.

2. Using a pseudorandomly generated â in NewHope-CPA-PKE instead of a uniformly random â
provides no advantage to an adversary, under the assumption that SHAKE128 is a random oracle.

3. NewHope-CCA-KEM is an IND-CCA-secure KEM under the assumption that NewHope-CPA-PKE
is an IND-CPA-secure public key encryption scheme and that G and F (both instantiated as SHAKE256
are random oracles. Theorem 4.2 gives a tight, classical reduction against classical adversaries in the
classical random oracle model. Theorem 4.3 gives a non-tight, classical reduction against quantum
adversaries in the quantum random oracle model.

4. NewHope-CPA-PKE is an IND-CPA-secure public key encryption scheme under the assumption that
the decision ring learning with errors problem is hard. Theorem 4.4 gives a tight, classical reduction
against classical or quantum adversaries in the standard model.

5. The decision ring learning with errors problem is hard under the assumption that the search version of
the approximate shortest vector problem is hard (in the worst case) on ideal lattices in R, for appropriate
parameters. Lyubashevsky et al. [102, Thm. 3.6] give a polynomial-time quantum reduction against
classical or quantum adversaries in the standard model. See also [120, Thm. 2.7] for a simplifed version
of this result.

4.1.1 Binomial noise distribution

The original worst-case to average-case reductions for LWE [127] and Ring-LWE [103] state hardness for
continuous Gaussian distributions (and therefore also trivially apply to rounded Gaussians, which di˙er from
discrete Gaussians). This also extends to discrete Gaussians [35] but such proofs are not necessarily intended
for direct implementations. The use of discrete Gaussians (or other distributions with very high-precision
sampling) is only crucial for signatures [101] and lattice trapdoors [70], to provide zero-knowledgeness.

The following theorem states that choosing ψk as error distribution in NewHope-CPA-KEM (i.e., using
the algorithm Sample) does not signifcantly decrease security compared to a rounded Gaussian distribution p
with the same standard deviation σ = 8/2.

25

460 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

√
Theorem 4.1 Let ξ be the rounded Gaussian distribution of parameter σ = 4, that is, the distribution of √
b 4 · xe where x follows the standard normal distribution. Let P be the idealized version of NewHope-
CPA-KEM, where outputs from Sample are replaced by samples from ξ. If an (unbounded) algorithm, given
as input the public key and ciphertext of NewHope-CPA-KEM succeeds in recovering the shared secret ss
with probability p, then it would also succeed against P with probability at least

9/8 · 2−14 q ≥ p .

The result also holds for NewHope-CCA-KEM.

In [17], Bai et al. identify Rényi divergence as a powerful tool to improve or generalize security reductions
in lattice-based cryptography. We review the key properties. The Rényi divergence [129, 17] is parametrized
by a real a > 1, and defned for two distributions P, Q by:

⎛ ⎞ 1

X P (x)a
a−1

⎝ ⎠Ra(P kQ) = .
Q(x)a−1

x∈Supp(P)

It is multiplicative: if P, P 0 are independent, and Q, Q0 are also independent, then Ra(P × P 0kQ × Q0) ≤
Ra(P kQ) · Ra(P 0kQ0). Finally, Rényi divergence relates the probabilities of the same event E under two
di˙erent distributions P and Q:

Q(E) ≥ P (E)a/(a−1)/Ra(P ||Q).

Proof For our argument, recall that because the fnal shared key ss is obtained through hashing as
ss ← SHAKE256(K) before being used, then, in the random oracle model (ROM), any successful attacker
must recover K exactly. We call this event E. We also defne ξ to be the rounded Gaussian distribution p √ √
of parameter σ = k/2 = 4, that is the distribution of b 4 · xe where x follows the standard normal
distribution.

A simple script in [9] computes R9(ψ8kξ) ≈ 1.002. Yet because 5n samples are used per instance of the
protocol, we need to consider the divergence R9(P kQ) = R9(ψ8, ξ)5n where P = ψ5n and Q = ξ5n . For 8
n = 512 we get R9(P kQ) ≈ 164, and for n = 1024, we get R9(P kQ) ≈ 26889. In both cases, R9(P kQ) ≤ 214 .

The choice a = 9 is rather arbitrary but seemed a good trade-o˙ between the coeÿcient 1/Ra(ψ8kξ) and
the exponent a/(a − 1). This reduction is provided as a safeguard: switching from Gaussian to binomial
distributions can not dramatically decrease the security of the scheme. With practicality in mind, we will
simply ignore the loss factor induced by the above reduction, since the best-known attacks against LWE do
not exploit the structure of the error distribution, and seem to depend only on the standard deviation of the
error (except in extreme cases [14, 90]).

4.1.2 Security of IND-CCA KEM

Theorem 4.2 (IND-CPA PKE =⇒ IND-CCA KEM in classical ROM) We defne a public key en-
cryption scheme PKE = (KeyGen, Encrypt, Decrypt) with message space M and which is δ-correct. Let G and
F be independent random oracles. Let QKEM6⊥0 = QFO 6⊥0[PKE, G, F] be the KEM obtained by applying the m m
QFO 6⊥0 transform as in subsubsection 1.2.3. For any classical algorithm A against the IND-CCA security of m
QKEM6⊥0 that makes qG and qF queries to its G and F oracles, there exists a classical algorithm B againstm
the IND-CPA security of PKE such that

Advind-cca 4 · qRO + 1 ind-cpa(A) ≤ + qRO · δ + 3 · Adv (B)QKEM 6⊥0 |M| PKE m

where qRO = qG + qF . Moreover, the running time of B is about that of A.

Theorem 4.2 follows from Theorems 3.2 and 3.4 of Hofheinz, Hövelmanns, and Kiltz [85], with the following
modifcations. In the application of HHK’s Theorem 3.2, we take qV = 0. Note that Theorems 3.2 and
3.4 of HHK are about the FO 6⊥ transform, which di˙ers from the QFO 6⊥0 in the following ways. 1) QFO 6⊥0 m m

26

— Internet: Portfolio 461

uses a single hash function (with longer output) to compute K and coin0 whereas FO 6⊥ uses two; but this
is equivalent in the random oracle model with appropriate output lengths. 2) QFO 6⊥0’s computation of Km
and coin0 also takes the public key pk as input whereas FO 6⊥ does not; this does not negatively a˙ect any of
the theorems, and has the potential to provide multi-target security. 3) QFO 6⊥0 includes the d value in the m
ciphertext, whereas FO 6⊥ does not; since d is computed by applying a random oracle G to the secret µ ∈M,

qtaking advantage of d requires querying G on µ, which occurs with the additional probability term added |M|
in the theorem.

Theorem 4.3 (IND-CPA PKE =⇒ IND-CCA KEM in quantum ROM) We defne a public key
encryption scheme PKE = (KeyGen, Encrypt, Decrypt) with message space M and which is δ-correct. Let G
and F be independent random oracles. Let QKEM6⊥0 = QFO 6⊥0[PKE, G, F] be the KEM obtained by applying m m
the QFO 6⊥0 transform as in subsubsection 1.2.3. For any quantum algorithm A against the IND-CCA security m
of QKEM6⊥0 that makes qG and qF queries to its quantum G and F oracles, there exists a quantum algorithm m
B against the IND-CPA security of PKE such that

vu ut
s

1ind-cpaAdvind-cca (A) ≤ 9 · qRO · 2 · δ + qRO · Adv (B) + q PKERO |M|QKEM 6⊥0 m

where qRO = qG + qF . Moreover, the running time of B is about that of A.

Theorem 4.3 follows from Lemma 2.3 and Theorems 4.4 and 4.6 of Hofheinz, Hövelmanns, and Kiltz [85],
with the following modifcations. Note that Theorems 4.4 and 4.6 of HHK are about the QFO 6⊥ transform,m
which di˙ers from the QFO 6⊥0 in the following ways. 1) QFO 6⊥0 uses a single hash function (with longer output) m m
to compute K, coin0, and d whereas FO 6⊥ uses two; but this is equivalent in the random oracle model with
appropriate output lengths. 2) QFO 6⊥0’s computation of K, coin0, and d also takes the public key pk as input m
whereas FO 6⊥ does not; this does not negatively a˙ect any of the theorems, and has the potential to provide
multi-target security. 3) QFO 6⊥0’s computation of the shared secret ss also takes the encapsulation c as input; m
this does not negatively a˙ect any of the theorems, and provides robustness against ciphertext modifcation.

4.1.3 Security of IND-CPA PKE

Theorem 4.4 (dRLWE =⇒ IND-CPA security of NewHope-CPA-PKE) Let n and q be integers.
Let χ be a probability distribution on Rq . For any quantum algorithm A against the IND-CPA security of
NewHope-CPA-PKE (with uniformly random â), there exists quantum algorithms B1 and B2 against the
decision ring-LWE problem such that

ind-cpaAdv (B1) + AdvdRLWE (B2) .n,q,χ NewHope-CPA-PKE(A) ≤ AdvdRLWE
n,q,χ

Moreover, the running times of B1 and B2 are about that of A.

The proof of Theorem 4.4 is essentially the same as that of Lemma 4.1 of [120] or Theorem 1 of [31].

4.2 Cryptanalytic attacks

For our security analysis in this section we mainly rely on the (very pessimistic) concrete security analysis of
Ring-LWE based cryptosystems from [9]. Additionally, we also estimate the security level with the approach
presented in [7].

4.2.1 Methodology: the core SVP hardness

RLWE as LWE. We analyze the hardness of Ring-LWE as an LWE problem, since, so far, the best known
attacks do not make use of the ring structure. Indeed, while some new quantum algorithms against Ideal-SVP
recently appeared [56, 39, 28, 44, 45], they do not seem to a˙ect Ring-LWE. Precisely, in [45] two obstacles
are discussed. First the approximation factor reached are asymptotically sub-exponential and it is therefore
unlikely to a˙ect cryptographic parameters. Secondly, Ring-LWE is proven to be at least as hard as Ideal-SVP,

27

462 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

but the natural approach for a converse reduction seems to require the ring Z[X]/(Xn + 1) to be Euclidean,
which is only the case for n ∈ {1, 2, 4} (see [97]).

Attacks against LWE. There are many algorithms to consider in general (see the survey [7]), yet many of
those are irrelevant for our parameter set. In particular, because there are only m = n samples available one
may rule out BKW types of attacks [90] and linearization attacks [14]. This essentially leaves us with two
BKZ [136, 41] attacks, usually referred to as primal and dual attacks that we will briefy recall below.

The algorithm BKZ proceeds by reducing a lattice basis using an SVP oracle in a smaller dimension b.
It is known [78] that the number of calls to that oracle remains polynomial, yet concretely evaluating the
number of calls is rather painful, and this is subject to new heuristic ideas [41, 40, 12]. We choose to ignore
this polynomial factor, and rather evaluate only the core SVP hardness, that is the cost of one call to an
SVP oracle in dimension b, which is clearly a pessimistic estimation from the defender’s point of view.

4.2.2 Enumeration versus quantum sieve

Typical implementations of BKZ [65, 41, 38] use an enumeration algorithm as its SVP oracle, yet this
algorithm runs in super-exponential time 2Θ(n log n). On the other hand, the sieve algorithms are known to
run in exponential time, but are so far slower in practice for accessible dimensions b ≈ 130. In recent work
Ducas [53] has shown that sieving techniques (in the classical setting) can be used in practice for exact-SVP,
being now less than an order of magnitude slower than enumeration already in dimension 60 to 80.

For simplicity and conservatism, we will choose a reasonable lower bound for both enumeration and sieving.
Namely, our bounds follow the asymptotic complexity of sieving algorithms, yet ignoring sub-exponential
factors, when calculating cost in those attacks. According to the prediction of [41], even with Grover
acceleration, the cost of enumeration is also lower-bounded by our estimates for blocksizes b ≥ 250.

Quantum sieve. A lot of recent work has pushed the eÿciency of the original lattice sieve algorithms [114, p b+o(b)≈ 20.415b ≈ 20.292b109], improving the heuristic complexity from (4/3)b+o(b) down to 3/2 using
Locality Sensitive Hashing (LSH) techniques [93, 20]. The hidden sub-exponential factor is known to be much
greater than one in practice, so again, estimating the cost ignoring this factor leaves us with a signifcant
pessimistic margin.

Most of those algorithms have been shown [94, 92] to beneft from Grover’s quantum search algorithm,
bringing the complexity down to 20.265b. It is unclear if further improvements are to be expected, yet, because p b+o(b)
all those algorithms require classically building lists of size 4/3 ≈ 20.2075b. It is thus very plausible
that the best quantum SVP algorithm would run in time greater than 20.2075b .

Discarding enumeration for our analysis. In [41], predictions of the cost of solving SVP classically using
sophisticated heuristic enumeration algorithms are given. For example, solving SVP in dimension 100 requires
visiting about 239 nodes, and 2134 nodes in dimension 250. Note that the cost for enumeration are here given
in term of visited nodes in the enumeration tree, and visiting each of those nodes require about 100 cycles
according to [41]. For simplicity and conservatism, we will assume that each node requires only one cycle.

Because this enumeration is a backtracking algorithm, it does beneft from the recent quasi-quadratic
speedup [110], decreasing the quantum cost to about at least 220 to 267 operations as the dimension increases
from 100 to 250. Again, this is quite conservative as the quantum version of this backtracking algorithm is
subject to slowdowns polynomial in the depth of the tree.

On the other hand, our best-known attack bound 20.265b gives a cost of 266 in dimension 250, and the
best plausible attack bound 20.2075b ≈ 239. Because enumeration is super-exponential (both in theory and
practice), its cost will be worse than our bounds in dimension larger than 250 and we may safely ignore this
algorithm.9

We note that a recent technique formalized as discrete pruning [60, 11] seems to outperform the previous
pruned enumeration of [41]. Unfortunately, no tools are currently available to fully predict the cost of this
new techniques. We hope that future work will clarify these issues. Our current understanding is that this
methods visits more nodes of the enumeration tree, but visit them much faster by removing the intricate
backtracking steps. By counting the number of visited nodes rather than the count of CPU cycles, our lower
bound should therefore also apply to this new discrete pruning technique.

9The numbers are taken from the latest full version of [41] available at http://www.di.ens.fr/~ychen/research/Full_BKZ.
pdf.

28

— Internet: Portfolio 463

4.2.3 Primal attack

The primal attack consists of constructing a unique-SVP instance from the LWE problem and solving it using
BKZ. We examine how large the block dimension b is required to be for BKZ to fnd the unique solution. Given
the matrix LWE instance (A, b = As+e) one builds the lattice Λ = {x ∈ Zm+n+1 : (A|−Im|−b)x = 0 mod q}√
of dimension d = m + n + 1, volume qm, and with a unique-SVP solution v = (s, e, 1) of norm λ ≈ ς n + m.
Note that the number of used samples m may be chosen between 0 and 2n in our case and we numerically
optimize this choice.

Success condition. We model the behavior of BKZ using the geometric series assumption (which is known
to be optimistic from the attacker’s point of view), that fnds a basis whose Gram-Schmidt norms are given
by kb?k = δd−2i−1 · Vol(Λ)1/d where δ = ((πb)1/b · b/2πe)1/2(b−1) [40, 7]. The unique short vector v will be i
detected if the projection of v onto the vector space spanned by the last b Gram-Schmidt vectors is shorter √
than b? . Its projected norm is expected to be ς b, that is the attack is successful if and only if d−b

√
ς b ≤ δ2b−d−1 · qm/d. (1)

We note that this analysis introduced in [9] di˙ers and is more conservative than prior works, which were
typically based on the hardness of unique-SVP estimates of [63]. The validity of the new analysis has been
confrmed by further analysis and experiments in [6].

4.2.4 Dual attack

The dual attack consists of fnding a short vector in the dual lattice w ∈ Λ0 = {(x, y) ∈ Zm × Zn : Atx =
t ty mod q}. Assume we have found a vector (x, y) of length ̀ and compute z = v · b = vtAs + v e =

t tw s + v e mod q which is distributed as a Gaussian of standard deviation ̀ ς if (A, b) is indeed an LWE
sample (otherwise it is uniform mod q). Those two distributions have maximal variation distance bounded
by � = 4 exp(−2π2τ2) where τ = `ς/q, that is, given such a vector of length ̀ one has an advantage � against
decision-LWE.

The length ̀ of a vector given by the BKZ algorithm is given by ̀ = kb0k. Knowing that Λ0 has dimension
n ` = δd−1d = m + n and volume q we get qn/d. Therefore, obtaining an �-distinguisher requires running BKZ

with block dimension b where
− 2π2τ2 ≥ ln(�/4). (2)

Note that small advantages � are not relevant since the agreed key is hashed: an attacker needs an advantage
of at least 1/2 to signifcantly decrease the search space of the agreed key. He must therefore amplify his
success probability by building about 1/�2 many such short vectors. Because the sieve algorithms provide
20.2075b vectors, the attack must be repeated at least R times where

R = max(1, 1/(20.2075b�2)).

This makes the conservative assumption that all the vectors provided by the Sieve algorithm are as short as
the shortest one.

4.2.5 Security analysis

The cost of the primal attack and dual attacks are given in Table 11. They were obtained by executing
our script in scripts/PQsecurity.py. According to our analysis, we claim that our proposed parameters
for NewHope1024 o˙er 233 bits of security. Thus we are stronger (and quite likely with a large margin)
than a post-quantum security level of 128 bits. In particular, NewHope1024 could even withstand a
dimension-halving attack in the line of [66, Sec 8.8.1] based on the Gentry-Szydlo algorithm [71, 98] or
the subfeld approach of [5]. Note that so far, such attacks are only known for principal ideal lattices or
NTRU lattices, and there are serious obstructions to extend them to Ring-LWE, but such precaution seems
reasonable until lattice cryptanalysis stabilizes. For our NewHope512 parameter set we claim 101 bits of
security.

In addition to our own analysis, we have used a freely available tool to evaluate the concrete security of
LWE instances [7]. This approach is less pessimistic than our original security analysis, in particular it takes

29

464 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Attack m b
Known Known Best

Classical Quantum Plausible

BCNS proposal [31]: q = 232 − 1, n = 1024, ς = 3.192
Primal
Dual

1062 296
1055 296

86 78 61
86 78 61

NTRUencrypt [82]: q = 212 , n = 743, ς ≈ 2/3
Primal
Dual

613 603
635 600

176 159 125
175 159 124√

p

JarJar-Usenix [9]: q = 12289, n = 512, ς = 12
Primal
Dual

623 449
602 448

131 119 93
131 118 92√

NewHope-Usenix [9]: q = 12289, n = 1024, ς = 8
Primal
Dual

1100 967
1099 962

282 256 200
281 255 199

√
NewHope512: q = 12289, n = 1024, ς = 4
Primal
Dual

540 384
545 383

112 101 79
112 101 79√

NewHope1024: q = 12289, n = 1024, ς = 4
Primal
Dual

999 886
1048 881

259 235 183
257 233 182

Table 11: Core hardness of NewHope512 and NewHope1024 and selected other proposals from the literature as
well as previous instantiations of NewHope. The value b denotes the block dimension of BKZ, and m the number of
used samples. Cost is given in log2 of CPU operations and is the smallest cost for all possible choices of m and b.
Note that our estimation is very optimistic about the abilities of the attacker so that our result for the parameter

≈ 280set from [31] does not indicate that it can be broken with bit operations, given today’s state-of-the-art in
cryptanalysis.

account for the number of SVP calls, and estimate the cost of classical sieving to 2.292b+16. In Table 12 we
provide the results for NewHope512 and NewHope1024. These values have been obtained by executing
for di˙erent values of n and k using the sage module as follows:

load("https://bitbucket.org/malb/lwe-estimator/raw/HEAD/estimator.py")
k = 8.0; n = 1024; q = 12289; stddev = sqrt(k/2); alpha = alphaf(sigmaf(stddev), q)
_ = estimate_lwe(n, alpha, q, reduction_cost_model=BKZ.sieve)

The estimation in Table 12 also leads to the conclusion that NewHope1024, with a security level of
289 bits, reaches well beyond a security level of 128 bits. For NewHope512 a bit-security level of 142
bits is obtained. Most other (R)LWE-based or NTRU-based proposals achieve considerably lower security
than NewHope1024. For comparison we also give a lower bound on the security of [31] and do notice a
signifcantly improved security in our proposal. Yet, because of the numerous pessimistic assumption made in
our analysis, we do not claim any quantum attacks reaching those bounds. The highest-security parameter
set used for RLWE encryption in [72] is very similar to the parameters of JarJar-Usenix. The situation
is di˙erent for NTRUencrypt, which has been instantiated with parameters that achieve about 128 bits
of security according to our analysis10. Specifcally, we refer to NTRUencrypt with n = 743 as suggested
in [82]. A possible advantage of NTRUencrypt compared to NewHope is somewhat smaller message sizes,
however, this advantage becomes very small when scaling parameters to achieve a similar security margin as
NewHope.

10For comparison we view the NTRU key-recovery as an homogeneous Ring-LWE instance. We do not take into account
the combinatorial vulnerabilities [86] induced by the fact that secrets are ternary. We note that NTRU is a potentially a
weaker problem than Ring-LWE: it is in principle subject to a subfeld-lattice attack [5], but the parameters proposed for
NTRUencrypt are immune.

30

— Internet: Portfolio 465

usvp dec dual
JarJar-Usenix 161 198 185
NewHope-Usenix 313 410 356
NewHope512 142 171 163
NewHope1024 289 373 334

Table 12: Hardness of NewHope512 and NewHope1024 in the model of [7]. The analysis is based on a cost of
2.292b+16.4 for each call to the (classical) sieve of [20], an estimate that lies between our lower bound of 2.292b, and
the measured cost in practice [20, 105]. This models also account for the number of calls to the sieve inside BKZ.
The ‘usvp’ attack is similar what we call the ‘primal’ attack, while the ‘dec’ attack is a weaker variation trying to
solve BDD without embedding it to a unique-SVP problem, by frst reducing the primal lattice and then decoding the
target vector using Babai decoding. Please refer to [7] for details. The dual attack they consider is also similar to the
one described above.

4.2.6 Cost model and margins

Considering that lattice cryptanalysis is not a fully matured research area and that substantial improvement
are still appearing, it seems preferable to leave signifcant margins in our security claims. The state-of-the art
is unfortunately not as refned for lattice algorithm as it is can be for a memory-less brute-force attack on
AES [73]. An analysis based on the current state of the art, using a model as refned as suggested by the
call for proposal seems, in our case, way too intricate, prone to mistakes, and would likely become irrelevant
within a few year.

We prefer to perform our analysis in simpler model; yet all the simplifcations are done in favor of the
attacker, and serve as margins. Those simplifcations also contribute to make our analysis and scripts easier
to verify. We list them here.

Asymptotic versus concrete. We used theoretical complexity of Sieving omitting sub-exponential factors.
For the best asymptotic sieve algorithm [20] with complexity 2.292b+o(b), it is typically reported that the
ftted practical complexity f · 2cb is quite larger than 2.292b, including a large constant factor f and a constant
c. For example, the initial implementation [20] reports a ft of about 2.387b+16 clock-cycles on a x86-64 CPU,
in the range of dimensions 60 − 80.

We prefer not to conclude on a quantifed margin considering further works. Indeed, the implementation
of [105] reports signifcant speed-ups using fne tuning and low-level optimizations (up to ×50), but unfortu-
nately no ft is provided. Further improvements are expected by combining those techniques with the very
recent SubSieve algorithm of [53]: quantifed claims seems premature.

Core SVP hardness versus BKZ. We also ignored the fact that the attacks actually require polynomially
many calls to BKZ, and the best concrete predictions are typically based on simulations [41, 7]. Those
simulation gets more complicated to perform as we include more techniques such as [12]. One may doubt the
reliability of such simulations and fear further improvement of BKZ strategies. Moreover, some amortization
strategies of sieving in BKZ sketched in [53] remains to be studied. Our core SVP-hardness approach dismisses
those concerns.

CPU cycles versus gates. We also note that the concrete cost measured above is expressed in numbers of
x86-64 CPU cycles, rather than gate count. If one wishes to evaluate the gate count, we warn against naive
implementations whose main cost are derived from ‘Multiply-and-Add’ operations inside inner-product loops.
Some recent works [57, 53] show how to avoid most inner-products, resorting primarily to ‘xor-popcount’
operations.

RAM model versus circuits. The complexity of those algorithms have been analyzed in the quantumly
accessible RAM model, but considering the amount of memory they require, it is not clear whether realistic
architecture would scale well. Even for classical algorithm, it is not clear that the complexity 2.292b+o(b) can
be achieved by a circuit. On the contrary, for the simplest version of the sieve algorithm with complexity

1120.415b, it seems possible to design an eÿcient circuit with area = time = 2.2075b+o(b). It is plausible that
11While this has not been studied in details for now, this was pointed out by Paul Kirchner on a public mailing-

list https://groups.google.com/d/msg/cryptanalytic-algorithms/BoSRL0uHIjM/wAkZQlwRAgAJ.

31

466 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

the LSH techniques can also be applied in the circuit model to some extent, but these techniques will likely
be more costly than in the RAM model, if not by exponential factors, at least by a substantial polynomial
factor.

Amount of memory. Even without considering the issues with (quantumly) accessing such large amount of
memory, mobilizing the required amount of memory can already be considered completely infeasible for the
parameters of NewHope1024. Indeed, the fastest algorithm requires 20.265b+o(b) bits of storage, estimated
at 2233 bits. It is claimed in [20] that the amount of memory may be reduced down to 2.2075b+o(b) without
a˙ecting the asymptotic running time, but it may a˙ect it signifcantly in practice. Moreover, even this
amount 2.2075b+o(b) of memory, concretely lower bounded by 2182 bits for NewHope1024 already exceed the
numbers of atoms on earth. For NewHope512, the memory lower bound of 279 bits is comparable to the
total amount of data storage available world-wide in 2017 (estimated to 295 exabytes ≈ 271 in 2007 [81], and
growing at a rate of 58% per year).

We note that some variants of sieving require less memory at the cost of being signifcantly slower both
asymptotically and in practice [16, 79].

MAXDEPTH for quantum computation. While the maximal depth of a quantum computation have a
direct impact on the security level of primitives like AES, we note that this may not be the case for the lattice
attacks considered here. Indeed, while sieving is subject to Grover accelerations [94, 92], these Grover search
are applied to a rather small search space, and many of them may be ran in parallel. In that respect, it seems
that setting MAXDEPTH to 264 or even 240 may not a˙ect the eÿciency of a quantum attack. For simplicity
and conservatism, we prefer to not account for such a limitation on the adversary computational resources.

4.2.7 Failure analysis and attack exploiting failure

For our analysis of the failure rate of NewHope512 and NewHope1024 we follow the approach from [9].
The script in scripts/failure-1024k8.py gives a failure rate of less than 2−216 for NewHope1024. For
our NewHope512 instance we obtain a similar failure rate of less than 2−213 as provided in the script
scripts/failure-512k8.py.

Attacks exploiting failure have been studied in [58] against a CPA version of NewHope, and required
generating about 4000 decryption requests. The attack consist of using much larger errors than defned by
the protocol.

One may fear that an attacker using Grover search could produce a failing ciphertext in time about
2−216/2 for the CCA versions of our scheme. Yet, this would require the adversary to decide o˜ine whether a
ciphertext triggers failure. This is not possible, since triggering failure also involves the randomness of the
decryptor’s secret. Moreover, the failure rate given above are upper bounds, that we do not expect to be so
tight. In conclusion, we do not expect decapsulation failures to induce any weaknesses.

5 Expected security strength
In the light of the analysis of Section 4.2 we estimate the following security levels for the two versions of our
scheme, according to the 1 to 5 scale provided in Section 4.A.5 (Security Strength Categories) of the call
provided by the NIST:
• NewHope512: Level 1 (equivalent to AES128, i.e. 2170/MAXDEPTH quantum gates or 2143 classical

gates) with a claimed post-quantum bit-security of 101 bits.
• NewHope1024: Level 5 (equivalent to AES256, i.e. 2298/MAXDEPTH quantum gates or 2272 classical

gates) with a claimed post-quantum bit-security of 233 bits.
The above claims are meant for any value of MAXDEPTH ≥ 240 . Indeed, we note that this level are

easier to achieve as MAXDEPTH increase (since the security of AES decrease as MAXDEPTH increase,
while MAXDEPTH does not a˙ect the security analysis of our scheme).

In more details, the cost given in Table 12 following the methodology of [7] are directly corroborating
these security strength, despite optimistic cost of Sieving, and counting CPU cycles rather than gates. The
much more conservative lower bounds of Table 11 remain somewhat below the gatecounts associated to
these level. Yet, in the lights of the margins discussed in Section 4.2.6, this security strength should still

32

— Internet: Portfolio 467

be comfortably conservative. In particular, in unlike attacks against AES, the fastest attacks against our
scheme resort to very large amounts of memory (at least 279 bits for NewHope512, and at least 2182 bits
for NewHope1024), which makes a direct comparison of gatecounts less relevant.

6 Advantages and limitations

6.1 Summary

From our point of view, NewHope is a fast, eÿcient, and simple scheme that is a suitable replacement of
RSA and ECC. The main advantages of NewHope and our parameter choices are:

– High performance. NewHope has been implemented on a wide range of platforms and showed very
good performance and features reasonable sized key and ciphertexts. Even for a category 5 scheme with
233 bits of security, performance seems to be similar to currently used elliptic curve based cryptosystems.

– Simplicity and ease of implementation. A basic NewHope implementation is very simple and
can be done with only few lines of code in a tool like SageMath or other mathematical software. The
complexity of the fnal reference implementation mostly stems from encoding and decoding functions
that are unavoidable as well as the particular NTT implementation. Additionally, the di˙erence between
parameter sets is kept minimal as only n and γ change between NewHope512 and NewHope1024.
Moreover, the NewHope-Usenix code has already been ported into various programming languages12 .
A successful integration of NewHope-Usenix into Google Chrome [95] and OpenSSL/Apache [30]
shows the suitability for usage in a hybrid setup.

– Memory eÿciency. The implicit usage of the NTT allows for memory eÿcient in place computation.
No big temporary data structures are required.

– Conservative design. We claim that NewHope1024 has a considerable security margin and is based
on a conservative security analysis that leaves room for improvements in cryptanalysis. Moreover, the
scheme is designed to be somewhat misuse resistant: for example, the leakage of information from the
system random number generator more diÿcult because we always hash random coins before using
them.

– Implementation security. While more e˙ort on implementation security is needed, some works
already exist that deal with lattice-based cryptography and schemes similar to NewHope.

Some of our design choices lead to certain trade-o˙ and we came to the conclusion we accept some disadvantages
in our design due to the benefts we gain in other areas (e.g., speed, performance, simplicity). The disadvantages
of NewHope we would like to point out are:

– Small noise distribution. The choice of k = 8 was made as a tradeo˙ for both parameter sets, to
achieve negligible decryption error rates, and to simplify sampling as we can access the randomness
byte-wise. However, some security could be gained by optimizing k for n = 512 and n = 1024 and
for more security in an ephemeral Diÿe-Hellman variant where correctness is less important (like the
original NewHope-Usenix).

– Ring-LWE. The usage of the Ring-LWE problem is the basis for the good performance and simplicity
of NewHope and currently no attacks are known that can exploit the addition structure. However,
the standard LWE assumption could be considered more conservative and thus a better choice in case
the next years lead to progress in the cryptanalysis of RLWE.

– Limited Parametrization. It is hard with the current structure of NewHope to construct a scheme
that achieves NIST security category 2,3, or 4 as either ring dimension n = 512 or n = 1024 has to be
used.

– Restrictions due to usage of the NTT. We use the NTT in our basic CPA-secure scheme for
eÿciency reasons and we output elements in the NTT domain. Past research shows that the NTT is a
very suitable way to implement polynomial multiplication on various platforms, especially for large
dimensions n. However, this design choice also somewhat restricts the implementer from choosing
a polynomial multiplication algorithm of their choice, like Nussbaumer, Karatsuba, or Schoolbook
multiplication, or at least leads to a performance impact of doing so. If a di˙erent polynomial

12See https://ianix.com/pqcrypto/pqcrypto-deployment.html.

33

468 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

multiplication algorithm is used, it is still required to transform elements into the NTT domain with
our exact parameters.

6.2 Compatibility with existing deployments and hybrid schemes

The original IND-CPA-secure key encapsulation mechanism NewHope-Usenix has been demonstrated as
suitable for use in existing network protocol deployments and in hybrid schemes by several works.

An experiment conducted by Google [95] used NewHope-Usenix alongside ephemeral elliptic curve
Diÿe–Hellman (ECDH) key exchange in a hybrid TLS 1.2 ciphersuite in an experimental version of the
Chrome browser. In their report at the end of a 4 month experiment, Google engineers reported that they
“did not fnd any unexpected impediment to deploying something like NewHope. There were no reported
problems caused by enabling it.” They further elaborated that “the median connection latency only increased
by a millisecond, the latency for the slowest 5% increased by 20ms and, for the slowest 1%, by 150ms”, and
speculated the the latency increase was due primarily to increased communication sizes, not computational
overhead due to the low computational cost of NewHope-Usenix.

Bos et al. [30] compared the performance of several post-quantum key exchange methods, including
NewHope-Usenix, within TLS 1.2 using OpenSSL and Apache, measuring latency and throughput of
HTTPS connections using either only post-quantum key exchange or hybrid post-quantum key exchange
with ECDH in a local network environment. They found that, despite the larger communication size of
NewHope-Usenix, it could support more connections per second and had lower latency than ECDH. Hybrid
ECDH + NewHope-Usenix did result in a small decrease in throughput and latency compared to only
ECDH connections, but only a 3–5% decrease. For details, see Table 5 of [30].

While the above results were about NewHope-Usenix, NewHope-CCA-KEM should not behave very
di˙erently. As noted earlier, the primary di˙erence is that NewHope-CCA-KEM uses key transport to
establish its shared secret, rather than reconciliation like in NewHope-Usenix, and that NewHope-CCA-
KEM achieves IND-CCA security by using a variant of the Fujisaki–Okamoto transform to reconstruct
and check ciphertexts. Communication sizes (ciphertexts) increase by 32 bytes, which should have minimal
e˙ect. Computation costs of NewHope-CCA-KEM are higher than NewHope-Usenix, primarily to the
re-encryption in the decapsulation operation. NewHope-CCA-KEM’s extremely fast performance means
the cost of this re-encryption is still quite small.

6.3 Ease of implementation and hardware implementations

Implementations of the RLWE scheme of Lyubashevsky et al. [102] (LPR10) on microcontrollers are given
in [100, 124]. Additionally, Infneon has announced the successful implementation of a variant of NewHope
on a smart card microcontroller [87].

Several implementations of lattice-based cryptography on reconfgurable hardware have been provided so
far. Instantiations of the basic LPR10 scheme on FPGAs are given in [72, 132, 123]. Works that implement
NewHope-Usenix on FPGAs are [91] and [115].

6.4 Side-channel resistance

Several works already consider side-channel attacks on lattice-based primitives and the construction of
countermeasures. Basic mechanism to protect the NTT and arithmetic of lattice-based schemes can be
found in [133]. Works that deal proposed protected implementations of CPA-secure Ring-LWE-based scheme
are [131] and [130]. Simple power analysis (SPA) attacks are proposed in [125] and [117]. The frst work
dealing with side-channel protection of a CCA-secure Ring-LWE-based scheme can be found in [116] (see
Table 7 and Section 2.3). They provide a provably frst-order secure masking scheme and its non-trivial
integration into a CCA2 conversion. An interesting result is that for full protection of the secret key and
message in the probing model, a masked noise sampler is required for re-encryption and a frst design
of corresponding protected binomial sampler is provided. The implementation and measurements were
carried out on an ARM Cortex-M4F were experimentally verifed by using the common non-specifc t-test
methodology. The masked CCA2-decryption, with very similar parameters and construction as proposed
for NewHope, takes 25,334,493 cycles which is an overhead factor of 5.7 compared to the CCA2-secure

34

— Internet: Portfolio 469

decryption without masking. Thus decryption requires roughly to 152 milliseconds runtime at 168 MHz. The
overhead cost for the masking of the CCA2-secure decryption is mainly due to the high cost of the sampling.
The sampling in turn heavily depends on the performance of the PRNG, in this case SHAKE128. An insecure
approach with an unmasked re-encryption would require around 2 million cycles only. However, such an
implementation would not provide suÿcient protection against a side-channel adversary in a chosen-ciphertext
scenario. Due to the high similarity of [116] and NewHope we expect very similar results for a side-channel
secured implementation of our proposal.

References
[1] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halderman, N. Heninger,

D. Springall, E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow, S. Z. Béguelin, and P. Zimmermann.
Imperfect forward secrecy: How Diÿe-Hellman fails in practice. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security (CCS), pages 5–17. ACM, 2015.
https://weakdh.org/.

[2] C. Aguilar-Melchor, J. Barrier, L. Fousse, and M.-O. Killijian. Xpir: Private information retrieval
for everyone. Proceedings on Privacy Enhancing Technologies, 2016(2):155–174, 2016. URL: https:
//eprint.iacr.org/2014/1025.

[3] M. Ajtai. The shortest vector problem in L2 is NP -hard for randomized reductions (extended abstract).
In J. S. Vitter, editor, Proceedings of the 30th ACM Symposium on the Theory of Computing, pages
10–19. ACM, 1998. doi:10.1145/276698.276705.

[4] M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vector problem. In
J. S. Vitter, P. G. Spirakis, and M. Yannakakis, editors, Proceedings of the 33rd ACM Symposium on
Theory of Computing, pages 601–610. ACM, 2001. doi:10.1145/380752.380857.

[5] M. Albrecht, S. Bai, and L. Ducas. A subfeld lattice attack on overstretched ntru assumptions. In
Advances in Cryptology – CRYPTO 2016, volume 9814 of LNCS, pages 153–178. Springer, 2016. URL:
https://eprint.iacr.org/2016/127.

[6] M. R. Albrecht, F. Göpfert, F. Virdia, and T. Wunderer. Revisiting the expected cost of solving usvp
and applications to LWE. In Advances in Cryptology – ASIACRYPT 2017. Springer, 2017. To appear.

[7] M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of learning with errors. J.
Mathematical Cryptology, 9(3):169–203, 2015. URL: http://www.degruyter.com/view/j/jmc.2015.
9.issue-3/jmc-2015-0016/jmc-2015-0016.xml.

[8] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. NewHope without reconciliation. Cryptology
ePrint Archive, Report 2016/1157, 2016. URL: https://eprint.iacr.org/2016/1157.

[9] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum key exchange - A new hope.
In T. Holz and S. Savage, editors, Proceedings of the 25th USENIX Security Symposium, pages 327–
343. USENIX Association, 2016. URL: https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/alkim.

[10] E. Alkim, P. Jakubeit, and P. Schwabe. NewHope on ARM Cortex-M. In C. Carlet, M. A. Hasan,
and V. Saraswat, editors, Proceedings of the 6th International Conference on Security, Privacy, and
Applied Cryptography Engineering (SPACE), volume 10076 of LNCS, pages 332–349. Springer, 2016.
doi:10.1007/978-3-319-49445-6_19.

[11] Y. Aono and P. Q. Nguyen. Random sampling revisited: lattice enumeration with discrete pruning. In
Advances in Cryptology – EUROCRYPT 2017, volume 10211 of LNCS, pages 65–102. Springer, 2017.
doi:10.1007/978-3-319-56614-6_3.

35

470 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

[12] Y. Aono, Y. Wang, T. Hayashi, and T. Takagi. Improved progressive BKZ algorithms and their
precise cost estimation by sharp simulator. In M. Fischlin and J. Coron, editors, Advances in
Cryptology – EUROCRYPT 2016, volume 9665 of LNCS, pages 789–819. Springer, 2016. doi:
10.1007/978-3-662-49890-3_30.

[13] B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives and circular-secure
encryption based on hard learning problems. In Advances in Cryptology – CRYPTO 2009, volume 5677
of LNCS, pages 595–618. Springer, 2009. doi:10.1007/978-3-642-03356-8_35.

[14] S. Arora and R. Ge. New algorithms for learning in presence of errors. In L. Aceto, M. Henzingeri,
and J. Sgall, editors, Automata, Languages and Programming, volume 6755 of LNCS, pages 403–415.
Springer, 2011. https://www.cs.duke.edu/~rongge/LPSN.pdf.

[15] L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem. Combinator-
ica, 6(1):1–13, 1986. http://www.csie.nuk.edu.tw/~cychen/Lattices/On%20lovasz%20lattice%
20reduction%20and%20the%20nearest%20lattice%20point%20problem.pdf.

[16] S. Bai, T. Laarhoven, and D. Stehlé. Tuple lattice sieving. LMS Journal of Computation and
Mathematics, 19(A):146–162, 2016.

[17] S. Bai, A. Langlois, T. Lepoint, D. Stehlé, and R. Steinfeld. Improved security proofs in lattice-based
cryptography: using the Rényi divergence rather than the statistical distance. In T. Iwata and J. H.
Cheon, editors, Advances in Cryptology – ASIACRYPT 2015, volume 9452 of LNCS, pages 3–24.
Springer, 2015. doi:10.1007/978-3-662-48797-6_1.

[18] A. Banerjee, C. Peikert, and A. Rosen. Pseudorandom functions and lattices. In Advances in
Cryptology – EUROCRYPT 2012, volume 7237 of LNCS, pages 719–737. Springer, 2012. doi:10.1007/
978-3-642-29011-4_42.

[19] P. Barrett. Implementing the Rivest Shamir and Adleman public key encryption algorithm on a
standard digital signal processor. In A. M. Odlyzko, editor, Advances in Cryptology – CRYPTO ’86,
volume 263 of LNCS, pages 311–323. Springer, 1987.

[20] A. Becker, L. Ducas, N. Gama, and T. Laarhoven. New directions in nearest neighbor searching
with applications to lattice sieving. In Proceedings of the 27th ACM-SIAM Symposium on Discrete
Algorithms (SODA). SIAM, 2016.

[21] D. J. Bernstein. Curve25519: New Diÿe-Hellman speed records. In M. Yung, Y. Dodis, A. Kiayias,
and T. Malkin, editors, Proceedings of the 9th International Conference on Public Key Cryptography
(PKC), volume 3958 of LNCS, pages 207–228. Springer, 2006. doi:10.1007/11745853_14.

[22] D. J. Bernstein, T. Chou, C. Chuengsatiansup, A. Hülsing, T. Lange, R. Niederhagen, and C. van
Vredendaal. How to manipulate curve standards: a white paper for the black hat. Cryptology ePrint
Archive report 2014/571, 2014. URL: https://eprint.iacr.org/2014/571/.

[23] D. J. Bernstein, C. Chuengsatiansup, T. Lange, and P. Schwabe. Kummer strikes back: new DH speed
records. In T. Iwata and P. Sarkar, editors, Advances in Cryptology – EUROCRYPT 2015, volume 8873
of LNCS, pages 317–337. Springer, 2014. Full version: http://cryptojedi.org/papers/#kummer.

[24] D. J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederhagen, L. Papachristodoulou, M. Schneider,
P. Schwabe, and Z. Wilcox-O’Hearn. SPHINCS: practical stateless hash-based signatures. In E. Oswald
and M. Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, volume 9056 of LNCS, pages
368–397. Springer, 2015. URL: https://cryptojedi.org/papers/#sphincs.

[25] D. J. Bernstein and T. Lange. eBACS: ECRYPT benchmarking of cryptographic systems. URL:
http://bench.cr.yp.to.

[26] D. J. Bernstein, P. Schwabe, and G. V. Assche. Tweetable FIPS 202, 2015. URL: http://keccak.
noekeon.org/tweetfips202.html.

36

— Internet: Portfolio 471

[27] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Keccak. In T. Johansson and P. Q. Nguyen,
editors, Advances in Cryptology – EUROCRYPT 2013, volume 7881 of LNCS, pages 313–314. Springer,
2013.

[28] J.-F. Biasse and F. Song. Eÿcient quantum algorithms for computing class groups and solving the
principal ideal problem in arbitrary degree number felds. In Proceedings of the 27th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 893–902. SIAM, 2016.

[29] A. Blum, M. L. Furst, M. J. Kearns, and R. J. Lipton. Cryptographic primitives based on hard learning
problems. In D. R. Stinson, editor, Advances in Cryptology – CRYPTO, volume 773 of LNCS, pages
278–291. Springer, 1993. doi:10.1007/3-540-48329-2_24.

[30] J. W. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko, A. Raghunathan, and
D. Stebila. Frodo: Take o˙ the ring! practical, quantum-secure key exchange from LWE. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS), pages
1006–1018, 2016. doi:10.1145/2976749.2978425.

[31] J. W. Bos, C. Costello, M. Naehrig, and D. Stebila. Post-quantum key exchange for the TLS protocol
from the ring learning with errors problem. In 2015 IEEE Symposium on Security and Privacy, pages
553–570, 2015. URL: https://eprint.iacr.org/2014/599.

[32] J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe, and D. Stehlé.
CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM. Cryptology ePrint Archive, report
2017/634, 2017. URL: https://eprint.iacr.org/2017/634.

[33] J. W. Bos, K. E. Lauter, J. Loftus, and M. Naehrig. Improved security for a ring-based fully
homomorphic encryption scheme. In M. Stam, editor, Proceedings of the 14th IMA Interna-
tional Conference on Cryptography and Coding, volume 8308 of LNCS, pages 45–64. Springer, 2013.
doi:10.1007/978-3-642-45239-0_4.

[34] C. Bösch, J. Guajardo, A.-R. Sadeghi, J. Shokrollahi, and P. Tuyls. Eÿcient helper data key extractor on
FPGAs. In Proceedings of the 10th International Workshop on Cryptographic Hardware and Embedded
Systems (CHES), volume 5154 of LNCS, pages 181–197, 2008. doi:10.1007/978-3-540-85053-3_12.

[35] Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé. Classical hardness of learning with
errors. In Proceedings of the 45th ACM Symposium on Theory of Computing (STOC), pages 575–584.
ACM, 2013. URL: http://arxiv.org/pdf/1306.0281.

[36] Z. Brakerski and V. Vaikuntanathan. Eÿcient fully homomorphic encryption from (standard) LWE.
Cryptology ePrint Archive, report 2011/344, 2011. Preprint of [37]. URL: https://eprint.iacr.org/
2011/344.

[37] Z. Brakerski and V. Vaikuntanathan. Eÿcient fully homomorphic encryption from (standard) LWE.
SIAM Journal on Computing, 43(2):831–871, 2014.

[38] D. Cadé, X. Pujol, and D. Stehlé. fplll 4.0.4, 2013. URL: https://github.com/dstehle/fplll.

[39] P. Campbell, M. Groves, and D. Shepherd. Soliloquy: A cautionary tale. In ETSI 2nd Quantum-Safe
Crypto Workshop, pages 1–9, 2014.

[40] Y. Chen. Lattice reduction and concrete security of fully homomorphic encryption. PhD thesis, Université
Paris Diderot, 2013. http://www.di.ens.fr/~ychen/research/these.pdf.

[41] Y. Chen and P. Q. Nguyen. BKZ 2.0: Better lattice security estimates. In D. H. Lee and X. Wang,
editors, Advances in Cryptology – ASIACRYPT 2011, volume 7073 of LNCS, pages 1–20. Springer,
2011. http://www.iacr.org/archive/asiacrypt2011/70730001/70730001.pdf.

[42] E. Chu and A. George. Inside the FFT Black Box Serial and Parallel Fast Fourier Transform Algorithms.
CRC Press, Boca Raton, FL, USA, 2000.

37

472 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

[43] J. Conway and N. J. A. Sloane. Sphere packings, lattices and groups, volume 290 of Grundlehren der
mathematischen Wissenschaften. Springer Science & Business Media, 3rd edition, 1999.

[44] R. Cramer, L. Ducas, C. Peikert, and O. Regev. Recovering short generators of principal ideals in
cyclotomic rings. In Advances in Cryptology – EUROCRYPT 2016, volume 9666 of LNCS, pages
559–585. Springer, 2016. doi:10.1007/978-3-662-49896-5_20.

[45] R. Cramer, L. Ducas, and B. Wesolowski. Short Stickelberger class relations and application to
Ideal-SVP. In Advances in Cryptology – EUROCRYPT 2017, volume 10210 of LNCS, pages 324–348.
Springer, 2017. doi:10.1007/978-3-319-56620-7_12.

[46] R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes secure
against adaptive chosen ciphertext attack. SIAM J. Comput., 33(1):167–226, 2003. doi:10.1137/
S0097539702403773.

[47] R. de Clercq, S. S. Roy, F. Vercauteren, and I. Verbauwhede. Eÿcient software implementation of
ring-LWE encryption. In Design, Automation & Test in Europe Conference & Exhibition, DATE 2015,
pages 339–344. EDA Consortium, 2015. URL: https://eprint.iacr.org/2014/725.

[48] J. Ding. New cryptographic constructions using generalized learning with errors problem. Cryptology
ePrint Archive report 2012/387, 2012. URL: https://eprint.iacr.org/2012/387.

[49] J. Ding and X. Lin. A simple provably secure key exchange scheme based on the learning with errors
problem. Cryptology ePrint Archive report 2012/688, versions 20130303:142425 and 20130303:142813,
2013. URL: https://eprint.iacr.org/2012/688.

[50] J. Ding, X. Xie, and X. Lin. A simple provably secure key exchange scheme based on the learning with
errors problem. Cryptology ePrint Archive report 2012/688, 2012. URL: https://eprint.iacr.org/
2012/688.

[51] J. Ding, X. Xie, and X. Lin. A simple provably secure key exchange scheme based on the learning
with errors problem. Cryptology ePrint Archive report 2012/688, version 20140729:180116, 2013. URL:
https://eprint.iacr.org/2012/688.

[52] Y. Dodis, L. Reyzin, and A. D. Smith. Fuzzy extractors: How to generate strong keys from biometrics
and other noisy data. In C. Cachin and J. Camenisch, editors, Advances in Cryptology – EUROCRYPT
2004, volume 3027 of LNCS, pages 523–540. Springer, 2004. doi:10.1007/978-3-540-24676-3_31.

[53] L. Ducas. Shortest vector from lattice sieving: a few dimensions for free. Cryptology ePrint Archive,
Report 2017/999, 2017. https://eprint.iacr.org/2017/999.

[54] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice signatures and bimodal Gaussians. In
R. Canetti and J. A. Garay, editors, Advances in Cryptology – CRYPTO 2013, volume 8042 of LNCS,
pages 40–56. Springer, 2013. https://eprint.iacr.org/2013/383/.

[55] M. Düll, B. Haase, G. Hinterwälder, M. Hutter, C. Paar, A. H. Sánchez, and P. Schwabe. High-
speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers. Designs, Codes and Cryptogra-
phy, 77(2-3):493–514, 2015. URL: https://doi.org/10.1007/s10623-015-0087-1, doi:10.1007/
s10623-015-0087-1.

[56] K. Eisenträger, S. Hallgren, A. Kitaev, and F. Song. A quantum algorithm for computing the unit
group of an arbitrary degree number feld. In Proceedings of the 46th ACM Symposium on Theory of
Computing (STOC), pages 293–302. ACM, 2014.

[57] R. Fitzpatrick, C. Bischof, J. Buchmann, Ö. Dagdelen, F. Göpfert, A. Mariano, and B.-Y. Yang. Tuning
GaussSieve for speed. In Progress in Cryptology – LATINCRYPT 2014, volume 8895 of LNCS, pages
288–305. Springer, 2014. doi:10.1007/978-3-319-16295-9_16.

[58] S. Fluhrer. Cryptanalysis of ring-LWE based key exchange with key share reuse. Cryptology ePrint
Archive report 2016/085, 2016. URL: https://eprint.iacr.org/2016/085.

38

— Internet: Portfolio 473

[59] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric encryption schemes.
In Advances in Cryptology – CRYPTO 1999, volume 1666 of LNCS, pages 537–554. Springer, 1999.
doi:10.1007/3-540-48405-1_34.

[60] M. Fukase and K. Kashiwabara. An accelerated algorithm for solving SVP based on statistical
analysis. Journal of Information Processing, 23(1):67–80, 2015. URL: https://www.jstage.jst.go.
jp/article/ipsjjip/23/1/23_67/_article/-char/ja/.

[61] P. Gaborit. Noisy Diÿe-Hellman protocols. Slides of a talk in the recent results session at Post-Quantum
Cryptography - 3rd International Workshop, PQCrypto 2010, 2010. https://pqc2010.cased.de/rr/
03.pdf.

[62] S. D. Galbraith. Space-eÿcient variants of cryptosystems based on learning with errors, 2013. https:
//www.math.auckland.ac.nz/~sgal018/compact-LWE.pdf.

[63] N. Gama and P. Nguyen. Predicting lattice reduction. In Advances in Cryptology – EUROCRYPT
2008, volume 4965 of LNCS, pages 31–51. Springer, 2008. doi:10.1007/978-3-540-78967-3_3.

[64] N. Gama and P. Q. Nguyen. Finding short lattice vectors within Mordell’s inequality. In C. Dwork,
editor, Proceedings of the 40th ACM Symposium on Theory of Computing (STOC), pages 207–216.
ACM, 2008. doi:10.1145/1374376.1374408.

[65] N. Gama, P. Q. Nguyen, and O. Regev. Lattice enumeration using extreme pruning. In H. Gilbert,
editor, Advances in Cryptology – EUROCRYPT 2010, volume 6110 of LNCS, pages 257–278. Springer,
2010. doi:10.1007/978-3-642-13190-5_13.

[66] S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices. In Advances in
Cryptology – EUROCRYPT 2013, volume 7881 of LNCS, pages 1–17. Springer, 2013. doi:10.1007/
978-3-642-38348-9_1.

[67] W. M. Gentleman and G. Sande. Fast Fourier transforms: for fun and proft. In Fall Joint Computer
Conference, volume 29 of AFIPS Proceedings, pages 563–578, 1966. http://cis.rit.edu/class/
simg716/FFT_Fun_Profit.pdf.

[68] C. Gentry, S. Halevi, and V. Vaikuntanathan. A simple BGN-type cryptosystem from LWE. In
Advances in Cryptology – EUROCRYPT 2010, volume 6110 of LNCS, pages 506–522. Springer, 2010.
doi:10.1007/978-3-642-13190-5_26.

[69] C. Gentry, C. Peikert, and V. Vaikuntanathan. How to use a short basis: Trapdoors for hard lattices
and new cryptographic constructions, 2008. http://web.eecs.umich.edu/~cpeikert/pubs/trap_
lattice.pdf (full version of [70]).

[70] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic
constructions. In C. Dwork, editor, Proceedings of the 40th ACM Symposium on Theory of Computing
(STOC), pages 197–206. ACM, 2008. doi:10.1145/1374376.1374407.

[71] C. Gentry and M. Szydlo. Cryptanalysis of the revised NTRU signature scheme. In L. R. Knudsen,
editor, Advances in Cryptology – EUROCRYPT 2002, volume 2332 of LNCS, pages 299–320. Springer,
2002. doi:10.1007/3-540-46035-7_20.

[72] N. Göttert, T. Feller, M. Schneider, J. A. Buchmann, and S. A. Huss. On the design of hardware
building blocks for modern lattice-based encryption schemes. In E. Prou˙ and P. Schaumont, editors,
Cryptographic Hardware and Embedded Systems – CHES 2012, volume 7428 of LNCS, pages 512–529.
Springer, 2012. doi:10.1007/978-3-642-33027-8_30.

[73] M. Grassl, B. Langenberg, M. Roetteler, and R. Steinwandt. Applying Grover’s algorithm to AES:
quantum resource estimates. In Post-Quantum Cryptography - 7th International Workshop, PQCrypto
2016, volume 9606 of LNCS, pages 29–43. Springer, 2016. doi:10.1007/978-3-319-29360-8_3.

39

474 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

[74] S. Gueron. Parallelized hashing via j-lanes and j-pointers tree modes, with applications to SHA-256.
Cryptology ePrint Archive report 2014/170, 2014. https://eprint.iacr.org/2014/170.

[75] T. Güneysu, V. Lyubashevsky, and T. Pöppelmann. Practical lattice-based cryptography: A signature
scheme for embedded systems. In E. Prou˙ and P. Schaumont, editors, Cryptographic Hardware
and Embedded Systems – CHES 2012, volume 7428 of LNCS, pages 530–547. Springer, 2012. doi:
10.1007/978-3-642-33027-8_31.

[76] T. Güneysu, T. Oder, T. Pöppelmann, and P. Schwabe. Software speed records for lattice-based signa-
tures. In P. Gaborit, editor, Post-Quantum Cryptography - 5th International Workshop, PQCrypto 2013,
volume 7932 of LNCS, pages 67–82. Springer, 2013. http://cryptojedi.org/papers/#lattisigns.

[77] G. Hanrot, X. Pujol, and D. Stehlé. Algorithms for the shortest and closest lattice vector problems. In
Y. M. Chee, Z. Guo, S. Ling, F. Shao, Y. Tang, H. Wang, and C. Xing, editors, Coding and Cryptology
– Third International Workshop, IWCC 2011, volume 6639 of LNCS, pages 159–190. Springer, 2011.
doi:10.1007/978-3-642-20901-7_10.

[78] G. Hanrot, X. Pujol, and D. Stehlé. Analyzing blockwise lattice algorithms using dynamical systems.
In Advances in Cryptology – CRYPTO 2011, volume 6841 of LNCS, pages 447–464. Springer, 2011.
URL: https://eprint.iacr.org/2011/198.pdf.

[79] G. Herold and E. Kirshanova. Improved algorithms for the approximate k-list problem in euclidean
norm. In 20th International Conference on Public Key Cryptography (PKC), volume 10174 of LNCS,
pages 16–40. Springer, 2017. URL: https://eprint.iacr.org/2017/017.pdf.

[80] A. V. Herrewege, S. Katzenbeisser, R. Maes, R. Peeters, A. Sadeghi, I. Verbauwhede, and C. Wachsmann.
Reverse fuzzy extractors: Enabling lightweight mutual authentication for PUF-enabled RFIDs. In A. D.
Keromytis, editor, 16th International Conference on Financial Cryptography and Data Security, volume
7397 of LNCS, pages 374–389. Springer, 2012. doi:10.1007/978-3-642-32946-3_27.

[81] M. Hilbert and P. López. The world’s technological capacity to store, communicate, and compute
information. Science, 332(6025):60–65, 2011.

[82] J. Ho˙stein, J. Pipher, J. M. Schanck, J. H. Silverman, W. Whyte, and Z. Zhang. Choosing parameters
for NTRUEncrypt. Cryptology ePrint Archive report 2015/708, 2015. URL: https://eprint.iacr.
org/2015/708.

[83] J. Ho˙stein, J. Pipher, and J. H. Silverman. NTRU: a ring-based public key cryptosystem. In J. P.
Buhler, editor, Algorithmic number theory Symposium (ANTS), volume 1423 of LNCS, pages 267–288.
Springer, 1998. https://www.securityinnovation.com/uploads/Crypto/ANTS97.ps.gz.

[84] J. Ho˙stein, J. Pipher, and J. H. Silverman. An introduction to mathematical cryptography. Springer
Verlag, 2008.

[85] D. Hofheinz, K. Hövelmanns, and E. Kiltz. A modular analysis of the Fujisaki–Okamoto transformation.
In Theory of Cryptography – 15th International Conference, TCC 2017, volume 10677 of LNCS, pages
341–371. Springer, 2017. URL: https://eprint.iacr.org/2017/604.

[86] N. Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack against NTRU. In
A. Menezes, editor, Advances in Cryptology – CRYPTO 2007, volume 4622 of LNCS, pages 150–169.
Springer, 2007. doi:10.1007/978-3-540-74143-5_9.

[87] Infneon Technologies. Ready for tomorrow: Infneon demonstrates frst post-quantum cryptography
on a contactless security chip. Press release, May 2017. URL: https://www.infineon.com/cms/en/
about-infineon/press/press-releases/2017/INFCCS201705-056.html.

[88] Z. Jin and Y. Zhao. Optimal key consensus in presence of noise. CoRR, report abs/1611.06150, 2016.
URL: http://arxiv.org/abs/1611.06150.

40

— Internet: Portfolio 475

[89] R. Kannan. Improved algorithms for integer programming and related lattice problems. In Proceedings of
the 15th ACM Symposium on Theory of Computing, pages 193–206, 1983. doi:10.1145/800061.808749.

[90] P. Kirchner and P.-A. Fouque. An improved BKW algorithm for LWE with applications to cryptography
and lattices. In R. Gennaro and M. Robshaw, editors, Advances in Cryptology – CRYPTO 2015, volume
9215 of LNCS, pages 43–62. Springer, 2015. doi:10.1007/978-3-662-47989-6_3.

[91] P. Kuo, W. Li, Y. Chen, Y. Hsu, B. Peng, C. Cheng, and B. Yang. Post-quantum key exchange on FPGAs.
Cryptology ePrint Archive, report 2017/690, 2017. URL: https://eprint.iacr.org/2017/690.

[92] T. Laarhoven. Search problems in cryptography. PhD thesis, Eindhoven University of Technology, 2015.
http://www.thijs.com/docs/phd-final.pdf.

[93] T. Laarhoven. Sieving for shortest vectors in lattices using angular locality-sensitive hashing. In
R. Gennaro and M. Robshaw, editors, Advances in Cryptology – CRYPTO 2015, volume 9216 of LNCS,
pages 3–22. Springer, 2015. doi:10.1007/978-3-662-47989-6_1.

[94] T. Laarhoven, M. Mosca, and J. van de Pol. Finding shortest lattice vectors faster using quantum search.
Designs, Codes and Cryptography, 77(2):375–400, 2015. URL: https://eprint.iacr.org/2014/907/.

[95] A. Langley. CECPQ1 results. Blog post on imperialviolet.org, 2016. URL: https://www.
imperialviolet.org/2016/11/28/cecpq1.html.

[96] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational coeÿcients.
Mathematische Annalen, 261(4):515–534, 1982. doi:10.1007/bf01457454.

[97] H. W. Lenstra. Euclid’s algorithm in cyclotomic felds. Journal of the London Mathematical Soci-
ety, 2(4):457–465, 1975. URL: https://openaccess.leidenuniv.nl/bitstream/handle/1887/2121/
346_016.pdf.

[98] H. W. Lenstra and A. Silverberg. Revisiting the Gentry-Szydlo algorithm. In J. A. Garay and
R. Gennaro, editors, Advances in Cryptology – CRYPTO 2014, volume 8616 of LNCS, pages 280–296.
Springer, 2014. https://eprint.iacr.org/2014/430.

[99] R. Lindner and C. Peikert. Better key sizes (and attacks) for LWE-based encryption. In A. Kiayias,
editor, Topics in Cryptology - CT-RSA 2011, volume 6558 of LNCS, pages 319–339. Springer, 2011.
https://eprint.iacr.org/2010/613/.

[100] Z. Liu, H. Seo, S. S. Roy, J. Großschädl, H. Kim, and I. Verbauwhede. Eÿcient Ring-LWE encryption
on 8-bit AVR processors. In T. Güneysu and H. Handschuh, editors, Cryptographic Hardware and
Embedded Systems - CHES 2015, volume 9293 of LNCS, pages 663–682. Springer, 2015. https:
//eprint.iacr.org/2015/410/.

[101] V. Lyubashevsky. Lattice signatures without trapdoors. In D. Pointcheval and T. Johansson, editors,
Advances in Cryptology – EUROCRYPT 2012, volume 7237 of LNCS, pages 738–755. Springer, 2012.
https://eprint.iacr.org/2011/537/.

[102] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over rings. In
H. Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, volume 6110 of LNCS, pages 1–23.
Springer, 2010. http://www.di.ens.fr/~lyubash/papers/ringLWE.pdf.

[103] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over rings.
Journal of the ACM (JACM), 60(6):43:1–43:35, 2013. http://www.cims.nyu.edu/~regev/papers/
ideal-lwe.pdf.

[104] V. Lyubashevsky, C. Peikert, and O. Regev. A toolkit for ring-LWE cryptography. In Advances in
Cryptology - EUROCRYPT 2013, volume 7881 of LNCS, pages 35–54. Springer, 2013.

41

476 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

[105] A. Mariano, T. Laarhoven, and C. Bischof. A parallel variant of ldsieve for the svp on lattices. In Parallel,
Distributed and Network-based Processing (PDP), 2017 25th Euromicro International Conference on,
pages 23–30. IEEE, 2017. URL: https://eprint.iacr.org/2016/890.pdf.

[106] D. Micciancio. CSE206A: Lattices algorithms and applications (spring 2014), 2014. Lecture notes of a
course given in UCSD. See http://cseweb.ucsd.edu/classes/sp14/cse206A-a/.

[107] D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: a cryptographic perspective, volume
671 of The Kluwer International Series in Engineering and Computer Science. Kluwer Academic
Publishers, 2002.

[108] D. Micciancio and O. Regev. Lattice-based cryptography. In D. J. Bernstein, J. Buchmann, and
E. Dahmen, editors, Post-quantum Cryptography, pages 147–191. Springer, 2009.

[109] D. Micciancio and P. Voulgaris. Faster exponential time algorithms for the shortest vector problem.
In Proceedings of the 21st ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1468–1480.
SIAM, 2010. http://dl.acm.org/citation.cfm?id=1873720.

[110] A. Montanaro. Quantum walk speedup of backtracking algorithms. arXiv preprint arXiv:1509.02374,
2015. http://arxiv.org/pdf/1509.02374v2.

[111] P. L. Montgomery. Modular multiplication without trial division. Mathematics of Com-
putation, 44(170):519–521, 1985. http://www.ams.org/journals/mcom/1985-44-170/
S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf.

[112] National Institute of Standards and Technology. FIPS PUB 202 – SHA-3 standard: Permutation-based
hash and extendable-output functions, 2015. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.
202.pdf.

[113] P. Q. Nguyen and B. Valle. The LLL Algorithm: Survey and Applications. Springer, 1st edition, 2009.

[114] P. Q. Nguyen and T. Vidick. Sieve algorithms for the shortest vector problem are practical. Journal
of Mathematical Cryptology, 2(2):181–207, 2008. ftp://ftp.di.ens.fr/pub/users/pnguyen/JoMC08.
pdf.

[115] T. Oder and T. Güneysu. Implementing the NewHope-Simple key exchange on low-cost FPGAs. In
Progress in Cryptology – LATINCRYPT 2017, 2017. To appear. URL: http://www.cs.haifa.ac.il/
~orrd/LC17/paper51.pdf.

[116] T. Oder, T. Schneider, T. Pöppelmann, and T. Güneysu. Practical CCA2-secure and masked Ring-LWE
implementation. Cryptology ePrint Archive, report 2016/1109, 2016. URL: https://eprint.iacr.
org/2016/1109.

[117] A. Park and D. Han. Chosen ciphertext simple power analysis on software 8-bit implementation of
ring-LWE encryption. In 2016 IEEE Asian Hardware-Oriented Security and Trust, (AsianHOST),
pages 1–6. IEEE Computer Society, 2016. doi:10.1109/AsianHOST.2016.7835555.

[118] C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended abstract.
In Proceedings of the 41st ACM Symposium on Theory of Computing (STOC), pages 333–342, 2009.
doi:10.1145/1536414.1536461.

[119] C. Peikert. Some recent progress in lattice-based cryptography. Slides of an invited tutorial at the 6th
IACR Theory of Cryptography Conference – TCC 2009, 2009. URL: http://www.cc.gatech.edu/
fac/cpeikert/pubs/slides-tcc09.pdf.

[120] C. Peikert. Lattice cryptography for the Internet. In M. Mosca, editor, Post-Quantum Cryptography,
volume 8772 of LNCS, pages 197–219. Springer, 2014. URL: http://web.eecs.umich.edu/~cpeikert/
pubs/suite.pdf.

42

— Internet: Portfolio 477

[121] C. Peikert, O. Regev, and N. Stephens-Davidowitz. Pseudorandomness of ring-LWE for any ring and
modulus. In Proceedings of the 49th ACM Symposium on Theory of Computing (STOC), pages 461–473.
ACM, 2017. URL: https://eprint.iacr.org/2017/258.

[122] T. Pöppelmann, L. Ducas, and T. Güneysu. Enhanced lattice-based signatures on reconfgurable
hardware. In L. Batina and M. Robshaw, editors, Cryptographic Hardware and Embedded Systems –
CHES 2014, volume 8731 of LNCS, pages 353–370. Springer, 2014. https://eprint.iacr.org/2014/
254/.

[123] T. Pöppelmann and T. Güneysu. Towards practical lattice-based public-key encryption on reconfg-
urable hardware. In T. Lange, K. Lauter, and P. Lison¥k, editors, Selected Areas in Cryptography –
SAC 2013, volume 8282 of LNCS, pages 68–85. Springer, 2013. https://www.ei.rub.de/media/sh/
veroeffentlichungen/2013/08/14/lwe_encrypt.pdf.

[124] T. Pöppelmann, T. Oder, and T. Güneysu. High-performance ideal lattice-based cryptography on
8-bit ATxmega microcontrollers. In K. E. Lauter and F. Rodríguez-Henríquez, editors, Progress
in Cryptology – LATINCRYPT 2015, volume 9230 of LNCS, pages 346–365. Springer, 2015. doi:
10.1007/978-3-319-22174-8_19.

[125] R. Primas, P. Pessl, and S. Mangard. Single-trace side-channel attacks on masked lattice-based
encryption. In W. Fischer and N. Homma, editors, Cryptographic Hardware and Embedded Systems -
CHES 2017, volume 10529 of LNCS, pages 513–533. Springer, 2017. doi:10.1007/978-3-319-66787-4_
25.

[126] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In H. N. Gabow
and R. Fagin, editors, Proceedings of the 37th ACM Symposium on Theory of Computing (STOC),
pages 84–93. ACM, 2005. doi:10.1145/1060590.1060603.

[127] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal of the
ACM, 56(6):34, 2009. http://www.cims.nyu.edu/~regev/papers/qcrypto.pdf.

[128] O. Regev. The learning with errors problem (invited survey). In Proceedings of the 25th Annual IEEE
Conference on Computational Complexity - CCC 2010, pages 191–204. IEEE Computer Society, 2010.
doi:10.1109/CCC.2010.26.

[129] A. Rényi. On measures of entropy and information. In Fourth Berkeley symposium on mathematical
statistics and probability, volume 1, pages 547–561, 1961. http://projecteuclid.org/euclid.bsmsp/
1200512181.

[130] O. Reparaz, R. de Clercq, S. S. Roy, F. Vercauteren, and I. Verbauwhede. Additively homomorphic
Ring-LWE masking. In Post-Quantum Cryptography - 7th International Workshop, PQCrypto 2016,
volume 9606 of LNCS, pages 233–244, 2016. doi:10.1007/978-3-319-29360-8_15.

[131] O. Reparaz, S. S. Roy, F. Vercauteren, and I. Verbauwhede. A masked Ring-LWE implementation.
In T. Güneysu and H. Handschuh, editors, Cryptographic Hardware and Embedded Systems - CHES
2015 - 17th International Workshop, volume 9293 of LNCS, pages 683–702. Springer, 2015. doi:
10.1007/978-3-662-48324-4_34.

[132] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede. Compact Ring-LWE
cryptoprocessor. In L. Batina and M. Robshaw, editors, Cryptographic Hardware and Embedded Systems
– CHES 2014, volume 8731 of LNCS, pages 371–391. Springer, 2014. https://eprint.iacr.org/2013/
866/.

[133] M. O. Saarinen. Arithmetic coding and blinding countermeasures for Ring-LWE. Cryptology ePrint
Archive, report 2016/276, 2016. URL: https://eprint.iacr.org/2016/276.

[134] C. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms and solving subset
sum problems. Math. Program., 66:181–199, 1994. doi:10.1007/BF01581144.

43

478 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

[135] C.-P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theoretical computer
science, 53(2):201–224, 1987. URL: http://dx.doi.org/10.1016/0304-3975(87)90064-8.

[136] C.-P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algorithms and solving
subset sum problems. Mathematical programming, 66(1-3):181–199, 1994. doi:10.1007/BF01581144.

[137] D. Stehlé and R. Steinfeld. Making NTRU as secure as worst-case problems over ideal lattices. In K. G.
Paterson, editor, Advances in Cryptology – EUROCRYPT 2011, volume 6632 of LNCS, pages 27–47.
Springer, 2011. doi:10.1007/978-3-642-20465-4_4.

[138] D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa. Eÿcient public key encryption based on ideal
lattices. In Advances in Cryptology - ASIACRYPT 2009, volume 5912, pages 617–635. Springer, 2009.
URL: https://eprint.iacr.org/2009/285.

[139] E. E. Targhi and D. Unruh. Post-quantum security of the Fujisaki–Okamoto and OAEP transforms.
In M. Hirt and A. D. Smith, editors, Theory of Cryptography - 14th International Conference, TCC
2016-B, volume 9986 of LNCS, pages 192–216, 2016. doi:10.1007/978-3-662-53644-5_8.

[140] P. van Emde Boas. Another NP-complete partition problem and the complexity of computing short
vectors in a lattice. Technical Report 81-04, Universiteit van Amsterdam. Mathematisch Instituut,
1981.

[141] K. Xagawa. Cryptography with Lattices. PhD thesis, Department of Mathematical and Computing
Sciences, Tokyo Institute of Technology, 2010. http://xagawa.net/pdf/2010Thesis.pdf.

44

— Internet: Portfolio 479

NTRU-HRSS-KEM

Algorithm Speci�cations And Supporting Documentation

Andreas Hülsing, Joost Rijneveld, John M. Schanck, Peter Schwabe

November 30, 2017

1

480 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Contents

1 Written speci�cation 4

1.1 Overview . 4
1.2 Mathematical de�nitions . 4
1.3 Parameters . 5

1.3.1 n . 5
1.3.2 k . 5
1.3.3 seed_bits . 5
1.3.4 coin_bits . 5
1.3.5 shared_key_bits . 5

1.4 Derived constants . 5
1.4.1 logq . 5
1.4.2 q . 5
1.4.3 s3_packed_bits . 6
1.4.4 owcpa_public_key_bits . 6
1.4.5 owcpa_private_key_bits . 6
1.4.6 owcpa_ciphertext_bits . 6
1.4.7 cca_public_key_bits . 6
1.4.8 cca_private_key_bits . 6
1.4.9 cca_ciphertext_bits . 6

1.5 Summary of recommended parameters and derived constants 7
1.6 Externally de�ned algorithms . 7

1.6.1 SHAKE128 . 7
1.7 Arithmetic Algorithms . 7

1.7.1 S3_to_R . 7
1.7.2 S3_to_Zx . 8
1.7.3 Sq_to_Zx . 8
1.7.4 Rq_to_Zx . 9
1.7.5 S2_inverse . 9
1.7.6 S3_inverse . 9
1.7.7 Sq_inverse . 9

1.8 Sampling Algorithms . 10
1.8.1 Sample_T . 10
1.8.2 Sample_Tplus . 10

1.9 Encoding Algorithms . 11
1.9.1 Rq_to_bits . 11
1.9.2 Rq_from_bits . 11
1.9.3 S3_to_bits . 12
1.9.4 S3_from_bits . 12

1.10 Key Encapsulation Mechanism . 13
1.10.1 Generate_Key . 13
1.10.2 Generate_Private_Key . 13
1.10.3 Generate_Public_Key . 13
1.10.4 Encapsulate . 14
1.10.5 Decapsulate . 14
1.10.6 NTRU_OWF_Public . 15
1.10.7 NTRU_OWF_Private . 16

2

— Internet: Portfolio 481

2 Performance analysis 16

2.1 Description of platform . 16
2.2 Time . 16
2.3 Space . 17
2.4 How parameters a�ect performance . 17
2.5 Optimizations . 17

3 Known Answer Test values 17

4 Expected security strength 17

4.1 Security de�nitions . 17
4.2 Rationale . 17

5 Analysis with respect to known attacks 18

5.1 Lattice attacks . 18
5.2 Cost of SVP Algorithms. 19
5.3 Core-SVP Cost Estimates. 20

5.3.1 Primal Attack. 20
5.4 Hybrid attack . 21
5.5 Attacks on symmetric primitives . 23

6 Advantages and limitations 23

6.1 Compared with Standard NTRU. 23
6.2 Compared with Streamlined NTRUPrime. 24

6.2.1 Advantages. 24
6.2.2 Disadvantages. 24

6.3 Compared with LWE systems. 24

3

482 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

1 Written speci�cation

1.1 Overview

NTRU-HRSS is a OWCPA-secure public key encryption scheme that was introduced in [15]. It is a direct
parameterization of NTRUEncrypt as described in [12]. Its constructional novelty lies entirely in the
choice of sample spaces for messages, blinding polynomials, and private keys. These spaces were chosen
so that 1) NTRU-HRSS is correct (decryption never fails), 2) it admits a simple and e�cient constant
time implementation, and 3) it avoids the extraneous parameters common to other instantiations of
NTRU.

NTRU-HRSS-KEM is a CCA2-secure KEM that was also introduced in [15]. The construction
uses a generic transformation from a OWCPA-secure public key encryption scheme. As a direct KEM
transform, it avoids the NAEP padding mechanism used in standard NTRUEncrypt [16]. A similar
NTRUEncrypt based KEM was proposed by Martijn Stam in 2005 [21]; the main di�erences with that
work are the underlying choice of parameters for NTRUEncrypt, and the inclusion of an additional
hash that is appended to the ciphertext. The additional hash allows for a proof of security in the
quantum-accessible random oracle model.

For further justi�cation of design decisions see [15].

1.2 Mathematical de�nitions

1. (Z/n)× is the multiplicative group of integers modulo n.

2. Φn is the polynomial (xn − 1)/(x− 1) = xn−1 + xn−2 + · · ·+ 1.

3. R is the quotient ring Z[x]/(xn − 1).

4. S is the quotient ring Z[x]/(Φn).

5. R/q is the quotient ring Z[x]/(q, xn − 1).

6. S/2 is the quotient ring Z[x]/(2,Φn).

7. S/3 is the quotient ring Z[x]/(3,Φn).

8. S/q is the quotient ring Z[x]/(q,Φn).

9. Mod_Rq(a) is the canonicalR/q-representative of the polynomial a. The canonicalR/q-representative
of a is the unique polynomial b of degree at most n−1 with coe�cients in {−q/2,−q/2+1, . . . q/2−1}
such that a and b are equivalent as elements of R/q.

10. Mod_S2(a) is the canonical S/2-representative of the polynomial a. The canonical S/2-representative
of a polynomial a is the unique polynomial b of degree at most n−2 with coe�cients in {0, 1} such
that a and b are equivalent as elements of S/2.

11. Mod_S3(a) is the canonical S/3-representative of the polynomial a. The canonical S/3-representative
of a is the unique polynomial b of degree at most n− 2 with coe�cients in {−1, 0, 1} such that a
and b are equivalent as elements of S/3.

12. Mod_Sq(a) is the canonical S/q-representative of the polynomial a. The canonical S/q-representative
of a is the unique polynomial b of degree at most n−2 with coe�cients in {−q/2,−q/2+1, . . . q/2−1}
such that a and b are equivalent as elements of S/q.

Implementation notes:

1. It may be more natural, or more e�cient, to represent elements of S/3 with coe�cients in {0, 1, 2}
and/or elements of R/q with coe�cients in {0, 1, . . . , q − 1}. The algorithms below are written
to be independent of the coe�cient range for canonical representatives. However, the degree
requirements are strict.

4

— Internet: Portfolio 483

1.3 Parameters

1.3.1 n

An odd prime integer that satis�es the following two conditions:

− the order of 2 in (Z/n)× is n− 1,

− the order of 3 in (Z/n)× is n− 1.

Recommended value: 701

1.3.2 k

The Sample_T uniformity parameter. Algorithm 1.8.1 uses 2 · k pseudorandom bits to sample a
single value in {−1, 0, 1}.
Recommended value: 2

1.3.3 seed_bits

The length of the seed used by the pseudorandom generator in Algorithm 1.8.1.

Recommended value: 256

1.3.4 coin_bits

The length of random bitstring used in encapsulation.

Recommended value: 256

1.3.5 shared_key_bits

The number of bits of key material produced by the KEM.

Recommended value: 256

1.4 Derived constants

The constants in this section are all functions of n. Descriptions of algorithms in later sections use these
constants without explicit reference to n. Recommended values assume n = 701.

1.4.1 logq

The smallest positive integer such that the key encapsulation mechanism is correct with q = 2logq.
See [15] for the proof of correctness.

Formula: d7/2 + log2(n)e
Recommended value: 13

1.4.2 q

The smallest power of two guaranteeing correctness of the key encapsulation mechanism.

Formula: 2logq

Recommended value: 8192

5

484 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

1.4.3 s3_packed_bits

Bit-length of the output of S3_to_bits (Section 1.9.3).

Formula: 8 · d(n− 1)/5e
Recommended value: 1120

1.4.4 owcpa_public_key_bits

Bit-length of the output of Rq_to_bits (Section 1.9.1).

Formula: (n− 1) · logq
Recommended value: 9100

1.4.5 owcpa_private_key_bits

Bit-length of two elements of S/3 encoded using S3_to_bits (Section 1.9.3).

Formula: 2 · s3_packed_bits
Recommended value: 2240

1.4.6 owcpa_ciphertext_bits

Bit-length of one elements of R/q encoded using Rq_to_bits (Section 1.9.1).

Formula: (n− 1) · logq
Recommended value: 9100

1.4.7 cca_public_key_bits

Formula: owcpa_public_key_bits

Recommended value: 9100

1.4.8 cca_private_key_bits

Formula: owcpa_private_key_bits + owcpa_public_key_bits

Recommended value: 10220

1.4.9 cca_ciphertext_bits

Formula: owcpa_ciphertext_bits + s3_packed_bits

Recommended value: 10220

6

— Internet: Portfolio 485

1.5 Summary of recommended parameters and derived constants

n 701

k 2

seed_bits 256

coin_bits 256

shared_key_bits 256

logq 13

q 8192

s3_packed_bits 1120

owcpa_public_key_bits 9100

owcpa_private_key_bits 2240

owcpa_ciphertext_bits 9100

cca_public_key_bits 9100

cca_private_key_bits 10220

cca_ciphertext_bits 10220

Table 1: Recommended parameters and derived constants

1.6 Externally de�ned algorithms

1.6.1 SHAKE128

Input:

− A bitstring M of arbitrary length.

− The output length parameter d.

Output:

− A bitsring of length d.

Description:

1. Output KECCAK[256](M ||1111, d), as de�ned in [20].

1.7 Arithmetic Algorithms

Algorithms for integer addition, integer multiplication, polynomial addition, polynomial multiplication,
and modular reduction (Mod_Rq, Mod_S2, Mod_S3, and Mod_Sq) are omitted.

1.7.1 S3_to_R

Input:

− A polynomial a.

Output:

− A polynomial b of degree at most n− 1 that satis�es:

� b ≡ 0 mod (x− 1),

� b ≡ a mod (p,Φn).

7

486 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Description:

1. Set v0 = S3_inverse(x− 1) [1.7.6]

2. Set v1 = v0 · a
3. Set v2 = S3_to_Zx(v1) [1.7.2]

4. Set b = (x− 1) · v2
5. Output b

Implementation notes:

1. The result b is of degree at most n− 1 and has coe�cients in {−1, 0, 1}.
2. The explicit value of S3_inverse(x− 1) is

v0 = Mod_S3

(
(n− 1) +

n−1∑

i=1

n · (1 + i− n) · xi
)
.

3. Pseudocode for a fast implementation is given in [15].

1.7.2 S3_to_Zx

Input:

− A polynomial a.

Output:

− The unique polynomial b of degree at most n− 2 with coe�cients in {−1, 0, 1} such that a
and b are equivalent as elements of S/3.

Description:

1. Output Mod_S3(a).

Implementation notes:

1. The set of canonical S/3-representatives is de�ned so that S3_to_Zx is trivial. An imple-
mentation that uses a di�erent set of S/3-representatives may replace a call to S3_to_Zx
with a contextually equivalent routine. For example, when a call to S3_to_Zx is followed
by an operation in R/q the implementation may combine the lift to Z[x] and the reduction
modulo q into a single operation.

1.7.3 Sq_to_Zx

Input:

− A polynomial a.

Output:

− The unique polynomial b of degree at most n − 2 with coe�cients in {−q/2,−q/2 +
1, . . . , q/2− 1} such that a and b are equivalent as elements of S/q.

Description:

1. Output Mod_Sq(a).

8

— Internet: Portfolio 487

1.7.4 Rq_to_Zx

Input:

− A polynomial a.

Output:

− The unique polynomial b of degree at most n − 1 with coe�cients in {−q/2,−q/2 +
1, . . . , q/2− 1} such that a and b are equivalent as elements of R/q.

Description:

1. Output Mod_Rq(a).

1.7.5 S2_inverse

Input:

− A polynomial a.

Output:

− An S/2-representative b that satis�es Mod_S2(a · b) = 1.

Implementation notes:

1. Inverting an element of S/2 in constant time is nontrivial. Pseudocode for one method is
provided in [15].

1.7.6 S3_inverse

Input:

− A polynomial a.

Output:

− An S/3-representative b that satis�es Mod_S3(a · b) = 1.

Implementation notes:

1. Inverting an element of S/3 in constant time is nontrivial. Pseudocode for one method is
provided in [15].

1.7.7 Sq_inverse

Input:

− A polynomial a.

Output:

− An S/q-representative b that satis�es Mod_Sq(a · b) = 1.

Description:

1. Set v0 = S2_inverse(a) [1.7.5]

2. Set t = 2

3. While t < q

4. Set v0 = Mod_Sq(v0 · (2− a · v0))

5. Set t = t · t

9

488 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

6. Endwhile

7. Output Mod_Sq(v0)

Implementation notes:

1. When Sq_inverse is called from Generate_Public_Key [1.10.3] it is safe to replace the calls
to Mod_Sq in Lines 4 and 7 with calls to Mod_Rq.

1.8 Sampling Algorithms

1.8.1 Sample_T

Input:

− A bitstring seed of length seed_bits.

− A bitstring domain of length 64.

Output:

− An S/3-representative.

Description:

1. Set v = 0 (The zero polynomial)

2. Set i = 0

3. Set ` = 2 · k · (n− 1)

4. Set b1b2 . . . b` = SHAKE128(domain ‖seed, `)
5. While i < n− 1

6. Set vi =
∑k

j=1 b2ki+j − b2ki+k+j

7. Set i = i+ 1

8. Endwhile

9. Output Mod_S3(v)

Implementation notes:

1. In this document we use four domain strings domm, domr, domf, domg. In our implementation
domm and domr are the zero string, domf =0x0100000000000000 and domg =0x0200000000000000.
This will likely be changed in a future version.

1.8.2 Sample_Tplus

Input:

− A bitstring seed of length seed_bits.

− A bitstring domain of length 64.

Output:

− The canonical S/3-representative of a polynomial v =
∑n−2

i=0 vix
i where vi ∈ {−1, 0, 1} for

all i and
∑n−2

i=1 vivi−1 ≥ 0.

Description:

1. Set v = Sample_T(seed, domain) [1.8.1]

2. Set t =
∑n−2

i=1 vi · vi−1
3. Set s = −1 if t < 0, otherwise set s = 1

10

— Internet: Portfolio 489

4. Set i = 0

5. While i < n− 2

6. Set vi = s · vi
7. Set i = i+ 2

8. Endwhile

9. Output Mod_S3(v)

Implementation notes:

1. The value t in Line 2 satis�es −n+ 1 < t < n− 1.

1.9 Encoding Algorithms

The algorithms in this section are speci�ed at the bit level. When converting to octets a bitstring is
padded with zeros until it is of length 8 · ` for some `. The encoding is then order preserving for indices
at distance at least 8, but order reversing within octets. Hence b1, . . . , b7, b8, b9, . . . , b15, b16 is encoded
as b8b7 . . . b1, b16b15 . . . b9.

1.9.1 Rq_to_bits

Input:

− A polynomial a that satis�es a(1) ≡ 0 (mod q).

Output:

− A bitstring b1b2 . . . b` of length ` = (n− 1) · logq.

Description:

1. v = Mod_Rq(a) (Ensure v =
∑n−1

i=0 vix
i)

2. i = 0

3. while i ≤ n− 2

4. Set bilogq+1bilogq+2 . . . bilogq+8 so that
∑logq

j=1 bilogq+j2
logq−j ≡ vi (mod q).

5. i = i+ 1

6. endwhile

7. Output b1b2 . . . b`.

Implementation notes:

1. The coe�cient vn−1 is not encoded. The condition a(1) ≡ 0 (mod q) ensures that vn−1
can be recovered from the �rst n− 1 coe�cients.

1.9.2 Rq_from_bits

Input:

− A bitstring b1b2 . . . b` of length ` = (n− 1) · logq.

Output:

− An R/q-representative.

Description:

1. v = 0 (The zero polynomial)

2. i = 0

11

490 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

3. while i ≤ n− 2

4. Set c =
∑logq

j=1 bilogq+j · 2logq−j .
5. Set vi = c

6. Set vn−1 = vn−1 − c
7. Set i = i+ 1

8. endwhile

9. Output Mod_Rq(v)

1.9.3 S3_to_bits

Input:

− A polynomial a.

Output:

− A bitstring b1b2 . . . b` of length ` = s3_packed_bits. [1.4.3]

Description:

1. v = Mod_S3(a) (Ensure v =
∑n−2

i=0 vix
i)

2. i = 0

3. while i < b(n− 1)/5c
4. Set c1, c2, . . . , c5 ∈ {0, 1, 2} with cj ≡ v5·i+j (mod 3) for 1 ≤ j ≤ 5.

5. Set b8·i+1b8·i+2 . . . b8·i+8 so that
∑8

j=1 b8·i+j2
8−j =

∑5
j=1 cj3

5−j .

6. i = i+ 1

7. endwhile

8. Output b1b2 . . . b`.

Implementation notes:

1. In Line 4 we have cj = 0 if j > n− 2

1.9.4 S3_from_bits

Input:

− A bitstring a1a2 . . . a` of length ` = s3_packed_bits. [1.4.3]

Output:

− An S/3-representative.

Description:

1. b = 0 (The zero polynomial)

2. i = 0

3. while i < b(n− 1)/5c
4. Set c1, c2, . . . , c5 ∈ {0, 1, 2} so that

∑8
j=1 b8·i+j2

8−j =
∑5

j=1 cj3
5−j .

5. Set b5·i+1 = c1

6. Set b5·i+2 = c2

7. Set b5·i+3 = c3

8. Set b5·i+4 = c4

9. Set b5·i+5 = c5

10. i = i+ 1

11. endwhile

12. Output Mod_S3(b).

12

— Internet: Portfolio 491

1.10 Key Encapsulation Mechanism

The algorithms Generate_Key [1.10.1], Encapsulate [1.10.4], and Decapsulate [1.10.5] are a key encapsu-
lation mechanism that is CCA-secure in the quantum random oracle model. The other functions in this
section are used by these algorithms but are not part of the public API.

1.10.1 Generate_Key

Input:

− The system parameters.

Output:

− A bitstring packed_public_key of length cca_public_key_bits . [1.4.7]

− A bitstring packed_private_key of length cca_private_key_bits . [1.4.8]

Description:

1. Let seed be a string of seed_bits uniform random bits.

2. Set f, fp = Generate_Private_Key(seed) [1.10.2]

3. Set h = Generate_Public_Key(seed, f) [1.10.3]

4. Set packed_public_key = Rq_to_bits(h) [1.9.1]

5. Set packed_private_key = S3_to_bits(f) ‖ S3_to_bits(fp) [1.9.3]

1.10.2 Generate_Private_Key

Input:

− The system parameters.

− A bitstring seed of length seed_bits.

Output:

− S/3-representatives f and fp that satisfy Mod_S3(f · fp) = 1.

Description:

1. Set f = Sample_Tplus(seed, domf) [1.8.2]

2. Set fp = S3_inverse(f) [1.7.6]

3. Output f and fp

1.10.3 Generate_Public_Key

Input:

− The system parameters.

− A bitstring seed of length seed_bits.

− An S/3-representative f .

Output:

− An R/q-representative h that satis�es the following three conditions:

1. h(1) ≡ 0 (mod q),

2. Mod_Rq(h · f) = 3 · (x− 1) · g for some g with coe�cients in {−1, 0, 1},
3. Mod_S3(h · f) = 0.

13

492 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Description:

1. Set v0 = Sample_Tplus(seed, domg) [1.8.2]

2. Set g = S3_to_Zx(v0) [1.7.2]

3. Set v1 = Sq_inverse(f) [1.7.7]

4. Set fq = Sq_to_Zx(v1) [1.7.3]

5. Set v2 = 3 · (x− 1) · g · fq
6. Set h = Mod_Rq(v2)

7. Output h

Implementation notes:

1. The lifts to Z[x] are trivial when canonical representatives are used. Implementations that
use di�erent sets of representatives may map g and fq directly to the appropriate R/q-
representatives without going through Z[x].

1.10.4 Encapsulate

Input:

− The system parameters.

− A bitstring packed_public_key of length cca_public_key_bits . [1.4.7]

Output:

− A bitstring shared_key of length shared_key_bits.

− A bitstring packed_cca_ct of length cca_ciphertext_bits . [1.4.9]

Description:

1. Let seed be a string of seed_bits uniform random bits.

2. Set m = Sample_T(seed, domm) [1.8.1]

3. Set packed_m = S3_to_bits(m) [1.9.3]

4. Set hashes = SHAKE128(packed_m, coin_bits + shared_key_bits + s3_packed_bits) [1.6.1]

5. Parse hashes as coins ‖ shared_key ‖ qrom_hash with

− coins of length coin_bits,

− shared_key of length shared_key_bits, and

− qrom_hash of length s3_packed_bits . [1.4.3]

6. Set packed_owcpa_ct = NTRU_OWF_Public(packed_m, packed_public_key, coins). [1.10.6]

7. Set packed_cca_ct = packed_owcpa_ct ‖ qrom_hash

1.10.5 Decapsulate

Input:

− The system parameters.

− A bitstring packed_key_pair of length cca_private_key_bits . [1.4.8]

− A bitstring packed_cca_ct of length cca_ciphertext_bits . [1.4.9]

Output:

− A bitstring shared_key of length shared_key_bits. [1.3.5]

Description:

14

— Internet: Portfolio 493

1. Parse packed_key_pair as packed_private_key ‖ packed_public_key with

− packed_private_key of length owcpa_private_key_bits and [1.4.5]

− packed_public_key of length owcpa_public_key_bits . [1.4.4]

2. Parse packed_cca_ct as packed_owcpa_ct ‖ qrom_hash with

− packed_owcpa_ct of length owcpa_ciphertext_bits and [1.4.6]

− qrom_hash of length s3_packed_bits . [1.4.3]

3. Set packed_m = NTRU_OWF_Private(packed_private_key, packed_owcpa_ct) [1.10.7]

4. Set hashes = SHAKE128(packed_m, coin_bits + shared_key_bits + s3_packed_bits) [1.6.1]

5. Parse hashes as coins ‖ shared_key ‖ re_qrom_hash with

− coins of length coin_bits,

− shared_key of length shared_key_bits, and

− re_qrom_hash of length s3_packed_bits . [1.4.3]

6. Let re_packed_owcpa_ct = NTRU_OWF_Public(n, packed_m, packed_public_key, coins) [1.10.6]

7. If re_packed_owcpa_ct ‖ re_qrom_hash is bitwise equal to packed_owcpa_ct ‖ qrom_hash

8. Output shared_key.

9. Else

10. Output the zero string of length shared_key_bits.

11. Endif

1.10.6 NTRU_OWF_Public

Input:

− The system parameters.

− A bitstring packed_m of length s3_packed_bits . [1.4.3]

− A bitstring packed_public_key of length owcpa_public_key_bits . [1.4.4]

− A bitstring coins of length coin_bits.

Output:

− A bitstring packed_owcpa_ct of length owcpa_ciphertext_bits . [1.4.6]

Description:

1. Set h = Rq_from_bits(packed_public_key) [1.9.2]

2. Set v0 = Sample_T(coins, domr) [1.8.1]

3. Set r = S3_to_Zx(v0) [1.7.2]

4. Set v1 = S3_from_bits(packed_m) [1.9.4]

5. Set m = S3_to_R(v1) [1.7.1]

6. Set e = Mod_Rq(r · h+m)

7. Set packed_owcpa_ct = Rq_to_bits(e) [1.9.1]

15

494 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

1.10.7 NTRU_OWF_Private

Input:

− A bitstring packed_private_key of length owcpa_private_key_bits.

− A bitstring packed_owcpa_ct of length owcpa_ciphertext_bits.

Output:

− A bitstring packed_m of length s3_packed_bits.

Description:

1. Parse packed_private_key as packed_f ‖ packed_fp with
− packed_f of length s3_packed_bits , and [1.4.3]

− packed_fp of length s3_packed_bits . [1.4.3]

2. Parse packed_owcpa_ct as packed_owcpa_ct ‖ qrom_hash with

− packed_owcpa_ct of length owcpa_ciphertext_bits , and [1.4.6]

− qrom_hash of length s3_packed_bits . [1.4.3]

3. Set e = Rq_from_bits(packed_owcpa_ct) [1.9.2]

4. Set v0 = S3_from_bits(packed_f) [1.9.4]

5. Set f = S3_to_Zx(v0) [1.7.2]

6. Set fp = S3_from_bits(packed_fp) [1.9.4]

7. Set v1 = Mod_Rq(e · f)

8. Set v2 = Mod_S3(v1 · fp)

9. Set packed_m = S3_to_bits(v2) [1.9.3]

10. Output packed_m

2 Performance analysis

The results in this section are with respect to the parameters listed in Table 1.5.

2.1 Description of platform

In order to obtain benchmarks, we evaluate our reference implementation on a machine using the Intel
x64-86 instruction set. In particular, we use a single core of a 3.5 GHz Intel Core i7-4770K CPU. We
follow the standard practice of disabling TurboBoost and hyper-threading. The system has 32KiB L1
instruction cache, 32KiB L1 data cache, 256KiB L2 cache and 8192KiB L3 cache. Furthermore, it has
32GiB of RAM, running at 1333MHz. When performing the benchmarks, the system ran on Linux
kernel 4.9.0-4-amd64, Debian 9 (Stretch). We compiled the code using GCC version 6.3.0-18, with the
compiler optimization �ag -O3.

We used the same platform described above to evaluate our AVX2 implementation. For the AVX2
implementation, we included the additional compiler �ags `-march=native' and `-mtune=native'.

2.2 Time

The median resulting cycle counts are listed in the table below.

key generation encapsulation decapsulation

reference C 18 151 998 1 208 946 3 578 538

optimized AVX2 294 874 38 456 68 458

16

— Internet: Portfolio 495

2.3 Space

The public key consists of 1138 bytes, and the secret key takes 1418 bytes. The transmitted ciphertext
consists of 1278 bytes. Of the ciphertext size, 140 bytes are a direct result of the transformation from
the underlying OW-CPA secure scheme to the CCA2 secure KEM.

Our reference implementation uses almost 11KiB of stack space and our AVX2 software uses just
over 43KiB, but this was not a target of optimization and should not be considered to be a lower bound.

2.4 How parameters a�ect performance

As the main arithmetic operations are (sub-)quadratic, we would expect that doubling n would lead to at
most a factor of 4 overhead in time. Indeed, preliminary tests with our reference implementation suggest
that n = 1373 would be less than a factor of 4 times slower. Likewise we would expect memory (and
communication cost) to roughly double. Given that these parameters span an large range of relevant
security levels (See Table 5), it is fair to say that parameters have only a modest impact on performance.

2.5 Optimizations

We refer to [15] for a detailed discussion of the optimizations used in our AVX2 implementation.

3 Known Answer Test values

All KAT values are included in subdirectories of the directory KAT/ntruhrss701 of the submission
package. The KAT values were generated by the PQCgenKAT_kem program provided by NIST. The
complete list of KAT �les is:

− KAT/ntruhrss701/PQCkemKAT_1418.req,

− KAT/ntruhrss701/PQCkemKAT_1418.rsp.

4 Expected security strength

4.1 Security de�nitions

NTRU-HRSS-KEM meets the standard IND-CCA2 security de�nition for a key encapsulation mecha-
nism. Parameters have been chosen so that decryption failure is impossible, and a key can be reused
at least 264 times without compromising security. This follows from Dent's proof of security for the
transform in [8, Table 5.], and from the presumed one-wayness of the underlying encryption scheme,
NTRU-HRSS.

4.2 Rationale

Based on the analysis in Section 5.1, we expect that violating the one-wayness of NTRU-HRSS would
require computational resources greater than those required to perform a key search on AES-128.

Our security claim is based primarily on Table 4, which costs the best known classical attack at 2136

operations and 2136 space. These operations mask large factors that put the true cost of the attack well
above the 2145 bit operations required to attack AES-128, even in a RAM model.

Our security claim is also based on Table 5, which costs the best known quantum attack at 2123

Grover iterations. This attack is in the quantum RAM model and requires quantum-accessible classical
memory of size 2123. Again, large factors are ignored and it is unlikely that this attack maintains its
advantage over the classical variant when it is instantiated in a quantum circuit model.

17

496 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

5 Analysis with respect to known attacks

5.1 Lattice attacks

Some background on lattices is assumed. In this section we denote the degree of Φn by n′ = n− 1.

Each element of S can be uniquely represented by a polynomial of the form v =
∑n′−1

i=0 vix
i. The

correspondence between these representatives and their coe�cient vectors, v 7→ (v0, . . . , vn′−1) ∈ Rn′ ,
allows one to view S as a euclidean lattice. Lattice attacks on NTRU begin from the observation that
for any h ∈ S the set

Lh :=
{

(a, b) ∈ S2 : b ≡ a · h (mod q)
}

is, likewise, a lattice in R2·n′ . A basis for Lh is given by the rows of the 2n′ × 2n′ matrix

[Lh] =

(
In′ H

0 q · In′

)
, (1)

where the i-th row of H for 0 ≤ i ≤ n′ − 1 is the coe�cient vector of Mod_Sq(xi · h). If h is an NTRU
public key then, by construction1, the secret key corresponds to a vector (f, g) in Lh. Since (f, g) is
known to have small norm, one might hope to recover it using lattice reduction.

Attacks involving Lh have gone through several reformulations. The earliest such attack, due to
Ho�stein, Pipher, and Silverman, was framed as an exact key recovery problem [11]. Coppersmith and
Shamir later observed that any short vector in Lh, not just (f, g), could be used to invert the NTRU
one way function [7]. It was this reformulation, as an approximation problem, that initiated the �rst
serious e�orts to understand the di�culty of �nding short vectors in Lh [12, 18].

Two additional observations, which appear as early as May's work on the cryptanalysis of NTRU-
107 [18], bring us to the modern attack strategy. The �rst is that the ratio of successive minima
λ2(Lh)/λ1(Lh) is a parameter of interest in assessing the di�culty of �nding a short vector in Lh. That
is to say that the NTRU problem reduces to unique SVP. Surprisingly, this brings us back to an exact
search for (f, g), or one of a few related vectors, but unique SVP is known to be easier than approximate
SVP in practice [9]. The second observation is that, when lattice reduction is expensive, it may be
fruitful to guess a subset of the coe�cients of (f, g). May's dimension reduction technique [18] and May
and Silverman's pattern method [19] trade success probability in guessing coe�cients of (f, g) against
the cost of solving unique SVP in a sublattice of Lh.

The most e�ective lattice attacks in the literature treat NTRU key recovery as a unique shortest
vector problem. Depending on the assumed non-asymptotic cost of lattice reduction, these attacks
make use of guessing (or ignoring) coe�cients to reduce the lattice dimension. Recently introduced
sieve algorithms have single exponential cost that is small enough to call into question the e�ectiveness
of guessing coe�cients, however it is not clear that combinatorial techniques are irrelevant in realistic
models of computation.

In Section 5.3.1 we estimate the cost of solving unique SVP in Lh in the Core-SVP cost model from
the NewHope paper [3]. We do not aim to provide a complete description of the cost model, or of unique
SVP methods in general. Background and references on solving unique SVP, as well as substantial
discussion of the Core-SVP cost model, can be found in Albrecht�Göpfert�Virdia�Wunderer [1]. While
Albrecht et al. focus on LWE, their analysis of LWE with short secrets applies directly to NTRU. In
fact, the attack described in [1, Section 5.1] is identical2 to May's �dimension reduction� attack applied

1The output of Generate_Public_Key is the R/q-representative of 3 · (x − 1) · g/f , but h here should be thought of as
the S/q-representative of g/f . Since 3 · (x− 1) is a unit in S/q this change is purely syntactic.

2The attack in [1, Section 5.1] uses a lattice generated by the rows of

νIn′ −AT 0

0 q · Im 0

0 c 1

where (A, c) is an instance of the LWE problem. By replacing −AT by H and c by an NTRU ciphertext we get a message
recovery attack on NTRU. By replacing −AT by H and omitting the row containing c we get May's attack. Taking m < n′

corresponds to dimension reduction. The use of the parameter ν is a standard lattice reduction trick that also appears in
[7] and [18].

18

— Internet: Portfolio 497

to [Lh], despite being developed independently and in a di�erent context.
In Section 5.4, we consider Howgrave-Graham's hybrid attack [13] in the Core-SVP cost model. The

hybrid attack is a unique SVP attack that uses a meet-in-the-middle strategy for guessing coe�cients.

Both analyses require the following fact, which is easily derived by series multisection of (1 + x)2·k.

Fact 1. Let Y be a random variable distributed according to the centered binomial distribution of pa-

rameter k. Then

Pr [Y ≡ 0 (mod 3)] = 1
3

(
1 + 2

22·k
)
,

Pr [Y ≡ ±1 (mod 3)] = 1
3

(
1− 1

22·k
)
.

For the recommended parameter, k = 2, this gives a distribution on (−1, 0, 1) of (5
16 ,

6
16 ,

5
16). The

expected euclidean length of m coe�cients is therefore
√
m · 10/16, and the entropy per coe�cient is

≈ 1.579 bits.

5.2 Cost of SVP Algorithms.

In the following sections we use four di�erent cost estimates for SVP-b. The cost of the List-Decoding
Sieve from [4] is summarized in Table 2. The cost of the List-Decoding Sieve when Grover search is used
to answer nearest-neighbor queries is summarized in Table 3.

We estimate the cost of solving SVP by enumeration in dimension b using a quasilinear �t to the
experimental data of Chen and Nguyen [6]. Following [2] we use the trend line:

enum(b) = 0.18728 · b log2(b)− 1.0192 · b+ 16.10. (2)

The cost of using an enumeration algorithm for SVP−b is then estimated as 2enum(b).
Finally we consider a hypothetical square-root speedup in the cost of enumeration on a quantum

computer, for a cost of 2enum(b)/2. While this is a purely hypothetical improvement, it is no less
hypothetical than a quantum variant of the List-Decoding Sieve which maintains its asymptotic cost in
a quantum circuit model. As we shall see, even this dramatic speedup in enumeration is unlikely to be
competitive with the classical List-Decoding sieve, especially if a restriction is imposed on the depth of
quantum computations.

Pre-quantum cost of List-Decoding Sieve

Metric Time Space

Balanced 20.292·b 20.292·b

Min. Space 20.368·b 20.208·b

Table 2: Cost of the List-Decoding Sieve as a function of the dimension, with all subexponential factors
suppressed [4].

Post-quantum cost of List-Decoding Sieve

Metric Grover Iterations Space

Balanced 20.265·b 20.265·b

Min. Space 20.2975·b 20.208·b

Table 3: Cost of the List-Decoding Sieve, as a function of the dimension, when Grover search is used to
answer nearest neighbor queries [17]. Again subexponential factors are suppressed, but we have units of
Grover iterations rather than time. This is because it is not clear that the algorithm can be instantiated
in a quantum circuit model without re-evaluating its asymptotic cost.

19

498 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

5.3 Core-SVP Cost Estimates.

The Core-SVP estimate was introduced in the security evaluation of NewHope [3]. A thorough descrip-
tion can be found in [1]. Success criteria for the primal and hybrid attacks are given in the following
sections.

5.3.1 Primal Attack.

The primal attack has two parameters: b, the blocksize used for lattice reduction, and m, the dimension
reduction parameter3. The primal attack attempts to solve unique SVP in a sublattice Λprimal ⊆ Lh

of rank d = n′ + m and volume qm. A BKZ-b reduced basis V = {v1, . . . , vd} for Λprimal is computed.
Following this, a single call to an SVP-b routine is made on {v′d−b+1, v

′
d−b+2, . . . v

′
d}, where v′i is vi

projected orthogonally to the �rst d − b vectors of V . The parameters b and m are chosen so that a
short vector in this projected sublattice is likely to be mapped to a short vector in Λprimal by Babai's
nearest plane algorithm.

The success condition is with respect to the length of the �rst vector in the last block of the reduced
basis, vd−b+1. The Gram-Schmidt vectors of the reduced basis, v∗1 , v

∗
2 , . . . , v

∗
d, are expected to satisfy

||vi+1|| ≤ δd−2i · qm/d where δ = ((π · b)1/b · b/(2π · e))1/(2(b−1)) . The assumption that this is the case is
known as the Geometric Series Assumption.

In [3], it was suggested that an attacker could expect to recover (f, g) from its projection orthogonal
to the �rst d− b vectors of V if

√
b/d · ||(f, g)|| ≤ ||v∗d−b+1|| ≈ δ2b−d · qm/d. (3)

Further evidence for this claim was given in [1].
From Fact 1 we have

√
b/d · ||(f, g)|| ≈

√
b ·
√

10/16. The Core-SVP cost of the attack is found by
minimizing the cost of one call to an algorithm for SVP-b over all choices of m and b for which (3) is
satis�ed.

In Tables 4 and 5 we give optimal parameters for the primal attack in the Core-SVP model. The
main entries of interest are for n′ = 700, corresponding to our recommended parameter set. We also list
the cost for n′ = 940 and n′ = 1372, as these give some indication for how security scales with n and
may be useful in comparisons with other proposals.

Primal Attack with List-Decoding Sieve

n′ m b Metric Operations Vectors

700 626 465
Balanced 2136 2136

Min. Space 2171 296

940 824 616
Balanced 2180 2180

Min. Space 2226 2127

1372 1150 969
Balanced 2283 2283

Min. Space 2357 2201

Table 4: Optimal parameters for the primal attack when the cost of SVP−b is as given in Table 2.

3In the LWE context m is the number of LWE samples used by the attacker.

20

— Internet: Portfolio 499

Primal Attack with List-Decoding Sieve and Grover Search

n′ m b Metric Grover Iterations Iteration Depth Vectors

700 626 465
Balanced 2123 226 2123

Min. Space 2138 241 296

940 824 616
Balanced 2163 235 2163

Min. Space 2183 255 2127

1372 1150 969
Balanced 2257 255 2257

Min. Space 2288 287 2201

Table 5: Optimal parameters for the primal attack when the cost of SVP−b is as given in Table 3.

Cost of quantum queries The quantum cost of the list decoding sieve depends, crucially, on the
use of the quantum RAM model of computation. Determining its cost in a circuit model is an open
problem of considerable interest. Each Grover iteration accesses a block of memory of size roughly equal
to the square of the �gure given in the �Iteration Depth� column. If quantum RAM requires active error
correction, then the advantage over the Table 4 cost would be lost.

Size of vectors Even assuming just b bits per vector, the Table 4 cost of attacking our recommended
parameter set would in�ate to 2145 bits. Merely populating this memory would already be as expensive
than a key search on AES-128.

E�ect of MAXDEPTH The List Decoding Sieve allows for a large degree of parallelization and can
be tuned to avoid reasonable MAXDEPTH bounds in a classical RAM model. To a lesser extent, this
is also true when Grover search is used to perform individual near-neighbor searches. We have listed
the �Iteration Depth� of these searches, i.e. the number of Grover iterations required to perform each
near-neighbor query, in Table 5.

Depending on the circuit cost of one Grover iteration, it is plausible that a small MAXDEPTH could
be saturated. For example, the time optimal parameterization in dimension 465 has iteration depth
226. This would saturate a 240 limit on MAXDEPTH if the circuit for a Grover iteration had depth 214

quantum gates. For comparison, the circuit for one round of AES-128 given in [10] has depth 213.4 logical
quantum gates. That said, limiting MAXDEPTH to 264 would likely have no impact on the Core-SVP
security estimate for our n = 701 parameter set.

5.4 Hybrid attack

The hybrid attack targets a sublattice Λhybrid ⊆ Lh of rank d = n′ + m. A BKZ-b reduced basis
V = {v1, . . . , vd−s} for a rank d − s sublattice of Λhybrid is computed. Suppose w is a short vector in
Lh. The attacker attempts to guess s coe�cients of the projection of w orthogonal to V . If the guess
is correct, then it can be lifted to a short vector in Λhybrid using Babai's nearest plane algorithm. The
success condition is with respect to the length of the last Gram-Schmidt vector in the last block of the
reduced basis, v∗d−s. Heuristically, one can expect the attack to work when

||v∗d−s|| = δ2s−d+2 · qm/d ≥ 2 · ||w||∞ = 2.

We have found that the hybrid attack is not competitive with the primal attack when both attacks
use the List-Decoding Sieve with cost given by Table 3. However there are still some interesting trade-
o�s to consider. Recall that the costs in Table 3 depend on the use of the quantum RAM model. It is
not clear whether quantum RAM is less expensive than general purpose quantum circuitry. This leads
us to consider parallel hybrid attacks that use less quantum circuitry than would be required to run the
List-Decoding Sieve on a quantum computer.

21

500 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

In Table 6 we see that the hybrid attack can outperform the classical List-Decoding Sieve if Grover
iterations are inexpensive. However this is only true when MAXDEPTH = ∞. Reasonable limits on
MAXDEPTH eliminate the advantage of the hybrid attack.

Hybrid Attack with List-Decoding Sieve

n′ MAXDEPTH m b s Grover Iterations Iteration Depth Processors

700

∞ 626 459 169 2133 2133 20

2128 621 461 167 2134 2128 26

296 641 482 150 2140 296 244

264 660 502 134 2146 264 282

940 ∞ 822 614 227 2179 2179 20

1372 ∞ 1164 980 363 2286 2286 20

Table 6: Cost of the hybrid attack using the List-Decoding Sieve with cost given by Table 2. The
coe�cient guessing stage of the attack is done with Grover search. The classical time and space required
for the list-decoding sieve is matched to the number of Grover iterations. The MAXDEPTH limit only
a�ects the coe�cient guessing stage.

In Table 7 we consider the cost of the hybrid attack when enumeration is used to solve SVP−b. This
is an attractive option as it requires only polynomial space. However, as the table indicates, reasonable
limits on MAXDEPTH force one to use massive amounts of parallelism. Even with MAXDEPTH = 2128

it is clearly better to use a space optimized (classical) List-Decoding Sieve.

Hybrid Attack with Enumeration and Grover Search

n′ MAXDEPTH m b s Grover Iterations Iteration Depth Processors

700

∞ 508 345 264 2208 2208 20

2128 546 383 232 2241 2128 2110

296 558 396 221 2252 296 2156

264 574 411 208 2265 264 2200

940 ∞ 654 446 373 2294 2294 20

1372 ∞ 860 653 626 2494 2494 20

Table 7: Optimal parameters for the hybrid attack when SVP−b is solved by enumeration of cost
2enum(b). The formula for enum(b) is Equation (2). The coe�cient guessing stage of the attack is done
with Grover search. The MAXDEPTH limit only a�ects the coe�cient guessing stage.

Finally in Table 8 we consider the e�ect of a hypothetical square-root speedup in the cost of enu-
meration. We assume that this speedup is due to a quantum algorithm, so it is limited by MAXDEPTH.
Even with this massive speedup, it seems that reasonable limits on MAXDEPTH force a high degree of
parallelism. The entry with MAXDEPTH = 296 is interesting, but it seems likely that the attack in Table
4 is better.

22

— Internet: Portfolio 501

Hybrid Attack with
√
Enumeration and Grover Search

n′ MAXDEPTH m b s Grover Iterations Iteration Depth Processors

700

∞ 602 440 184 2145 2145 20

2128 602 440 184 2163 2128 234

296 602 440 184 2195 296 298

264 602 440 184 2227 264 2162

940 ∞ 781 572 263 2207 2207 20

1372 ∞ 1060 866 453 2357 2357 20

Table 8: Optimal parameters for the hybrid attack when SVP−b is solved by enumeration of cost
2enum(b)/2. The formula for enum(b) is Equation (2). The coe�cient guessing stage of the attack is done
with Grover search. The MAXDEPTH limit only a�ects all parts of the computation.

5.5 Attacks on symmetric primitives

The only symmetric primitive we use is SHAKE128. This also meets the Category 1 security level. We
note that the KEM can, in principle, be used to exchange close to n · log 3 bits of key material. A more
secure symmetric primitive can be substituted without changing any other details of the construction.

6 Advantages and limitations

We focus on comparisons with other lattice based systems.

6.1 Compared with Standard NTRU.

Some advantages and disadvantages of NTRU-HRSS compared with Standard NTRU (as de�ned in [16])
are as follows.

Advantages.

− No decryption failures. NTRU EES parameter sets have small but non-zero decryption failure
probability.

− No padding mechanisms. By using a direct construction of a KEM, we have avoided the need
for a padding mechanism like NAEP [14].

− No �xed weight distributions. NTRU EES parameter sets use �xed weight coe�cient vectors
to ensure that information about secret keys (resp. messages) is not revealed through h(1) (resp
c(1)). This is more di�cult to implement in constant time than the combination of Sample_T and
S3_to_R used in NTRU-HRSS.

− No rejection sampling. NTRU EES uses �xed length strings of uniform random bits to sample
uniform random trits and uniform values in {0, 1, . . . , n−1}. In order for these processes to succeed
with all but negligible probability, many bits must be sampled.

− Secret keys are always invertible. The restrictions on n listed in Section 1.3.1 ensure that
f is always invertible modulo 2. NTRU EES parameters are chosen so that the probability of
generating a non-invertible f is small but not necessarily zero.

23

502 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Disadvantages.

− Large modulus. NTRU-HRSS needs a comparatively large modulus to eliminate decryption
failure. This decreases security and increases communication cost. The n = 701 parameter set for
NTRU-HRSS would gain an estimated 20 bits of security by using modulus q = 2048 instead of
q = 8192. Ciphertext length would also drop by 175 bytes.

− Inverses mod p. NTRU EES takes f ≡ 1 (mod p) and thereby avoids multiplying by f−1

(mod p) during decryption. Doing the same in NTRU-HRSS would require an even larger modulus.

6.2 Compared with Streamlined NTRUPrime.

Some advantages and disadvantages of NTRU-HRSS compared with Streamlined NTRUPrime (as de-
�ned in [5]) are as follows.

6.2.1 Advantages.

− No �xed weight distributions. Streamlined NTRUPrime uses relies on �xed weight distribu-
tions for its proof of correctness.

− Private keys are always invertible. It is possible to pick an f that is not invertible modulo 3
in Streamlined NTRUPrime.

− Power of 2 modulus. Streamlined NTRUPrime requires a prime modulus. Some arithmetic
operations are faster when q is a power of 2.

6.2.2 Disadvantages.

− Cyclotomic ring. NTRUPrime was designed to avoid �worrisome structure� of cyclotomic rings.
While algebraic structure does not �gure into the cost of the best known attacks on NTRU-HRSS,
it is conceivable that better algebraic attacks exist. It is also conceivable that such attacks would
not apply to the rings used by NTRUPrime.

− Probabilistic encryption. Streamlined NTRUPrime is constructed as a deterministic public key
encryption scheme.

− No �LWR�-style rounding. Streamlined NTRUPrime ciphertexts can be compressed.

6.3 Compared with LWE systems.

Advantages.

− No decryption failures. Most practical LWE schemes opt for a small decryption failure rate
rather than for a narrow coe�cient distribution or a large modulus.

Disadvantages.

− Larger dimension for equal security. In order to eliminate decryption failure, NTRU-HRSS
uses trinary secret keys and messages. This results in a lower level of security than could be had
with the same dimension and modulus but larger noise.

References

[1] Martin R. Albrecht, Florian Göpfert, Fernando Virdia, and Thomas Wunderer. Revisiting the
expected cost of solving usvp and applications to LWE. In Advances in Cryptology - ASIACRYPT

2017 - 23rd International Conference on the Theory and Applications of Cryptology and Information

Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I, pages 297�322, 2017. 18, 20

24

— Internet: Portfolio 503

[2] Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with errors.
IACR Cryptology ePrint Archive report 2015/046, 2015. https://eprint.iacr.org/2015/046. 19

[3] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum key exchange �
a new hope. In Thorsten Holz and Stefan Savage, editors, Proceedings of the 25th USENIX Security

Symposium. USENIX Association, 2016. https://cryptojedi.org/papers/#newhope. 18, 20

[4] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest neighbor
searching with applications to lattice sieving. In "27th Annual ACM-SIAM Symposium on Discrete

Algorithms". ACM-SIAM, 2016. 19

[5] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine van Vredendaal.
NTRU Prime. In Jan Camenisch and Carlisle Adams, editors, Selected Areas in Cryptography �

SAC 2017, LNCS, to appear. Springer, 2017. http://ntruprime.cr.yp.to/papers.html. 24

[6] Yuanmi Chen. Lattice reduction and concrete security of fully homomorphic encryption. PhD thesis,
l'Université Paris Diderot, 2013. 19

[7] Don Coppersmith and Adi Shamir. Lattice attacks on NTRU. In Walter Fumy, editor, Advances
in Cryptology � EUROCRYPT `97, volume 1233 of LNCS, pages 52�61. Springer, 1997. http:

//dx.doi.org/10.1007/3-540-69053-0_5. 18

[8] Alexander W. Dent. A designer's guide to KEMs. In Kenneth G. Paterson, editor, Cryptography and
Coding, volume 2898 of LNCS, pages 133�151. Springer, 2003. http://www.cogentcryptography.
com/papers/designer.pdf. 17

[9] Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In Nigel Smart, editor, Ad-
vances in Cryptology � EUROCRYPT 2008: 27th Annual International Conference on the Theory

and Applications of Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings,
LNCS, pages 31�51. Springer, 2008. https://www.iacr.org/archive/eurocrypt2008/49650031/
49650031.pdf. 18

[10] Markus Grassl, Brandon Langenberg, Martin Roetteler, and Rainer Steinwandt. Applying Grover's
Algorithm to AES: Quantum Resource Estimates, pages 29�43. Springer International Publishing,
Cham, 2016. 21

[11] Je�rey Ho�stein, Jill Pipher, and Joseph H. Silverman. NTRU: A new high speed public key
cryptosystem, 1996. draft from at CRYPTO `96 rump session. http://web.securityinnovation.
com/hubfs/files/ntru-orig.pdf. 18

[12] Je�rey Ho�stein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public key cryptosys-
tem. In Joe P. Buhler, editor, Algorithmic Number Theory � ANTS-III, volume 1423 of LNCS,
pages 267�288. Springer, 1998. http://dx.doi.org/10.1007/BFb0054868. 4, 18

[13] Nick Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack against NTRU.
In Alfred Menezes, editor, Advances in Cryptology � CRYPTO 2007, volume 4622 of LNCS, pages
150�169. Springer, 2007. http://www.iacr.org/archive/crypto2007/46220150/46220150.pdf.
19

[14] Nick Howgrave-Graham, Joseph H. Silverman, Ari Singer, and William Whyte. NAEP: Provable
security in the presence of decryption failures. Cryptology ePrint Archive, Report 2003/172, 2003.
https://eprint.iacr.org/2003/172. 23

[15] Andreas Hülsing, Joost Rijneveld, John Schanck, and Peter Schwabe. High-speed key encapsulation
from NTRU. In Wieland Fischer and Naofumi Homma, editors, Cryptographic Hardware and Em-

bedded Systems � CHES 2017, LNCS. Springer, 2017. http://cryptojedi.org/papers/#ntrukem.
4, 5, 8, 9, 17

25

504 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

[16] IEEE. IEEE Standard Speci�cation for Public Key Cryptographic Techniques Based on Hard
Problems over Lattices. IEEE Std 1363.1-2008, 2009. http://dx.doi.org/10.1109/IEEESTD.

2009.4800404. 4, 23

[17] Thijs Laarhoven. Search problems in cryptography. PhD thesis, Eindhoven University of Technology,
2015. http://www.thijs.com/docs/phd-final.pdf. 19

[18] Alexander May. Cryptanalysis of NTRU, 1999. https://www.cits.ruhr-uni-bochum.de/

imperia/md/content/may/paper/cryptanalysisofntru.ps. 18

[19] Alexander May and Joseph H. Silverman. Dimension reduction methods for convolution modular
lattices. In Joseph H. Silverman, editor, Cryptography and Lattices: International Conference �

CaLC 2001, volume 2146 of LNCS, pages 110�125. Springer, 2001. http://dx.doi.org/10.1007/
3-540-44670-2_10. 18

[20] NIST. FIPS PUB 202 � SHA-3 standard: Permutation-based hash and extendable-output functions,
2015. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf. 7

[21] Martijn Stam. A key encapsulation mechanism for NTRU. In Nigel P. Smart, editor, Cryptography
and Coding, volume 3796 of LNCS, pages 410�427. Springer, 2005. 4

26

— Internet: Portfolio 505

NTRU Prime

20171130

Principal submitter

This submission is from the following team, listed in alphabetical order:

• Daniel J. Bernstein, University of Illinois at Chicago
• Chitchanok Chuengsatiansup, INRIA and ENS de Lyon
• Tanja Lange, Technische Universiteit Eindhoven
• Christine van Vredendaal, Technische Universiteit Eindhoven

E-mail address (preferred): authorcontact-ntruprime@box.cr.yp.to

Telephone (if absolutely necessary): +1-312-996-3422

Postal address (if absolutely necessary): Daniel J. Bernstein, Department of Computer Sci-
ence, University of Illinois at Chicago, 851 S. Morgan (M/C 152), Room 1120 SEO, Chicago,
IL 60607–7053.

Auxiliary submitters: There are no auxiliary submitters. The principal submitter is the
team listed above.

Inventors/developers: The inventors/developers of this submission are the same as the
principal submitter. Relevant prior work is credited below where appropriate.

Owner: Same as submitter.

Signature: ×. See also printed version of “Statement by Each Submitter”.

Document generated with the help of pqskeleton version 20171123.

1

506 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Contents

1 Introduction 4

2 General algorithm specification (part of 2.B.1) 5

2.1 Streamlined NTRU Prime parameter space 5

2.2 Streamlined NTRU Prime key generation . 5

2.3 Streamlined NTRU Prime encapsulation . 5

2.4 Streamlined NTRU Prime decapsulation . 6

2.5 NTRU LPRime parameter space . 7

2.6 NTRU LPRime key generation . 7

2.7 NTRU LPRime encapsulation . 8

2.8 NTRU LPRime decapsulation . 8

3 List of parameter sets (part of 2.B.1) 9

3.1 Parameter set kem/sntrup4591761 . 9

3.2 Parameter set kem/ntrulpr4591761 . 10

4 Design rationale (part of 2.B.1) 12

4.1 The ring . 12

4.2 The public key . 14

4.3 Inputs and ciphertexts . 14

4.4 Key generation and decryption . 15

4.5 Padding, KEMs, and the choice of q . 17

4.6 The shape of small polynomials . 19

5 Detailed performance analysis (2.B.2) 20

5.1 Description of platform . 20

5.2 Time . 20

5.3 Space . 21

5.4 How parameters affect performance . 21

2

— Internet: Portfolio 507

6 Analysis of known attacks (2.B.5) 21

6.1 Warning: underestimates are dangerous . 21

6.2 Meet-in-the-middle attack . 22

6.3 Streamlined NTRU Prime lattice . 23

6.4 Hybrid security . 23

6.5 Algebraic attacks . 25

6.6 Quantum attacks . 25

6.7 Memory, parallelization, and sieving algorithms 25

6.8 Attacks against NTRU LPRime . 26

7 Expected strength (2.B.4) in general 27

7.1 Security definitions . 27

7.2 Rationale . 27

8 Expected strength (2.B.4) for each parameter set 28

8.1 Parameter set kem/sntrup4591761 . 28

8.2 Parameter set kem/ntrulpr4591761 . 28

9 Advantages and limitations (2.B.6) 29

References 29

A Statements 36

A.1 Statement by Each Submitter . 37

A.2 Statement by Patent (and Patent Application) Owner(s) 39

A.3 Statement by Reference/Optimized Implementations’ Owner(s) 40

3

508 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

1 Introduction

A 2015 algorithm breaks dimension-N SVP (under plausible assumptions) in time 2(c+o(1))N

as N →∞ with c ≈ 0.292. See [9]. For comparison, the best algorithm known just five years
earlier had a much worse c ≈ 0.415, and the best algorithm known just ten years before that
took time 2Θ(N log N).

Gentry’s original FHE system at STOC 2009, with standard “cyclotomic” choices of rings,
is now known (again under plausible assumptions) to be broken in polynomial time by a
quantum algorithm. See [12]. Peikert claimed in 2015 that the weakness in Gentry’s system
was specific to Gentry’s short generators and inapplicable to Ideal-SVP:

Although cyclotomics have a lot of structure, nobody has yet found a way to
exploit it in attacking Ideal-SVP/BDD . . . For commonly used rings, principal
ideals are an extremely small fraction of all ideals. . . . The weakness here is not
so much due to the structure of cyclotomics, but rather to the extra structure of
principal ideals that have short generators.

However, the attack was then combined with further features of cyclotomics to break Ideal-
SVP (again under plausible assumptions) with approximation factor 2N

1/2+o(1)
, a terrifying

advance compared to the previous 2N
1+o(1)

. See [24].

As these attack examples illustrate, the security of lattice-based cryptography is not well
understood. There are serious risks of further advances in

• SVP algorithms,

• algorithms that exploit the “approximation factors” used in cryptography,

• algorithms that exploit the structure of cryptographic problems such as LWE,

• algorithms that exploit the multiplicative structure of efficient cryptographic problems
such as Ring-LWE,

• algorithms that exploit the structure of these problems for the specific rings chosen by
users, and

• algorithms to break cryptosystems without breaking these problems.

The point of this submission is that the attack surface in lattice-based cryptography can be
significantly reduced with only a minor loss of efficiency. In fact, despite the extra security
criteria imposed below, the two cryptosystems in this submission are two of the smallest and
fastest lattice-based cryptosystems.

4

— Internet: Portfolio 509

2 General algorithm specification (part of 2.B.1)

This submission provides two key-encapsulation mechanisms: “Streamlined NTRU Prime”
and “NTRU LPRime”.

2.1 Streamlined NTRU Prime parameter space

Streamlined NTRU Prime has parameters (p, q, w) subject to the following restrictions: p
is a prime number; q is a prime number; w is a positive integer; 2p ≥ 3w; q ≥ 16w + 1;
xp − x − 1 is irreducible in the polynomial ring (Z/q)[x].

We abbreviate the ring Z[x]/(xp − x − 1), the ring (Z/3)[x]/(xp − x − 1), and the field
(Z/q)[x]/(xp − x − 1) as R, R/3, and R/q respectively. We refer to an element of R as
small if all of its coefficients are in {−1, 0, 1}, and weight w if exactly w of its coefficients
are nonzero.

Streamlined NTRU Prime also has the following parameters: an encoding of public keys as
strings; an encoding of rounded ring elements (see below) as strings; and a hash function
mapping each small polynomial to two fixed-length output strings, a “confirmation” and a
“session key”.

2.2 Streamlined NTRU Prime key generation

The receiver generates a public key as follows:

• Generate a uniform random small element g ∈ R. Repeat this step until g is invertible
in R/3. (There are various standard ways to test invertibility: for example, one can
check divisibility of g by the irreducible factors of xp − x − 1 modulo 3, or one can
deduce invertibility as a side effect of various algorithms to compute 1/g in R/3.)

• Generate a uniform random small weight-w element f ∈ R. (Note that f is nonzero
and hence invertible in R/q, since w ≥ 1.)

• Compute h = g/(3f) in R/q. (By assumption q is a prime larger than 3, so 3 is
invertible in R/q, so 3f is invertible in R/q.)

• Encode h as a string h, using the aforementioned encoding of public keys as strings.
The public key is h.

• Save the following secrets: f in R; and 1/g in R/3.

2.3 Streamlined NTRU Prime encapsulation

The sender generates a ciphertext as follows:

5

510 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

• Decode the public key h, obtaining h ∈ R/q.

• Generate a uniform random small weight-w element r ∈ R.

• Compute hr ∈ R/q.

• Round each coefficient of hr, viewed as an integer between −(q − 1)/2 and (q − 1)/2,
to the nearest multiple of 3, producing c ∈ R. (If q ∈ 1 + 3Z then each coefficient of c
is in {−(q − 1)/2, . . . , −6, −3, 0, 3, 6, . . . , (q − 1)/2}. If q ∈ 2+3Z then each coefficient
of c is in {−(q + 1)/2, . . . , −6, −3, 0, 3, 6, . . . , (q + 1)/2}. Rounding adds an element
from {−1, 0, 1} to each coefficient.)

• Encode c as a string c, using the aforementioned encoding of rounded ring elements as
strings.

• Hash r, obtaining a confirmation C and a session key K. The ciphertext is the con-
catenation C c.

2.4 Streamlined NTRU Prime decapsulation

The receiver decapsulates a ciphertext C c as follows:

• Decode c, obtaining c ∈ R.

• Multiply by 3f in R/q.

• View each coefficient of 3fc in R/q as an integer between −(q − 1)/2 and (q − 1)/2,
and then reduce modulo 3, obtaining a polynomial e in R/3.

• Multiply by 1/g in R/3.

• Lift e/g in R/3 to a small polynomial r0 ∈ R.

• Compute c0, C 0, K 0 from r0 as in encapsulation.

0 0 0• If r is small, r has weight w, c = c, and C 0 = C, then output K 0 . Otherwise output
False.

If C c is a legitimate ciphertext then c is obtained by rounding the coefficients of hr to
the nearest multiples of 3; i.e., c = m + hr in R/q, where m is small. All coefficients of
the polynomial 3fm + gr in R are in [−8w, 8w] by Theorem 2 below, and thus in [−(q −
1)/2, (q −1)/2] since q ≥ 16w+1. Viewing each coefficient of 3fc = 3fm+gr as an integer in
[−(q −1)/2, (q −1)/2] thus produces exactly 3fm+gr ∈ R, and reducing modulo 3 produces
gr ∈ R/3; i.e., e = gr in R/3, so e/g = r in R/3. Lifting now produces exactly r since r is

0 0 0small; i.e., r = r. Hence (c0, C 0, K 0) = (c, C, K). Finally, r = r is small, r has weight w,
c0 = c, and C 0 = C, so decapsulation outputs K 0 = K, the same session key produced by
encapsulation.

6

— Internet: Portfolio 511

Theorem 1 Fix integers p ≥ 3 and w ≥ 1. Let r, g ∈ Z[x] be polynomials of degree at most
p − 1 with all coefficients in {−1, 0, 1}. Assume that r has at most w nonzero coefficients.
Then gr mod xp − x − 1 has each coefficient in the interval [−2w, 2w].

Theorem 2 Fix integers p ≥ 3 and w ≥ 1. Let m, r, f, g ∈ Z[x] be polynomials of degree
at most p − 1 with all coefficients in {−1, 0, 1}. Assume that f and r each have at most
w nonzero coefficients. Then 3fm + gr mod xp − x − 1 has each coefficient in the interval
[−8w, 8w].

2.5 NTRU LPRime parameter space

NTRU LPRime has parameters (p, q, w, δ, I) subject to the following restrictions: p is a
prime number; q is a prime number; w, δ, I are positive integers; 2p ≥ 3w; I is a multiple of
8; p ≥ I; q ≥ 16w + 2δ + 3; xp − x − 1 is irreducible in the polynomial ring R/q.

As before, we abbreviate the ring Z[x]/(xp − x − 1), the ring (Z/3)[x]/(xp − x − 1), and the
field (Z/q)[x]/(xp − x − 1) as R, R/3, and R/q respectively. We refer to an element of R as
small if all of its coefficients are in {−1, 0, 1}, and weight w if exactly w of its coefficients
are nonzero.

NTRU LPRime also has the following parameters: an encoding of rounded ring elements
(see below) as strings; a hash function mapping each I-bit string to three fixed-length output
strings, a “cipher key” and a “confirmation” and a “session key”; a function Small from the
set of cipher keys to the set of small weight-w elements in R; a function Generator from
a set of “seed” strings to R/q; a function Top from (Z/q)I to a fixed-length set of strings;
and a function Right from the same set of strings to (Z/q)I such that each coordinate of the
difference Right(Top(C)) − C is in {0, 1, . . . , δ} for each C ∈ (Z/q)I .

2.6 NTRU LPRime key generation

The receiver generates a public key as follows:

• Generate a uniform random seed S.

• Compute G = Generator(S) ∈ R/q.

• Generate a uniform random small weight-w element a ∈ R.

• Compute aG ∈ R/q.

• Round each coefficient of aG, viewed as an integer between −(q − 1)/2 and (q − 1)/2,
to the nearest multiple of 3, producing A ∈ R.

• Encode A as a string A. The public key is the concatenation SA.

• Save the secret a.

7

512 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

2.7 NTRU LPRime encapsulation

The sender generates a ciphertext as follows:

• Decode the public key SA, obtaining a seed S and a polynomial A ∈ R.

• Compute G = Generator(S) ∈ R/q.

• Generate a uniform random I-bit string r = (r0, r1, . . . , rI−1).

• Hash r, obtaining a cipher key k, a confirmation H, and a session key K.

• Compute b = Small(k) ∈ R.

• Compute bG in R/q.

• Compute bA in R/q. (Only the bottom I coefficients of bA, the coefficients
(bA)0, (bA)1, . . . , (bA)I−1 of x0, x1, . . . , xI−1 respectively, will be used; other coefficients
do not need to be computed.)

• Round each coefficient of bG, viewed as an integer between −(q − 1)/2 and (q − 1)/2,
to the nearest multiple of 3, producing B ∈ R.

• Encode B as a string B.

• Compute C = (C0, C1, . . . , CI−1) ∈ (Z/q)I as follows: Cj = (bA)j + rj (q − 1)/2.

˜• Compute C = Top(C).

• The ciphertext is the concatenation HBC̃. The session key is K.

2.8 NTRU LPRime decapsulation

The receiver decapsulates a ciphertext HBC̃ as follows:

• Decode B, obtaining B ∈ R.

• Compute T = Right(C̃) ∈ (Z/q)I .

• Compute aB in R/q. (Only the bottom I coefficients of aB will be used.)

0 0 0• Compute r0, r1, . . . , r ∈ {0, 1} as follows. View Tj − (aB)j + 4w + 1 ∈ Z/q as an I−1

integer between −(q − 1)/2 and (q − 1)/2. Then rj
0 is the sign bit of this integer: 1 if

the integer is negative, otherwise 0.

0 0 0• Compute a ciphertext c0 and session key K 0 from r0 = (r0, r1, . . . , rI−1) as in encapsu-
lation.

• If the ciphertext c0 is HBC̃, then output K 0 . Otherwise output False.

8

— Internet: Portfolio 513

The public key A is obtained by rounding the coefficients of aG to the nearest multiples of
3; i.e., A = aG + d in R/q, where d is small.

If HBC̃ is a legitimate ciphertext then B is an encoding of B which is obtained by rounding
the coefficients of bG to the nearest multiples of 3; i.e., B = bG + e in R/q, where e is small,
and C̃ = Top(C) with Cj = (bA)j + rj (q − 1)/2.

By construction the functions Top and Right are such that each coordinate of
Right(Top(C)) − C is in {0, 1, . . . , δ} for each C ∈ (Z/q)I , i.e,. Right(Top(C))j − Cj ∈
{0, 1, . . . , δ}.
Then

Tj − (aB)j + 4w + 1 = Right(Top(C))j − (a(bG + e))j + 4w + 1

= Right(Top(C))j − Cj + Cj − ((abG)j + (ae)j) + 4w + 1

= Right(Top(C))j − Cj + (bA)j + rj(q − 1)/2 − ((abG)j + (ae)j) + 4w + 1

= Right(Top(C))j − Cj + (baG)j + (bd)j + rj (q − 1)/2 − ((abG)j + (ae)j) + 4w + 1

= Right(Top(C))j − Cj + (bd)j − (ae)j + 4w + 1 + rj (q − 1)/2 ∈ Z/q.

All coefficients of the polynomials bd and ae are in [−2w, 2w] by Theorem 1, thus

1 ≤ Right(Top(C))j − Cj + (bd)j − (ae)j + 4w + 1 ≤ 8w + δ + 1.

Viewing each coefficient of Tj − (aB)j + 4w + 1 as an integer in [−(q − 1)/2, (q − 1)/2] thus
produces an integer in [1, 8w +δ +1] if and only if rj = 0 and an integer in [−(q −1)/2, −(q −
1)/2 + 8w + δ] if and only if rj = 1 because 8w + δ + 1 ≤ (q − 1)/2 by construction.

0 0 0This means that rj = rj , thus r = r and c = c, so decapsulation outputs K 0 = K, the same
session key produced by encapsulation.

3 List of parameter sets (part of 2.B.1)

3.1 Parameter set kem/sntrup4591761

Streamlined NTRU Prime with p = 761, q = 4591, w = 286, and the following functions.

Encoding of public keys as strings: View the input polynomial in little-endian form as
761 764a sequence of coefficients of x0, x1, . . . , x764 . The coefficients of x , . . . , x are always 0.

View each coefficient in Z/4591 as an element of {−2295, . . . , 2295}. Add 2295 to obtain an
element of {0, . . . , 4590}.

3 · 211Write each batch of 5 elements c0, c1, c2, c3, c4 in radix 6144 = as the integer c0 +
< 2636144c1 + 61442c2 + 61443c3 + 61444c4. This integer is below 61445 . Write this integer

as 8 bytes in little-endian form.

9

514 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

This produces 8(765/5) = 1224 bytes. The last 6 bytes are always 0 and are suppressed, so
a public key is encoded as 1218 bytes.

Encoding of rounded ring elements as strings: View the input polynomial in little-
0 1 761 761endian form as a sequence of coefficients of x , x , . . . , x . The coefficient of x is always

0.

View each coefficient in Z/4591 as an element of {−2295, −2292, . . . , 2292, 2295}; recall
that ciphertext coefficients are always multiples of 3. Add 2295 to obtain an element of
{0, 3, . . . , 4587, 4590}. Divide by 3 to obtain an element of {0, 1, . . . , 1530}.
Write each batch of 3 elements c0, c1, c2 in radix 1536 = 3 · 29 as the integer c0 + 1536c1 +

< 23215362c2. This integer is below 15363 . Write this integer as 4 bytes in little-endian
form.

This produces 4(762/3) = 1016 bytes. The last byte is always 0 and is suppressed, so a
rounded ring element is encoded as 1015 bytes.

Hash function: View the input polynomial r in little-endian form as a sequence of coeffi-
0 1 763 761 762 763cients of x , x , . . . , x . The coefficients of x , x , x are always 0.

Add 1 to each coefficient, obtaining an element of {0, 1, 2}. Write each batch of 4 elements
in radix 4, obtaining a byte. Overall this produces 764/4 = 191 bytes.

Hash the resulting byte string with SHA-512, obtaining a 256-bit confirmation followed by
a 256-bit session key.

3.2 Parameter set kem/ntrulpr4591761

NTRU LPRime with p = 761, q = 4591, w = 250, δ = 292, I = 256, and the following
functions.

Encoding of rounded ring elements as strings: Same as in sntrup4591761.

Hash function: View the 256-bit string r in little-endian form as a 32-byte string, i.e. the
first byte of r is r0 + 2r1 + · · · + 128r7, the next byte is r8 + 2r9 + · · · + 128r15, etc.

Hash r with SHA-512, obtaining a 32-byte cipher key k followed by a 32-byte intermediate
key k0 . Hash k0 with SHA-512, obtaining a 32-byte confirmation followed by a 32-byte session
key.

Mapping to R: For each 32-byte string k, Small(K) ∈ R is defined as follows:

• Use AES-256-CTR with key k, starting from counter 0, to generate 4p bytes of output.

• View each 4 bytes of output in little-endian form, obtaining p elements of
{0, 1, . . . , 232 − 1}.

• Clear the bottom bit of each of the first w integers; now each of those integers is 0
modulo 2.

10

— Internet: Portfolio 515

• Set the bottom bit, and clear the next bit, of each of the remaining p − w integers;
now each of those integers is 1 modulo 4.

• Sort the integers.

• Reduce each integer modulo 4, and subtract 1, obtaining p elements of {−1, 0, 1}, of
which exactly w are nonzero.

• View these elements as a polynomial in little-endian form, namely Small(K).

Mapping to R/q: The set of seeds is the set of 32-byte strings. For each 32-byte string K,
Generator(K) ∈ R/q is defined as follows:

• Use AES-256-CTR with key K, starting from counter 0, to generate 4p bytes of output.

• View each 4 bytes of output in little-endian form, obtaining p elements of
{0, 1, . . . , 232 − 1}.

• Reduce each of these elements modulo q, obtaining p elements of {0, 1, . . . , q − 1}.

• Obtain p elements of {−(q − 1)/2, . . . , (q − 1)/2} by subtractng (q − 1)/2 from each
integer.

• View these elements as a polynomial in little-endian form, namely Generator(K).

Top bits: For each C ∈ (Z/q)256, Top(C) is a 128-byte string defined as follows:

• View each Cj as an integer between −2295 and 2295.

• Compute Tj = b(114(Cj + 2156) + 16384)/32768c ∈ {0, 1, . . . , 15} for each j.

• Define Top(C) = (T0 + 16T1, T2 + 16T3, . . . , T254 + 16T255).

For each 128-byte string T , Right(T) ∈ (Z/q)256 is defined as follows:

• Extract T0, T1, . . . , T255 ∈ {0, 1, . . . , 15} from T in little-endian form.

• Compute Rj = 287Tj − 2007 for each j.

• Define Right(T) = (R0, R1, . . . , R255).

One can check each integer c ∈ {−2295, . . . , 2295} to see that (287t − 2007) − c ∈
{0, 1, . . . , 292} where t = b(114(c + 2156) + 16384)/32768c.

11

516 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

4 Design rationale (part of 2.B.1)

There are many different ideal-lattice-based public-key encryption schemes in the literature,
including many versions of NTRU; many Ring-LWE-based cryptosystems; and now Stream-
lined NTRU Prime and NTRU LPRime. These are actually many different points in a
high-dimensional space of possible cryptosystems. We give a unified description of the ad-
vantages and disadvantages of what we see as the most important options in each dimension,
in particular explaining the choices that we made in Streamlined NTRU Prime and NTRU
LPRime. Beware that there are many interactions between options. For example, using
Gaussian errors is incompatible with eliminating decryption failures, because there is always
a small probability of large samples combining with large values. Using truncated Gaussian
errors is compatible with eliminating decryption failures, but requires a much larger modulus
q. Neither of these options is compatible with the simple tight KEM that we use.

4.1 The ring

The choice of cryptosystem includes a choice of a monic degree-p polynomial P ∈ Z[x] and
a choice of a positive integer q. As in Section 2, we abbreviate the ring Z[x]/P as R, and
the ring (Z/q)[x]/P as R/q.

Common choices of R/q are as follows:

• “NTRU Classic”: Rings of the form (Z/q)[x]/(xp − 1), where p is a prime and q is a
power of 2, are used in the original NTRU cryptosystem [33].

• “NTRU NTT”: Rings of the form (Z/q)[x]/(xp + 1), where p is a power of 2 and
q ∈ 1 + 2pZ is a prime, are used in typical “Ring-LWE-based” cryptosystems such as
[3].

• “NTRU Prime”: Fields of the form (Z/q)[x]/(xp − x − 1), where p is prime, are used
in this submission.

NTRU Prime uses a prime-degree number field with a large Galois group and an inert
modulus, minimizing the number of ring homomorphisms available to the attacker. As an
analogy, conservative prime-field discrete-logarithm systems also minimize the number of
ring homomorphisms available to the attacker.

We expect the future situation, like the current situation, to be a mix of the following three
scenarios:

• Some lattice-based systems are broken whether or not they have unnecessary homo-
morphisms. As an analogy, some discrete-logarithm systems are broken whether or not
they have unnecessary homomorphisms.

12

— Internet: Portfolio 517

send m + hr for small m, r and public h in ring R (“NTRU”)

�� �� ��
cyclotomic,

power-of-2 index,
split modulus

(“NTRU NTT”)

��

cyclotomic,
prime index,

power-of-2 modulus
(“NTRU Classic”)

��

large Galois group,
prime degree,
inert modulus

(“NTRU Prime”)

��

��

random m

��

random m

��

random m
round hr to m + hr

(“Rounded
NTRU Prime”)

��
��

key h = d + aG
for small a, d,

public G
(“Noisy Product
NTRU NTT”)

��

key h = g/f
for small f, g

(“Noisy Quotient
NTRU Classic”)

��

key h = d + aG
for small a, d,

public G
(“Rounded
Product

NTRU Prime”)

��

key h = g/f
for small f, g
(“Rounded
Quotient

NTRU Prime”)

��Lyubashevsky–
Peikert–Regev

cryptosystem [44]

original NTRU
cryptosystem [33] “NTRU LPRime” “Streamlined

NTRU Prime”

• Some lattice-based systems are unbroken whether or not they have unnecessary homo-
morphisms. As an analogy, some discrete-logarithm systems are unbroken whether or
not they have unnecessary homomorphisms.

• Some lattice-based systems are broken only if they have unnecessary homomorphisms.
As an analogy, some discrete-logarithm systems are broken only if they have unneces-
sary homomorphisms. Eliminating unnecessary homomorphisms rescues these systems,
and removes the need to worry about what attackers can do with these homomor-
phisms.

The current situation is that homomorphisms eliminated by NTRU Prime are used in the
following attack papers: [18], [28], [23], [20], [24], and [8]. See our “NTRU Prime” paper for
further details.

13

518 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

4.2 The public key

The receiver’s public key, which we call h, is an element of R/q.

4.3 Inputs and ciphertexts

In the original NTRU system, ciphertexts are elements of the form m + hr ∈ R/q. Here
h ∈ R/q is the public key as above, and m, r are small elements of R chosen by the sender.

Subsequent systems labeled as “NTRU” have generally extended ciphertexts to include ad-
ditional information, for various reasons explained below; but these cryptosystems all share
the same core design element, sending m + hr ∈ R/q where m, r are small secrets and h is
public. We suggest systematically using the name “NTRU” to refer to this design element,
and more specific names (e.g., “NTRU Classic” vs. “NTRU Prime”) to refer to other design
elements.

We refer to (m, r) as “input” rather than “plaintext” because in any modern public-key cryp-
tosystem the input is randomized and is separated from the sender’s plaintext by symmetric
primitives such as hash functions. See Section 4.5.

In the original NTRU specification [33], m was allowed to be any element of R having all
coefficients in a standard range. The range was {−1, 0, 1} for all of the suggested parameters,
with q not a multiple of 3, and we focus on this case for simplicity (although we note that
some other lattice-based cryptosystems have taken the smaller range {0, 1}, or sometimes
larger ranges).

Current NTRU Classic specifications such as [32] prohibit m that have an unusually small
number of 0’s or 1’s or −1’s. For random m, this prohibition applies with probability
<2−10, and in case of failure the sender can try encoding the plaintext as a new m, but
this is problematic for applications with hard real-time requirements. The reason for this
prohibition is that NTRU Classic gives the attacker an “evaluate at 1” homomorphism
from R/q to Z/q, leaking m(1). The attacker scans many ciphertexts to find an occasional
ciphertext where the value m(1) is particularly far from 0; this value constrains the search
space for the corresponding m by enough bits to raise security concerns. In NTRU Prime,
R/q is a field, so this type of leak cannot occur.

Streamlined NTRU Prime actually uses a different type of ciphertext, which we call a
“rounded ciphertext”. The sender chooses a small r as input and computes hr ∈ R/q.
The sender obtains the ciphertext by rounding each coefficient of hr, viewed as an integer
between −(q −1)/2 and (q −1)/2, to the nearest multiple of 3. This ciphertext can be viewed
as an example of the original ciphertext m + hr, but with m chosen so that each coefficient
of m + hr is in a restricted subset of Z/q.

With the original ciphertexts, each coefficient of m + hr leaves 3 possibilities for the cor-
responding coefficients of hr and m. With rounded ciphertexts, each coefficient of m + hr
also leaves 3 possibilities for the corresponding coefficients of hr and m, except that the

14

— Internet: Portfolio 519

boundary cases −(q − 1)/2 and (q − 1)/2 (assuming q ∈ 1+3Z) leave only 2 possibilities. In
a pool of 264 rounded ciphertexts, the attacker might find one ciphertext that has 15 of these
boundary cases out of 761 coefficients; these occasional exceptions have very little impact
on known attacks. It would be possible to randomize the choice of multiples of 3 near the
boundaries, but we prefer the simplicity of having the ciphertext determined entirely by r.
It would also be possible to prohibit ciphertexts at the boundaries, but as above we prefer
to avoid restarting the encryption process.

More generally, we say “Rounded NTRU” for any NTRU system in which m is chosen
deterministically by rounding hr to a standard subset of Z/q, and “Noisy NTRU” for the
original version in which m is chosen randomly. Rounded NTRU has two advantages over
Noisy NTRU. First, it reduces the space required to transmit m + hr. Second, the fact that
m is determined by r simplifies protection against chosen-ciphertext attacks; see Section 4.5.

[49, Section 4] used an intermediate non-deterministic possibility to provide some space
reduction for a public-key cryptosystem: first choose m randomly, and then round m + hr,
obtaining m0 + hr. The idea of rounded hr as a deterministic substitute for noisy m + hr
was introduced in [7] in the context of a symmetric-key construction, was used in [5] to
construct another public-key encryption system, and was further studied in [13] and [4]. All
of the public-key cryptosystems in these papers have ciphertexts longer than Noisy NTRU,
but applying the same idea to Noisy NTRU produces Rounded NTRU, which has shorter
ciphertexts.

4.4 Key generation and decryption

In the original NTRU cryptosystem, the public key h has the form 3g/f in R/q, where f
and g are secret. Decryption computes fc = fm +3gr, reduces modulo 3 to obtain fm, and
multiplies by 1/f to obtain m.

Streamlined NTRU Prime changes the position of the 3, taking h as g/(3f) rather than 3g/f .
Decryption computes 3fc = 3fm + gr, reduces modulo 3 to obtain gr, and multiplies by 1/g
to obtain r. This change lets us compute (m, r) by first computing r and then multiplying
by h, whereas otherwise we would first compute m and then multiply by 1/h. One advantage
is that we skip computing 1/h; another advantage is that we need less space for storing a
key pair. This 1/h issue does not arise for NTRU variants that compute r as a hash of m,
but those variants are incompatible with rounded ciphertexts, as discussed in Section 4.5.

More generally, we say “Quotient NTRU” for NTRU with h computed as a ratio of two
secret small polynomials. An alternative is what we call “Product NTRU”, namely NTRU
with h of the form d + aG, where a and d are secret small polynomials. Here G ∈ R/q is
public, like h, but unlike h it does not need a hidden multiplicative structure: it can be,
for example, a standard chosen randomly by a trusted authority, or output of a long hash
function applied to a standard randomly chosen seed, or (as proposed in [3]) output of a long
hash function applied to a per-receiver seed supplied along with h as part of the public key.

Product NTRU does not allow the same decryption procedure as Quotient NTRU. The first

15

520 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Product NTRU system, introduced by Lyubashevsky, Peikert, and Regev in [44] (originally
in talk slides in 2010), sends e + rG as additional ciphertext along with m + hr + M ,
where, as before, m and r are small polynomials, e is another small polynomial, and M
is a polynomial consisting of solely 0 or bq/2c in each position. The receiver computes
(m + hr + M) − a(e + rG) = M + m + dr − ae, and rounds to 0 or bq/2c in each position,
obtaining M . Note that m + dr − ae is small, since all of m, d, r, a, e are small.

The ciphertext size here, two elements of R/q, can be improved in various ways. One can
replace hr with fewer coefficients, for example by summing batches of two or three coefficients
[53], before adding M and m. Rounded Product NTRU rounds hr+M to obtain m+hr+M ,
rounds rG to obtain e + rG, and (to similarly reduce key size) rounds aG to obtain d + aG.
Decryption continues to work even if m + hr + M is compressed to two bits per coefficient.

A disadvantage of Product NTRU is that r is used twice, exposing approximations to both rG
and hr. This complicates security analysis compared to simply exposing an approximation
to hr. State-of-the-art attacks against Ring-LWE, which reveals approximations to any
number of random public multiples of r, are significantly faster for many multiples than for
one multiple. Perhaps this indicates a broader weakness, in which each extra multiple hurts
security.

Quotient NTRU has an analogous disadvantage: if one moves far enough in the parameter
space [39] then state-of-the-art attacks distinguish g/f from random more efficiently than
they distinguish m + hr from random. Perhaps this indicates a broader weakness. On the
other hand, if one moves far enough in another direction in the parameter space [61], then
g/f has a security proof.

We find both of these issues worrisome: it is not at all clear which of Product NTRU and
Quotient NTRU is a safer option.1 We see no way to simultaneously avoid both types of
complications. We have opted to present details of Streamlined NTRU Prime, an example
of Quotient NTRU Prime; and of NTRU LPRime, an example of Product NTRU Prime.

If exposing approximations to two multiples of r damages the security of Product NTRU,
perhaps exposing fewer bits does less damage. The compression techniques mentioned above,
such as replacing m + hr + M with fewer coefficients and releasing only a few top bits of
each coefficient, naturally expose fewer bits than uncompressed ciphertexts. NTRU LPRime
releases a few top bits of each of the bottom coefficients of m + hr + M , enough coefficients
to communicate a hard-to-guess input M .

The Quotient NTRU literature, except for the earliest papers, takes f of the form 1 + 3F ,
where F is small. This eliminates the multiplication by the inverse of f modulo 3. In
Streamlined NTRU Prime we have chosen to skip this speedup for two reasons. First, in
the long run we expect cryptography to be implemented in hardware, where a multiplication

1Peikert claimed in [50], modulo terminology, that Product NTRU is “at least as hard” to break as
Quotient NTRU (and “likely strictly harder”). This claim ignores the possibility of attacks against the reuse
of r in Product NTRU. There are no theorems justifying Peikert’s claim, and we are not aware of an argument
that eliminating this reuse is less important than eliminating the g/f structure. For comparison, switching
from NTRU NTT and NTRU Classic to NTRU Prime eliminates structure used in some state-of-the-art
attacks without providing new structure used in other attacks.

16

— Internet: Portfolio 521

in R/3 is far less expensive than a multiplication in R/q. Second, this speedup requires
noticeably larger keys and ciphertexts for the same security level, and this is important for
many applications, while very few applications will notice the CPU time for Streamlined
NTRU Prime.

4.5 Padding, KEMs, and the choice of q

In Streamlined NTRU Prime and NTRU LPRime we use the modern “KEM+DEM” ap-
proach introduced by Shoup; see [58]. This approach is much nicer for implementors than
previous approaches to public-key encryption. For readers unfamiliar with this approach, we
briefly review the analogous options for RSA encryption.

RSA maps an input m to a ciphertext me mod n, where (n, e) is the receiver’s public key.
When RSA was first introduced, its input m was described as the sender’s plaintext. This
was broken in reasonable attack models, leading to the development of various schemes to
build m as some combination of fixed padding, random padding, and a short plaintext;
typically this short plaintext is used as a shared secret key. This turned out to be quite
difficult to get right, both in theory (see, e.g., [59]) and in practice (see, e.g., [46]), although
it does seem possible to protect against arbitrary chosen-ciphertext attacks by building m
in a sufficiently convoluted way.

The “KEM+DEM” approach, specifically Shoup’s “RSA-KEM” in [58] (also called “Simple
RSA”), is much easier:

• Choose a uniform random integer m modulo n. This step does not even look at the
plaintext.

• To obtain a shared secret key, simply apply a cryptographic hash function to m.

• Encrypt and authenticate the sender’s plaintext using this shared key.

Any attempt to modify m, or the plaintext, will be caught by the authenticator.

“KEM” means “key encapsulation mechanism”: me mod n is an “encapsulation” of the
shared secret key H(m). “DEM” means “data encapsulation mechanism”, referring to the
encryption and authentication using this shared secret key. Authenticated ciphers are nor-
mally designed to be secure for many messages, so H(m) can be reused to protect further
messages from the sender to the receiver, or from the receiver back to the sender. It is also
easy to combine KEMs, for example combining a pre-quantum KEM with a post-quantum
KEM, by simply hashing the shared secrets together.

When NTRU was introduced, its input (m, r) was described as a sender plaintext m combined
with a random r. This is obviously not secure against chosen-ciphertext attacks. Subsequent
NTRU papers introduced various mechanisms to build (m, r) as increasingly convoluted
combinations of fixed padding, random padding, and a short plaintext.

17

522 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

It is easy to guess that KEMs simplify NTRU, the same way that KEMs simplify RSA; we
are certainly not the first to suggest this. However, all the NTRU-based KEMs we have
found in the literature (e.g., [60] and [55]) construct the NTRU input (m, r) by hashing a
shorter input and verifying this hash during decapsulation; typically r is produced as a hash
of m. These KEMs implicitly assume that m and r can be chosen independently, whereas
rounded ciphertexts (see Section 4.3) have r as the sole input. It is also not clear that
generic-hash chosen-ciphertext attacks against these KEMs are as difficult as inverting the
NTRU map from input to ciphertext: the security theorems are quite loose.

We instead follow a simple generic KEM construction introduced in the earlier paper [25,
Section 6] by Dent, backed by a tight security reduction [25, Theorem 8] saying that generic-
hash chosen-ciphertext attacks are as difficult as inverting the underlying function:

• Like RSA-KEM, this construction hashes the input, in our case r, to obtain the session
key.

• Decapsulation verifies that the ciphertext is the correct ciphertext for this input, pre-
venting per-input ciphertext malleability.

• The KEM uses additional hash output for key confirmation, making clear that a ci-
phertext cannot be generated except by someone who knows the corresponding input.

Key confirmation might be overkill from a security perspective, since a random session
key will also produce an authentication failure; but key confirmation allows the KEM to be
audited without regard to the authentication mechanism, and adds only 3% to our ciphertext
size.

Dent’s security analysis assumes that decryption works for all inputs. We achieve this in
Streamlined NTRU Prime by requiring q ≥ 16w + 1. Recall that decryption sees 3fm + gr
in R/q and tries to deduce 3fm + gr in R; the condition q ≥ 16w + 1 guarantees that
this works, since each coefficient of 3fm + gr in R is between −(q − 1)/2 and (q − 1)/2 by
Theorem 2. Taking different shapes of m, r, f, g, or changing the polynomial P = xp − x − 1,
would change the bound 16w + 1; for example, replacing g by 1 + 3G would change 16w + 1
into 24w + 3.

Similarly, NTRU LPRime takes q ≥ 16w +2δ +3 to avoid decryption failures. Sending along
merely top bits of m + hr + M means that there is an additional error, producing a slightly
worse bound than in the Streamlined NTRU Prime case. Another difference in details is
that decryption reconstructs only M , not m; NTRU LPRime chooses r deterministically2 as
a hash of M .

In lattice-based cryptography it is standard to take somewhat smaller values of q. The idea
is that coefficients in 3fm + gr are produced as sums of many +1 and −1 terms, and these

2This requires another layer of security analysis beyond Dent’s security analysis. The core question is
whether it is hard to recover a random M from ciphertext and public key, when r is chosen randomly. The
next question, the extra layer, is whether it is hard to recover a random M from ciphertext and public key,
when r is chosen as a hash of M . The third question, addressed by Dent’s security analysis, is whether the
KEM is hard to break.

18

— Internet: Portfolio 523

terms usually cancel, rather than conspiring to produce the maximum conceivable coefficient.
However, this idea led to attacks that exploited occasional decryption failures; see [35] and,
for an analogous attack on code-based cryptography using QC-MDPC codes, [30]. It is
common today to choose q so that decryption failures will occur with, e.g., probability 2−80;
but this does not meet Dent’s assumption that decryption always works. This nonzero
failure rate appears to account for most of the complications in the literature on NTRU-
based KEMs. We prefer to guarantee that decryption works, making the security analysis
simpler and more robust.

4.6 The shape of small polynomials

As noted in Section 4.3, the coefficients of m are chosen from the limited range {−1, 0, 1}.
The NTRU literature [33, 37, 31, 32] generally puts the same limit on the coefficients of r, g,
and f , except that if f is chosen with the shape 1 + 3F (see Section 4.4) then the literature
puts this limit on the coefficients of F . Sometimes these “ternary polynomials” are further
restricted to “binary polynomials”, excluding coefficient −1.
The NTRU literature further restricts the Hamming weight of r, g, and f . Specifically, a
cryptosystem parameter is introduced to specify the number of 1’s and −1’s. For example,
there is a parameter t (typically called “d” in NTRU papers) so that r has exactly t coef-
ficients equal to 1, exactly t coefficients equal to −1, and the remaining p − 2t coefficients
equal to 0. These restrictions allow decryption for smaller values of q (see Section 4.5),
saving space and time. Beware, however, that if t is too small then there are attacks; see
our security analysis in Section 6.

In Streamlined NTRU Prime we keep the requirement that r have Hamming weight w = 2t,
and keep the requirement that these w nonzero coefficients are all in {−1, 1}, but we drop
the requirement of an equal split between −1 and 1. This allows somewhat more choices of r.
The same comments apply to f . Similarly, we require g to have all coefficients in {−1, 0, 1}
but the distribution is otherwise unconstrained. We also require that f and g be invertible
in R/q, which simply means nonzero given that P (x) is irreducible for NTRU Prime, and
that g be invertible in R/3.

These changes would affect the conventional NTRU decryption procedure: they expand
the typical size of coefficients of fm and gr, forcing larger choices of q to avoid noticeable
decryption failures. But we instead choose q to avoid all decryption failures (see Section 4.5),
and these changes do not expand our bound on the size of the coefficients of fm and gr.

In NTRU LPRime we similarly choose small weight-w polynomials with coefficients in
{−1, 0, 1} without restricting the distribution of −1 and 1 beyond the weight.

Elsewhere in the literature on lattice-based cryptography one can find larger coefficients:
consider, e.g., the quinary polynomials in [27], and the even wider range in [3]. In [61],
the coefficients of f and g are sampled from a very wide discrete Gaussian distribution,
allowing a proof regarding the distribution of g/f . However, this appears to produce worse
security for any given key size. Specifically, there are no known attack strategies blocked

19

524 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

by a Gaussian distribution, while the very wide distribution forces q to be very large to
enable decryption (see Section 4.5), producing a much larger key size (and ciphertext size)
for the same security level. Furthermore, wide Gaussian distributions are practically always
implemented with variable-time algorithms, creating security problems, as illustrated by the
successful cache-timing attacks in [17] and [51].

5 Detailed performance analysis (2.B.2)

5.1 Description of platform

The following measurements were collected using supercop-20170904 running on a com-
puter named titan0. The CPU on titan0 is an Intel Xeon E3-1275 v3 (Haswell) running
at 3.5 GHz. Turbo Boost is disabled. titan0 has 32GB of RAM and runs Ubuntu 14.04.
Benchmarks used ./do-part, which ran on one core of the CPU. The compiler list was re-
duced to just gcc -march=native -mtune=native -O3 -fomit-frame-pointer -fwrapv.

NIST says that the “NIST PQC Reference Platform” is “an Intel x64 running Windows
or Linux and supporting the GCC compiler.” titan0 is an Intel x64 running Linux and
supporting the GCC compiler. Beware, however, that different Intel CPUs have different
cycle counts.

5.2 Time

In the first measurement run (many timings), the median encapsulation time for
sntrup4591761 was 59456 cycles, and the median decapsulation time was 97684 cycles.
Timings were practically identical in the second measurement run (59476, 97624) and the
third measurement run (59508, 97692).

Key-generation time was slower, over 6 million cycles. With more effort one can eliminate
most of these cycles,3 but our current key-generation cost is already negligible. Specifically:

• The standard design goal of IND-CCA2 security means that it is safe to generate a key
once and use the key any number of times. The situation in several recent lattice-based
KEMs (for example, BCNS [15], New Hope [3], and Frodo [14]) is completely different:
they are not designed to resist, and do not resist, chosen-ciphertext attacks, so they
generate a new key for every ciphertext, so their key-generation time is important.

• Forward secrecy does not require constant generation of new keys. A typical quad-core
3GHz server generating a new short-term key every minute is using under 1/100000 of
its CPU time on key generation with our current software.

3For example, “fast gcd” techniques incorporate subquadratic-time multiplication methods such as Karat-
suba’s method, and are compatible with constant-time computations.

20

— Internet: Portfolio 525

• A user who (for some reason) wants to generate many keys more quickly than this can
use Montgomery’s trick to batch the inversions. Montgomery’s trick replaces (e.g.) 1000
inversions with 2997 multiplications and just 1 inversion. This reduces the cost of
generating each key below 300000 cycles.

Our software is analogous to the original Curve25519 software [10], which emphasized en-
cryption/decryption speed and did not bother speeding up occasional key-generation com-
putations.

ntrulpr4591761 is estimated to be somewhat slower than sntrup4591761, although it is
faster than sntrup4591761 for key generation.

5.3 Space

Public keys for sntrup4591761 occupy 1218 bytes. Ciphertexts occupy only 1047 bytes.
Secret keys occupy 1600 bytes.

Public keys for ntrulpr4591761 occupy 1047 bytes. Ciphertexts occupy 1175 bytes. Secret
keys occupy 1238 bytes.

5.4 How parameters affect performance

Encapsulation and decapsulation involve a few multiplications in the ring R/q. The asymp-
totic cost of multiplication, as p and q grow, is essentially linear in p log2 q, the number of
bits in a ring element. Other operations scale at least as well as this.

6 Analysis of known attacks (2.B.5)

We start with existing pre-quantum NTRU attack strategies, adapt those strategies to the
context of Streamlined NTRU Prime, and quantify their effectiveness. In particular, we
account for the impact of changing xp − 1 to xp − x − 1, and using small f rather than
f = 1+3F with small F . For comparability we assume here that the weight w in Streamlined
NTRU Prime is taken as 2t, where t is the number of 1’s and the number of −1’s in the
original NTRU cryptosystem.

We consider NTRU LPRime in Section 6.8. We consider post-quantum security in Sec-
tion 6.6.

6.1 Warning: underestimates are dangerous

Underestimating attack cost can damage security, for reasons explained in [11, full version,
Appendix B.1.2], so we prefer to use accurate cost estimates. However, accurately evaluating

21

526 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

the cost of lattice attacks is generally quite difficult. The literature very often explicitly
resorts to underestimates. Comprehensively fixing this problem is beyond the scope of this
submission, but we have started work in this direction, as illustrated by Section 6.7. At
the same time it is clear that the best attack algorithms known today are much better than
the best attack algorithms known a few years ago, so it is unreasonable to expect that the
algorithms have stabilized. We plan to periodically issue updated security estimates to reflect
ongoing work.

6.2 Meet-in-the-middle attack

Odlyzko’s meet-in-the-middle attack [36, 34] on NTRU works by splitting the space of possi-
ble keys F into two parts such that F = F1 ⊕F2. Then in each loop of the algorithm partial
keys are drawn from F1 and F2 until a collision function (defined in terms of the public key
h) indicates that f1 ∈ F1 and f2 ∈ F2 have been found such that f = f1 + f2 is the private
key.

� �� � � �
p p−t p 22tThe number of choices for f is in original NTRU and in Streamlined NTRU
t t 2t

Prime. A first estimate is that the number of loops in the algorithm is the square root of
the number of choices of f . However, this estimate does not account for equivalent keys.
In NTRU Classic, a key (f, g) is equivalent to all of the rotated keys (xif, xig) and to the
negations (−xif, −xig), and the algorithm succeeds if it finds any of these rotated keys. The
2p rotations and negations are almost always distinct, producing a speedup factor very close √
to 2p.

The structure of the NTRU Prime ring is less friendly to this attack. Say f has degree p − c;
typically c is around p/2t, since there are 2t terms in f . Multiplying f by x, x2, . . . , xc−1

produces elements of F , but multiplying f by xc replaces xp−c with xp mod xp −x−1 = x+1,
changing its weight and thus leaving F . It is possible but rare for subsequent multiplications
by x to reenter F . Similarly, one expects only about p/2t divisions by x to stay within F ,
for a total of only about p/t equivalent keys, or 2p/t when negations are taken into account.
We have confirmed these estimates with experiments.

One could modify the attack to use a larger set F , but this seems to lose more than it
gains. Furthermore, similar wraparounds for g compromise the effectiveness of the collision
function. To summarize, the extra term in xp − x − 1 seems to increase the attack cost by √
a factor around t, compared to NTRU Classic; i.e., the rotation speedup is only around p √
2p/t rather than 2p.

On the other hand, some keys f allow considerably more rotations. We have decided to p
assume a speedup factor of 2(p − t), since we designed some pathological polynomials f
with that many (not consecutive) rotations in the set. For random r the speedup is much
smaller. This means that the number of loops before this attack is expected to find f is
bounded by s� ,

p�
p

L = 22t 2(p − t). (1)
2t

22

— Internet: Portfolio 527

In each loop, t vectors of size p are added and their coefficients are reduced modulo q. We
thus estimate the attack cost as Lpt. The storage requirement of the attack is approximately
L log2 L. We can reduce this storage by applying collision search to the meet-in-the-middle
attack (see [48, 62]). In this case we can reduce the storage capacity by a factor s at the √
expense of increasing the running time by a factor s.

6.3 Streamlined NTRU Prime lattice

As with NTRU Classic, we can embed the problem of recovering the private keys f, g into a
lattice problem. Saying 3h = g/f in R/q is the same as saying 3hf + qk = g in R for some
polynomial k; in other words, there is a vector (k, f) of length 2p such that

� � � � qI 0 � � � �
k f = k f B = g f ,

H I

where H is a matrix with the i’th vector corresponding to xi · 3h mod xp − x − 1 and I is
the p × p identity matrix. We will call B the Streamlined NTRU Prime public lattice basis.√
This lattice has determinant qp. The vector (g, f) has norm at most 2p. The Gaussian
heuristic states that the length of the shortest vector in a random lattice is approximately √ √ √
det(B)1/(2p) πep = πepq, which is much larger than 2p, so we expect (g, f) to be the
shortest nonzero vector in the lattice.

Finding the secret keys is thus equivalent to solving the Shortest Vector Problem (SVP) for
the Streamlined NTRU Prime public lattice basis. The fastest currently known method to
solve SVP in the NTRU public lattice is the hybrid attack, which we discuss below.

A similar lattice can be constructed to instead try to find the input pair (m, r). However,
there is no reason to expect the attack against (m, r) to be easier than the attack against
(g, f): r has the same range as f , and m has essentially the same range as g. Recall
that Streamlined NTRU Prime does not have the NTRU Classic problem of leaking m(1).
There are occasional boundary constraints on m (see Section 4.3), and there is also an R/3
invertibility constraint on g, but these effects are minor.

6.4 Hybrid security

The best known attack against the NTRU lattice is the hybrid lattice-basis-reduction-and-
meet-in-the-middle attack described in [34]. The attack works in two phases: the reduction
phase and the meet-in-the-middle phase.

Applying lattice-basis-reduction techniques will mostly reduce the middle vectors of the
basis [56]. Therefore the strategy of the reduction phase is to apply lattice-basis reduction,
for example BKZ 2.0 [21], to a submatrix B0 of the public basis B. We then get a reduced
basis T = UBY :

23

528 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⎝ ⎠ · ⎝ ⎠ · ⎝ ⎠ = ⎝ ⎠
Iu 0 0
0 U 0 0
0 0 Iu0

qIu 0 0
∗ B0 0
∗ ∗ Iu0

Iu 0 0
0 Y 0 0
0 0 Iu0

qIu 0 0
∗ T 0 0
∗ ∗ Iu0

Here Y is orthonormal and T 0 is again in lower triangular form.

In the meet-in-the-middle phase we can use a meet-in-the-middle algorithm to guess options
for the last u0 coordinates of the key by guessing halves of the key and looking for collisions.
If the lattice basis was reduced sufficiently in the first phase, a collision resulting in the
private key will be found by applying a rounding algorithm to the half-key guesses. More
details on how to do this can be found in [34].

To estimate the security against this attack we adapt the analysis of [32] to the set of keys
that we use in Streamlined NTRU Prime. Let u be the dimension of Iu and u0 be the
dimension of Iu For a sufficiently reduced basis the meet-in-the-middle phase will require 0 .
on average

� � � �X 01 u− log2(2(p − t)) + 2a v(a) log2(v(a)) (2)
2 a

0≤a≤min{2t,u0}

work, where the log2(2(p − t)) term accounts for equivalent keys and

�
p−u0� � 0�

22t−a 2−a p−u
2t−a 2t−a v(a) = � � = � � . (3)

22t p p
2t 2t

The quality of a basis after lattice reduction can be measured by the Hermite factor δ =
||b1||/det(B)1/p. Here ||b1|| is the length of the shortest vector among the rows of B. To
be able to recover the key in the meet-in-the-middle phase, the (2p − u − u0) × (2p − u − u0)
matrix T 0 has to be sufficiently reduced. For given u and u0 this is the case if the lattice
reduction reaches the required value of δ. This Hermite factor has to satisfy

(p − u) log2(q) 1
log2(δ) ≤ − . (4)

(2p − (u + u0))2 2p − (u0 + u)

We use the BKZ 2.0 simulator of [21] to determine the best BKZ 2.0 parameters, specifically
the “block size” β and the number of “rounds” n, needed to reach a root Hermite factor δ.
To get a concrete security estimate of the work required to perform BKZ-2.0 with parameters
β and n we use the conservative formula determined by [32] from the experiments of [22]:

Estimate(β, p, n) = 0.000784314β2 + 0.366078β − 6.125 + log2(p · n) + 7. (5)

This estimate and the underlying experiments rely on “enumeration”; see Section 6.7 for a
comparison to “sieving”. This analysis also assumes that the probabily of two halves of the
key colliding is 1. We will also conservatively assume this, but a more realistic estimate can
be found in [63]. Using these estimates we can determine the optimal u and u0 to attack a
parameter set and thereby estimate its security.

24

— Internet: Portfolio 529

Lastly we note that this analysis is easily adaptable to generalizing the coefficients to be in
the set {−d, −(d−1), . . . , d−1, d} by replacing base 2 in the exponentiations in Equations 1, 2
and 3 with 2d. In this case however the range of t, by a generalization of Theorem 2, decreases
to q > 16(d3 + d2)t.

6.5 Algebraic attacks

The attack strategy of Ding [26], Arora–Ge [6], and Albrecht–Cid–Faugère–Fitzpatrick– √
Perret [2] takes subexponential time to break dimension-n LWE with noise width o(n),
and polynomial time to break LWE with constant noise width. However, these attacks
require many LWE samples, whereas typical cryptosystems in the NTRU family provide far
less data to the attacker. When these attacks are adapted to cryptosystems that provide
only (say) 2n samples, they end up taking more than 20.5n time, even when the noise is
limited to {0, 1}. See generally [2, Theorem 7] and [43, Case Study 1].

6.6 Quantum attacks

Grover’s algorithm, amplitude amplification, and quantum walks produce better exponents
for some of the subroutines used above. Preliminary estimates indicate that the overall
impact on Streamlined NTRU Prime security levels is much less than the impact upon
AES-256 security levels. Further analysis is required.

6.7 Memory, parallelization, and sieving algorithms

The security estimates above rely on enumeration algorithms [52, 29, 38, 32]. For very
large dimensions, the performance of enumeration algorithms is slightly super-exponential
and is known to be suboptimal. The provable sieving algorithms of Pujol and Stehlé [54]
solve dimension-β SVP in time 22.465...β+o(β) and space 21.233...β+o(β), and more recent SVP
algorithms [1] take time 2β+o(β). More importantly, under heuristic assumptions, sieving is
much faster. The most recent work on lattice sieving (see [9, 42]) has pushed the heuristic
complexity down to 20.292...β+o(β).

Simply comparing 0.292β to enumeration exponents suggests that sieving could be faster
than enumeration for sizes of β of relevance to cryptography. However, this comparison
ignores two critical caveats regarding the performance of sieving. First, a closer look at
polynomial factors indicates that the o(β) here is positive. Consider, e.g., [9, Figure 3],
which reports a best fit of 20.387β−15 for its fastest sieving experiments. The comparison in
[47] takes this caveat into account and concludes that the sieving cutoff is “far out of reach”.

Second, sieving uses much more storage as β grows: at least 20.208...β+o(β) bits of storage,
again with positive o(β). It is not known how to reduce the storage without large increases
in the number of operations. Furthermore, sieving is bottlenecked by random access to

25

530 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

storage, and this random access also becomes slower as the amount of storage increases. The
slowdown is approximately the square root of the storage in realistic cost models; see, e.g.,
[16].

Enumeration fits into very little memory even for large β. Kuo, Schneider, Dagdelen, Re-
ichelt, Buchmann, Cheng, and Yang [41] showed that enumeration parallelizes effectively
within and across GPUs. An attacker who can afford enough hardware for sieving for large
β can instead use the same amount of hardware for enumeration, obtaining an almost linear
parallelization speedup.

We do not mean to suggest that the operation-count ratio should be multiplied by the
sieving storage (accounting for this enumeration speedup) and further by the square root of
the storage (accounting for the cost of random access inside sieving): this would ignore the
possibility of a speedup from parallelizing sieving. “Mesh” sorting algorithms such as the √
Schnorr–Shamir algorithm [57] sort n small items in time just O(n), which is optimal in
realistic models of parallel computation; these algorithms can be used as subroutines inside
sieving, reducing the asymptotic cost penalty to just 20.104...β+o(β). However, this is still much
less effective parallelization than [41].

This cost penalty for sieving is ignored in measurements such as [45] and [9, Figure 3], and
in the resulting comparisons such as [47]. These measurements are limited to sieving sizes
that fit into DRAM on a single computer, and do not account for the important increase in
memory cost as β increases. Another way to see the same issue would be to scale sieving
down to a small enough size to fit into GPU multiprocessors; this would demonstrate a
sieving speedup for smaller β, for fundamentally the same reason that there will be a sieving
slowdown for larger β.

In the absence of any realistic analyses of sieving cost for large β, we have decided to omit
sieving from our security estimates. There is very little reason to believe that sieving can
beat enumeration inside any attack that fits within our security target.

6.8 Attacks against NTRU LPRime

NTRU LPRime is similar to Streamlined NTRU Prime from an attack perspective. In
particular, a lattice attack that finds small (m, r), given a random h and given c = m + hr,
breaks both Streamlined NTRU Prime and NTRU LPRime.

Above we focused on the similar problem of finding small (g, f) given h and given 0 = g−3hf .
Having to consider this second problem is a complication avoided by NTRU LPRime, and if
this problem is easier then NTRU LPRime could be more secure than Streamlined NTRU
Prime.

On the other hand, NTRU LPRime has its own complication, namely that it also releases
an approximation to a second multiple of r. If this makes the r-recovery problem easier then
NTRU LPRime could be less secure than Streamlined NTRU Prime. As noted above, we
find both of these complications worrisome; further security analysis is required.

26

— Internet: Portfolio 531

A simpler issue is that, for the same sizes p and q, NTRU LPRime places slightly smaller
limits on the weight w than Streamlined NTRU Prime does. A smaller weight reduces the
quantitative security level against various attack strategies discussed above.

7 Expected strength (2.B.4) in general

7.1 Security definitions

Our security goal is IND-CCA2. See Section 8 for quantitative estimates of the security of
specific parameter sets.

Our general strategy for handling multi-target attacks is to aim for a very high single-target
security level, and then rely on the fact that T -target attacks gain at most a factor T . We
have not introduced complications aimed at making multi-target attacks even more difficult.

Our current software allows multiple encodings of ciphertexts and keys, for example allowing
4591 as a synonym for 0. NIST has stated a preference for implementations that enforce
unique encodings, and we plan to adjust our software accordingly.

Lattice-based encryption also has various symmetries, analogous to well-known ECC sym-
metries. For example, if c (plus confirmation) is a Streamlined NTRU Prime ciphertext
under public key h, then −c (plus the same confirmation) is a Streamlined NTRU Prime
ciphertext for the same session key under public key −h.

7.2 Rationale

See Section 6 for an analysis of known attacks.

Algorithm 1 searches for (p, q, t, λ), where λ is Section 6’s estimate of the pre-quantum
security level for parameters (p, q, t) with w = 2t. The subroutine nextprime(i) returns the
first prime number >i. The subroutine viableqs(p, qb) returns all primes q larger than p and
smaller than qb for which it holds that xp − x − 1 is irreducible in (Z/q)[x]. The subroutine
mitmcosts uses the estimates from Equation (1) to determine the bitsecurity level of the
parameters against a straightforward meet-in-the-middle attack. To find u, u0, β, n we set
u to the hybridbkzcost of the previous iteration (initially 0) and do a binary search for u0

such that the two phases of the hybrid attack are of equal cost. For each u0 we determine
the Hermite factor required with Equation (4), use the BKZ-2.0 simulator to determine the
optimal β and n to reach the required Hermite factor and use Equations (5) and (2) to
determine the hybridbkzcost and hybridmitmcost.

Note that this algorithm outputs the largest value of t such that there are no decryption
failures according to Theorem 2 and that no more than 2/3 of the coefficients of f are set. Ex-
periments show that decreasing t to t1 linearly decreases the security level by approximately
t − t1.

27

532 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Algorithm 1: Determine parameter sets for security level above `.
Input: Upper bound qb for q, range [p1, p2] for p, lower bound ` for security level
Result: Viable parameters p, q and t with security level λ.
p ← p1 − 1 (the prime we are currently investigating)
while p ≤ p2 do

p ← nextprime(p)
Q ← viableqs(p, qb)
for q ∈ Q do

t ← min{b(q − 1)/32c , bp/3c}
λ1 ← mitmcosts(p, t)
if λ1 ≥ ` then

Find u, u0 , β, n such that BKZ-2.0 costs are approximately equal to
meet-in-the-middle costs in the hybrid attack.
λ2 ← max{hybridbkzcost, hybridmitmcost}
return p, q, t, min{λ1, λ2}

See the NTRU Prime paper for a table of Streamlined NTRU Prime parameter sets with
465 < p < 970 and q < 20000. Our recommended parameters (p, q, w) = (761, 4591, 286)
with estimated pre-quantum security 2248 provide an excellent tradeoff between size and
security level.

The analysis of NTRU LPRime parameter sets works the same way and gives 2225 for our
recommended parameters (p, q, w) = (761, 4591, 250).

8 Expected strength (2.B.4) for each parameter set

8.1 Parameter set kem/sntrup4591761

Category 5. 2248 is marginally smaller than 2256, but we expect that further analysis along
the lines of [63], together with analysis of memory and communication costs, will show that
this parameter set is much more expensive to break than AES-256.

8.2 Parameter set kem/ntrulpr4591761

2225Category 5. is noticeably smaller than 2256 , due to the smaller polynomial weight
compared to sntrup4591761. However, note that the analysis by Wunderer [63] showed an
underestimate of security by a factor of at least 230 for a previous set of parameters analyzed
by the methodology above; memory and communication costs are likely to be on an even
larger scale. Hence, we expect that further analysis will show that this parameter set is
harder to break than AES-256. See also Section 6.8.

28

— Internet: Portfolio 533

9 Advantages and limitations (2.B.6)

There are several proposals of lattice-based cryptosystems that appear to provide high se-
curity with keys and ciphertexts fitting into just a few kilobytes. This proposal is designed
to have the smallest attack surface, minimizing the number of avenues available to crypt-
analysts. Some recent attacks against lattice-based cryptosystems rely on homomorphisms
eliminated by this proposal.

At the same time this proposal provides unusually small sizes and excellent speed. One of
the reasons for this performance is that this proposal provides the flexibility to target any
desired lattice dimension rather precisely, without the “jumps” that appear in most propos-
als. Future advances in understanding the exact security level of lattice-based cryptography
will allow this proposal to be tuned accordingly.

Beware, however, that there are other recent attacks against lattice-based cryptography,
including impressive advances against SVP. As noted before, the security of lattice-based
cryptography is not well understood. This is a general limitation of lattice-based cryptogra-
phy. The same limitation is shared by many—but not all—post-quantum proposals.

References

[1] Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz. Solving
the shortest vector problem in 2n time using discrete Gaussian sampling: Extended
abstract. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland,
OR, USA, June 14-17, 2015, pages 733–742. ACM, 2015. http://arxiv.org/abs/
1412.7994.

[2] Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, Robert Fitzpatrick, and Ludovic
Perret. Algebraic algorithms for LWE problems. ACM Comm. Computer Algebra,
49(2):62, 2015. https://eprint.iacr.org/2014/1018.

[3] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum key
exchange - A new hope. In Thorsten Holz and Stefan Savage, editors, 25th USENIX
Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016,
pages 327–343. USENIX Association, 2016. https://eprint.iacr.org/2015/1092.

[4] Jacob Alperin-Sheriff and Daniel Apon. Dimension-preserving reductions from LWE to
LWR. IACR Cryptology ePrint Archive, 2016:589, 2016. https://eprint.iacr.org/
2016/589.

[5] Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learning with
rounding, revisited – new reduction, properties and applications. In Canetti and Garay
[19], pages 57–74. https://eprint.iacr.org/2013/098.

29

534 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

[6] Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors. In
Luca Aceto, Monika Henzinger, and Jiŕı Sgall, editors, Automata, Languages and Pro-
gramming - 38th International Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8,
2011, Proceedings, Part I, volume 6755 of Lecture Notes in Computer Science, pages
403–415. Springer, 2011. https://users.cs.duke.edu/~rongge/LPSN.pdf.

[7] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lat-
tices. In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology -
EUROCRYPT 2012 - 31st Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings,
volume 7237 of Lecture Notes in Computer Science, pages 719–737. Springer, 2012.
https://eprint.iacr.org/2011/401.

[8] Jens Bauch, Daniel J. Bernstein, Henry de Valence, Tanja Lange, and Christine van
Vredendaal. Short generators without quantum computers: The case of multiquadrat-
ics. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology
- EUROCRYPT 2017 - 36th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017, Proceed-
ings, Part I, volume 10210 of Lecture Notes in Computer Science, pages 27–59, 2017.
https://multiquad.cr.yp.to.

[9] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest
neighbor searching with applications to lattice sieving. In Krauthgamer [40], pages 10–
24. https://eprint.iacr.org/2015/1128.

[10] Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In Moti Yung,
Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key Cryptogra-
phy - PKC 2006, 9th International Conference on Theory and Practice of Public-
Key Cryptography, New York, NY, USA, April 24-26, 2006, Proceedings, volume
3958 of Lecture Notes in Computer Science, pages 207–228. Springer, 2006. https:
//cr.yp.to/papers.html#curve25519.

[11] Daniel J. Bernstein and Tanja Lange. Non-uniform cracks in the concrete: The power
of free precomputation. In Kazue Sako and Palash Sarkar, editors, Advances in Cryptol-
ogy - ASIACRYPT 2013 - 19th International Conference on the Theory and Application
of Cryptology and Information Security, Bengaluru, India, December 1-5, 2013, Pro-
ceedings, Part II, volume 8270 of Lecture Notes in Computer Science, pages 321–340.
Springer, 2013. https://cr.yp.to/papers.html#nonuniform.

[12] Jean-François Biasse and Fang Song. Efficient quantum algorithms for computing class
groups and solving the principal ideal problem in arbitrary degree number fields. In
Krauthgamer [40], pages 893–902. http://fangsong.info/files/pubs/BS_SODA16.
pdf.

[13] Andrej Bogdanov, Siyao Guo, Daniel Masny, Silas Richelson, and Alon Rosen. On the
hardness of learning with rounding over small modulus. In Eyal Kushilevitz and Tal

30

— Internet: Portfolio 535

Malkin, editors, Theory of Cryptography - 13th International Conference, TCC 2016-
A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part I, volume 9562 of Lecture
Notes in Computer Science, pages 209–224. Springer, 2016. https://eprint.iacr.
org/2015/769.

[14] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria Niko-
laenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the ring! Practical,
quantum-secure key exchange from LWE. In ACM Conference on Computer and Com-
munications Security, pages 1006–1018. ACM, 2016. https://eprint.iacr.org/2016/
659.

[15] Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-quantum
key exchange for the TLS protocol from the ring learning with errors problem. In IEEE
Symposium on Security and Privacy, pages 553–570. IEEE Computer Society, 2015.
https://eprint.iacr.org/2014/599.

[16] Richard P. Brent and H. T. Kung. The area-time complexity of binary multiplication. J.
ACM, 28(3):521–534, 1981. http://maths-people.anu.edu.au/~brent/pd/rpb055.
pdf.

[17] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom. Flush,
Gauss, and reload - A cache attack on the BLISS lattice-based signature scheme. In
Benedikt Gierlichs and Axel Y. Poschmann, editors, Cryptographic Hardware and Em-
bedded Systems - CHES 2016 - 18th International Conference, Santa Barbara, CA, USA,
August 17-19, 2016, Proceedings, volume 9813 of Lecture Notes in Computer Science,
pages 323–345. Springer, 2016. https://eprint.iacr.org/2016/300.

[18] Peter Campbell, Michael Groves, and Dan Shepherd. Soliloquy: a cautionary tale,
2014. http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_
Attacks/S07_Groves_Annex.pdf.

[19] Ran Canetti and Juan A. Garay, editors. Advances in Cryptology - CRYPTO 2013
- 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part I, volume 8042 of Lecture Notes in Computer Science. Springer, 2013.

[20] Hao Chen, Kristin Lauter, and Katherine E. Stange. Vulnerable Galois RLWE families
and improved attacks. IACR Cryptology ePrint Archive, 2016. https://eprint.iacr.
org/2016/193.

[21] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In
Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology - ASIACRYPT
2011 - 17th International Conference on the Theory and Application of Cryptology and
Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings, volume
7073 of Lecture Notes in Computer Science, pages 1–20. Springer, 2011.

[22] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates (full
version), 2011. http://www.di.ens.fr/~ychen/research/Full_BKZ.pdf.

31

536 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

[23] Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering short genera-
tors of principal ideals in cyclotomic rings. In Marc Fischlin and Jean-Sébastien Coron,
editors, Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria,
May 8-12, 2016, Proceedings, Part II, volume 9666 of Lecture Notes in Computer Sci-
ence, pages 559–585. Springer, 2016. https://eprint.iacr.org/2015/313.

[24] Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Short Stickelberger class rela-
tions and application to Ideal-SVP. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Paris, France,
April 30 - May 4, 2017, Proceedings, Part I, volume 10210 of Lecture Notes in Com-
puter Science, pages 324–348, 2017. https://eprint.iacr.org/2016/885.

[25] Alexander W. Dent. A designer’s guide to KEMs. In Kenneth G. Paterson, editor,
Cryptography and Coding, 9th IMA International Conference, Cirencester, UK, Decem-
ber 16-18, 2003, Proceedings, volume 2898 of Lecture Notes in Computer Science, pages
133–151. Springer, 2003. https://eprint.iacr.org/2002/174.

[26] Jintai Ding. Solving LWE problem with bounded errors in polynomial time. IACR
Cryptology ePrint Archive, 2010:558, 2010. https://eprint.iacr.org/2010/558.

[27] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice sig-
natures and bimodal Gaussians. In Canetti and Garay [19], pages 40–56. https:
//eprint.iacr.org/2013/383.

[28] Kirsten Eisenträger, Sean Hallgren, and Kristin E. Lauter. Weak instances of PLWE. In
Antoine Joux and Amr M. Youssef, editors, Selected Areas in Cryptography - SAC 2014
- 21st International Conference, Montreal, QC, Canada, August 14-15, 2014, Revised
Selected Papers, volume 8781 of Lecture Notes in Computer Science, pages 183–194.
Springer, 2014. https://eprint.iacr.org/2014/784.

[29] Ulrich Fincke and Michael Pohst. Improved methods for calculating vectors of
short length in a lattice, including a complexity analysis. Mathematics of Compu-
tation, 44(170):463–471, 1985. http://www.ams.org/journals/mcom/1985-44-170/
S0025-5718-1985-0777278-8/S0025-5718-1985-0777278-8.pdf.

[30] Qian Guo, Thomas Johansson, and Paul Stankovski. A key recovery attack on mdpc
with cca security using decoding errors. Cryptology ePrint Archive, Report 2016/858,
2016. https://eprint.iacr.org/2016/858.

[31] Philip S. Hirschhorn, Jeffrey Hoffstein, Nick Howgrave-Graham, and William Whyte.
Choosing NTRUEncrypt parameters in light of combined lattice reduction and MITM
approaches. In Michel Abdalla, David Pointcheval, Pierre-Alain Fouque, and Damien
Vergnaud, editors, Applied Cryptography and Network Security, 7th International Con-
ference, ACNS 2009, Paris-Rocquencourt, France, June 2-5, 2009. Proceedings, volume
5536 of Lecture Notes in Computer Science, pages 437–455, 2009.

32

— Internet: Portfolio 537

[32] Jeffrey Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman, William Whyte,
and Zhenfei Zhang. Choosing parameters for NTRUEncrypt. IACR Cryptology ePrint
Archive, 2015. https://eprint.iacr.org/2015/708.

[33] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public key
cryptosystem. In Joe Buhler, editor, Algorithmic Number Theory, Third International
Symposium, ANTS-III, Portland, Oregon, USA, June 21-25, 1998, Proceedings, volume
1423 of Lecture Notes in Computer Science, pages 267–288. Springer, 1998.

[34] Nick Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack
against NTRU. In Alfred Menezes, editor, Advances in Cryptology - CRYPTO 2007,
27th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
19-23, 2007, Proceedings, volume 4622 of Lecture Notes in Computer Science, pages
150–169. Springer, 2007. https://www.iacr.org/archive/crypto2007/46220150/
46220150.pdf.

[35] Nick Howgrave-Graham, Phong Q. Nguyen, David Pointcheval, John Proos, Joseph H.
Silverman, Ari Singer, and William Whyte. The impact of decryption failures on the se-
curity of NTRU encryption. In Dan Boneh, editor, Advances in Cryptology - CRYPTO
2003, 23rd Annual International Cryptology Conference, Santa Barbara, California,
USA, August 17-21, 2003, Proceedings, volume 2729 of Lecture Notes in Computer Sci-
ence, pages 226–246. Springer, 2003. http://www.di.ens.fr/~pointche/Documents/
Papers/2003_crypto.pdf.

[36] Nick Howgrave-Graham, Joseph H Silverman, and William Whyte. A meet-in-the-
middle attack on an NTRU private key. Technical report, NTRU Cryptosystems,
June 2003. Report, 2003. https://www.securityinnovation.com/uploads/Crypto/
NTRUTech004v2.pdf.

[37] Nick Howgrave-Graham, Joseph H. Silverman, and William Whyte. Choosing parameter
sets for NTRUEncrypt with NAEP and SVES-3, 2005. https://eprint.iacr.org/
2005/045.

[38] Ravi Kannan. Improved algorithms for integer programming and related lattice prob-
lems. In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing,
STOC ’83, pages 193–206, New York, NY, USA, 1983. ACM.

[39] Paul Kirchner and Pierre-Alain Fouque. Comparison between subfield and straightfor-
ward attacks on NTRU. Cryptology ePrint Archive, Report 2016/717, 2016. https:
//eprint.iacr.org/2016/717.

[40] Robert Krauthgamer, editor. Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12,
2016. SIAM, 2016.

¨ [41] Po-Chun Kuo, Michael Schneider, Ozgür Dagdelen, Jan Reichelt, Johannes A. Buch-
mann, Chen-Mou Cheng, and Bo-Yin Yang. Extreme enumeration on GPU and in
clouds: How many dollars you need to break SVP challenges. In Bart Preneel and

33

538 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Tsuyoshi Takagi, editors, Cryptographic Hardware and Embedded Systems - CHES 2011
- 13th International Workshop, Nara, Japan, September 28 - October 1, 2011. Proceed-
ings, volume 6917 of Lecture Notes in Computer Science, pages 176–191. Springer, 2011.
http://www.iis.sinica.edu.tw/papers/byyang/12158-F.pdf.

[42] Thijs Laarhoven. Sieving for shortest vectors in lattices using angular locality-sensitive
hashing. In Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology -
CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August
16-20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes in Computer Science,
pages 3–22. Springer, 2015. https://eprint.iacr.org/2014/744.pdf.

[43] Vadim Lyubashevsky. Future directions in lattice cryptography (talk slides), 2016.
http://troll.iis.sinica.edu.tw/pkc16/slides/Invited_Talk_II--Directions_
in_Practical_Lattice_Cryptography.pptx.

[44] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. J. ACM, 60(6):43, 2013. https://eprint.iacr.org/2012/230.

[45] Artur Mariano, Christian H. Bischof, and Thijs Laarhoven. Parallel (probable) lock-free
hash sieve: A practical sieving algorithm for the SVP. In 44th International Conference
on Parallel Processing, ICPP 2015, Beijing, China, September 1-4, 2015, pages 590–599.
IEEE Computer Society, 2015. https://eprint.iacr.org/2015/041.

[46] Christopher Meyer, Juraj Somorovsky, Eugen Weiss, Jörg Schwenk, Sebastian Schinzel,
and Erik Tews. Revisiting SSL/TLS implementations: New Bleichenbacher side
channels and attacks. In Kevin Fu and Jaeyeon Jung, editors, Proceedings of the
23rd USENIX Security Symposium, San Diego, CA, USA, August 20-22, 2014.,
pages 733–748. USENIX Association, 2014. https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/meyer.

[47] Daniele Micciancio and Michael Walter. Fast lattice point enumeration with minimal
overhead. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6,
2015, pages 276–294. SIAM, 2015. https://eprint.iacr.org/2014/569.

[48] Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with cryptana-
lytic applications. J. Cryptology, 12(1):1–28, 1999. http://people.scs.carleton.ca/

~paulv/papers/JoC97.pdf.

[49] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In Michael Mitzenmacher, editor, Proceedings of the 41st Annual
ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31
- June 2, 2009, pages 333–342. ACM, 2009. https://eprint.iacr.org/2008/481.

[50] Chris Peikert. “A useful fact about Ring-LWE that should be known better: it is
at least as hard to break as NTRU, and likely strictly harder. 1/” (tweet), 2017.
http://archive.is/B9KEW.

34

— Internet: Portfolio 539

[51] Peter Pessl, Leon Groot Bruinderink, and Yuval Yarom. To BLISS-B or not to be:
Attacking strongSwan’s implementation of post-quantum signatures. In CCS, pages
1843–1855. ACM, 2017. https://eprint.iacr.org/2017/490.

[52] Michael Pohst. On the computation of lattice vectors of minimal length, successive
minima and reduced bases with applications. SIGSAM Bull., 15(1):37–44, February
1981.

[53] Thomas Pöppelmann and Tim Güneysu. Towards practical lattice-based public-key
encryption on reconfigurable hardware. In Tanja Lange, Kristin E. Lauter, and Petr
Lisonek, editors, Selected Areas in Cryptography - SAC 2013 - 20th International Con-
ference, Burnaby, BC, Canada, August 14-16, 2013, Revised Selected Papers, volume
8282 of Lecture Notes in Computer Science, pages 68–85. Springer, 2013. https:
//www.ei.rub.de/media/sh/veroeffentlichungen/2013/08/14/lwe_encrypt.pdf.

[54] Xavier Pujol and Damien Stehlé. Solving the shortest lattice vector problem in time
22.465n . IACR Cryptology ePrint Archive, 2009. https://eprint.iacr.org/2009/605.

[55] Halvor Sakshaug. Security analysis of the NTRUEncrypt public key encryption
scheme, 2007. brage.bibsys.no/xmlui/bitstream/handle/11250/258846/426901_
FULLTEXT01.pdf.

[56] Claus-Peter Schnorr. Lattice reduction by random sampling and birthday methods.
In Helmut Alt and Michel Habib, editors, STACS, volume 2607 of Lecture Notes in
Computer Science, pages 145–156. Springer, 2003. http://www.math.uni-frankfurt.
de/~dmst/research/papers/schnorr.random_sampling.2003.ps.

[57] Claus-Peter Schnorr and Adi Shamir. An optimal sorting algorithm for mesh connected
computers. In Juris Hartmanis, editor, Proceedings of the 18th Annual ACM Symposium
on Theory of Computing, May 28-30, 1986, Berkeley, California, USA, pages 255–263.
ACM, 1986.

[58] Victor Shoup. A proposal for an ISO standard for public key encryption. IACR Cryp-
tology ePrint Archive, 2001. https://eprint.iacr.org/2001/112.

[59] Victor Shoup. OAEP reconsidered. J. Cryptology, 15(4):223–249, 2002. https://
eprint.iacr.org/2000/060.

[60] Martijn Stam. A key encapsulation mechanism for NTRU. In Nigel P. Smart, editor,
Cryptography and Coding, 10th IMA International Conference, Cirencester, UK, De-
cember 19-21, 2005, Proceedings, volume 3796 of Lecture Notes in Computer Science,
pages 410–427. Springer, 2005.

[61] Damien Stehlé and Ron Steinfeld. Making NTRU as secure as worst-case problems
over ideal lattices. In Kenneth G. Paterson, editor, Advances in Cryptology - EU-
ROCRYPT 2011 - 30th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings,
volume 6632 of Lecture Notes in Computer Science, pages 27–47. Springer, 2011.
https://www.iacr.org/archive/eurocrypt2011/66320027/66320027.pdf.

35

540 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

[62] Christine van Vredendaal. Reduced memory meet-in-the-middle attack against the
NTRU private key. LMS Journal of Computation and Mathematics, 19(A):43–57, 001
2016. https://eprint.iacr.org/2016/177.

[63] Thomas Wunderer. Revisiting the hybrid attack: Improved analysis and refined security
estimates, 2016. https://eprint.iacr.org/2016/733.

A Statements

These statements “must be mailed to Dustin Moody, Information Technology Laboratory,
Attention: Post-Quantum Cryptographic Algorithm Submissions, 100 Bureau Drive – Stop
8930, National Institute of Standards and Technology, Gaithersburg, MD 20899-8930, or can
be given to NIST at the first PQC Standardization Conference (see Section 5.C).”

First blank in submitter statement: full name. Second blank: full postal address. Third,
fourth, and fifth blanks: name of cryptosystem. Sixth and seventh blanks: describe and
enumerate or state “none” if applicable.

First blank in patent statement: full name. Second blank: full postal address. Third blank:
enumerate. Fourth blank: name of cryptosystem.

First blank in implementor statement: full name. Second blank: full postal address. Third
blank: full name of the owner.

36

— Internet: Portfolio 541

A.1 Statement by Each Submitter

I, , of , do
hereby declare that the cryptosystem, reference implementation, or optimized implementa-
tions that I have submitted, known as , is my own original
work, or if submitted jointly with others, is the original work of the joint submitters. I
further declare that (check one):

• I do not hold and do not intend to hold any patent or patent application with a claim
which may cover the cryptosystem, reference implementation, or optimized implemen-
tations that I have submitted, known as OR (check one
or both of the following):

– to the best of my knowledge, the practice of the cryptosystem, reference im-
plementation, or optimized implementations that I have submitted, known as

may be covered by the following U.S. and/or foreign patents:

– I do hereby declare that, to the best of my knowledge, the following pend-
ing U.S. and/or foreign patent applications may cover the practice of my sub-
mitted cryptosystem, reference implementation or optimized implementations:

I do hereby acknowledge and agree that my submitted cryptosystem will be provided to the
public for review and will be evaluated by NIST, and that it might not be selected for standard-
ization by NIST. I further acknowledge that I will not receive financial or other compensation
from the U.S. Government for my submission. I certify that, to the best of my knowledge,
I have fully disclosed all patents and patent applications which may cover my cryptosystem,
reference implementation or optimized implementations. I also acknowledge and agree that
the U.S. Government may, during the public review and the evaluation process, and, if my
submitted cryptosystem is selected for standardization, during the lifetime of the standard,
modify my submitted cryptosystem’s specifications (e.g., to protect against a newly discovered
vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish
the draft standards for public comment.

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3, below, for
any patent or patent application identified to cover the practice of my cryptosystem, reference
implementation or optimized implementations and the right to use such implementations for
the purposes of the public review and evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST may remove
my cryptosystem from consideration for standardization. If my cryptosystem (or the derived
cryptosystem) is removed from consideration for standardization or withdrawn from consider-
ation by all submitter(s) and owner(s), I understand that rights granted and assurances made
under Sections 2.D.1, 2.D.2 and 2.D.3, including use rights of the reference and optimized
implementations, may be withdrawn by the submitter(s) and owner(s), as appropriate.

37

542 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Signed:

Title:

Date:

Place:

38

— Internet: Portfolio 543

A.2 Statement by Patent (and Patent Application) Owner(s)

If there are any patents (or patent applications) identified by the submitter, including those
held by the submitter, the following statement must be signed by each and every owner, or
each owner’s authorized representative, of each patent and patent application identified.

I, , of ,
am the owner or authorized representative of the owner (print
full name, if different than the signer) of the following patent(s)
and/or patent application(s):

and do hereby commit and agree to grant to any interested party on a worldwide basis, if
the cryptosystem known as is selected for standardization, in consid-
eration of its evaluation and selection by NIST, a non-exclusive license for the purpose of
implementing the standard (check one):

• without compensation and under reasonable terms and conditions that are demonstrably
free of any unfair discrimination, OR

• under reasonable terms and conditions that are demonstrably free of any unfair dis-
crimination.

I further do hereby commit and agree to license such party on the same basis with respect
to any other patent application or patent hereafter granted to me, or owned or controlled by
me, that is or may be necessary for the purpose of implementing the standard.

I further do hereby commit and agree that I will include, in any documents transferring
ownership of each patent and patent application, provisions to ensure that the commitments
and assurances made by me are binding on the transferee and any future transferee.

I further do hereby commit and agree that these commitments and assurances are intended by
me to be binding on successors-in-interest of each patent and patent application, regardless
of whether such provisions are included in the relevant transfer documents.

I further do hereby grant to the U.S. Government, during the public review and the evaluation
process, and during the lifetime of the standard, a nonexclusive, nontransferrable, irrevocable,
paid-up worldwide license solely for the purpose of modifying my submitted cryptosystem’s
specifications (e.g., to protect against a newly discovered vulnerability) for incorporation into
the standard.

Signed:

Title:

Date:

Place:

39

544 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

A.3 Statement by Reference/Optimized Implementations’
Owner(s)

The following must also be included:

I, , , am the
owner or authorized representative of the owner of the sub-
mitted reference implementation and optimized implementations and hereby grant the U.S.
Government and any interested party the right to reproduce, prepare derivative works based
upon, distribute copies of, and display such implementations for the purposes of the post-
quantum algorithm public review and evaluation process, and implementation if the corre-
sponding cryptosystem is selected for standardization and as a standard, notwithstanding that
the implementations may be copyrighted or copyrightable.

Signed:

Title:

Date:

Place:

40

— Internet: Portfolio 545

The Picnic Signature Algorithm
Specification

Contact: Greg Zaverucha (gregz@microsoft.com)

October 31, 2017
Version 1.0

546 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Contents

1 Introduction 2
1.1 Overview of the Picnic Signature Algorithm 2
1.2 Contributors . 3

2 Notation 3

3 Cryptographic Components 3
3.1 LowMC . 4
3.2 Hash functions . 4
3.3 Key Derivation Functions . 4
3.4 Views . 5

4 The Picnic Signature Algorithm 5
4.1 Parameters . 5
4.2 Key Generation . 6
4.3 Signing Operation . 7
4.4 Verification Operation . 10
4.5 Supporting Functions . 13

4.5.1 LowMC S-Box Layer: mpc sbox, mpc sbox verify 13
4.5.2 MPC AND Operations: mpc and, mpc and verify 14
4.5.3 MPC XOR Operations: mpc xor, mpc xor constant 15
4.5.4 Binary Vector-Matrix Multiplication: matrix mul 15
4.5.5 Computing the Challenge: H3 16
4.5.6 Function G . 17

5 Serialization 17
5.1 Serialization of Signatures . 17
5.2 Deserialization of Signatures . 18
5.3 Serialization of Picnic Keys . 19

6 Additional Considerations 20
6.1 Signing Large Messages . 20
6.2 Test Vectors . 20

1

— Internet: Portfolio 547

1 Introduction

This document specifies the Picnic public-key digital signature algorithm. It also de-
scribes cryptographic primitives used to construct Picnic, and methods for serializing
signatures and public keys.

Picnic is designed to provide security against attacks by quantum computers, in
addition to attacks by classical computers. The building blocks are a zero-knowledge
proof system (with post-quantum security), and symmetric key primitives like hash
functions and block ciphers, with well-understood post-quantum security. In partic-
ular, Picnic does not require number-theoretic, or structured hardness assumptions.

1.1 Overview of the Picnic Signature Algorithm

This section gives a very brief overview of the Picnic design. For a detailed description
and a complete list of references to related work see [CDG+17], and the additional
documentation submitted to the NIST Post-Quantum Standardization process. A
reference implementation is available at https://github.com/Microsoft/Picnic.

The public key in Picnic is the pair (C, p) where C = Esk(p), and where E is
a block cipher, sk a secret key and p is a plaintext block. The block cipher E
is LowMC [ARS+16, ARS+15]. To create a signature, the signer creates a non-
interactive proof of knowledge of sk, and binds the proof with the message to be
signed. LowMC was chosen because the resulting signature size is smaller than
alternative choices.

The proof of knowledge is a specialized version of ZKBoo [GMO16], called ZKB++.
Informally, the prover simulates a multiparty computation protocol (MPC protocol)
that allows players to jointly compute Esk(p), when each player has a share of sk. For
Picnic, the number of players is always three. The idea is to have the prover commit
to the simulated state and transcripts of all players, then have the verifier “corrupt”
a random subset of the simulated players by seeing their complete state. The verifier
then checks that the computation was done correctly from the perspective of the
corrupted players, and if so, he has some assurance that the output is correct. The
MPC protocol ensures that corrupting any two of the three players does not reveal
information about the secret. Iterating this process multiple times in parallel gives
the verifier high assurance that the prover knows the secret.

To make the proof non-interactive there are two options. The Fiat-Shamir trans-
form (FS) yields a signature scheme that is secure in the random oracle model (ROM),
whereas the Unruh transform (UR), yields a signature scheme that is secure in the
quantum ROM (QROM). The UR signatures are larger, however.

2

548 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

1.2 Contributors

The Picnic signature algorithm was designed by the following team.
Melissa Chase, Microsoft
David Derler, Graz University of Technology
Steven Goldfeder, Princeton
Claudio Orlandi, Aarhus University
Sebastian Ramacher, Graz University of Technology
Christian Rechberger, Graz University of Technology & DTU
Daniel Slamanig, AIT Austrian Institute of Technology
Greg Zaverucha, Microsoft

2 Notation

This section describes the notation used in this document. In addition to the notation
in Table 1, the notation vec[0..2] denotes a vector of three elements: vec[0],
vec[1], vec[2]. When vec is used without an index it refers to the entire vector.
All indexing is zero-based.

S The expected security strength in bits (against classical attacks).
n The LowMC blocksize, in bits.
k The LowMC key size, in bits. This is also the signing key.
s The LowMC number of s-boxes.
r The LowMC number of rounds.

KDF A key derivation function (defined in 3.3).
H A hash function.
T Number of parallel repetitions required for soundness of the proof

of knowledge.
` H The output length of H, in bytes.
⊕ the binary exclusive or (XOR) of equal-length bitstrings.

Table 1: Notation used in this document.

3 Cryptographic Components

This section describes the cryptographic components that are used in the Picnic
algorithm.

3

— Internet: Portfolio 549

3.1 LowMC

Signing and verification compute the LowMC circuit, as part of then non-interactive
MPC protocol simulation. The signing and verification algorithms specified here
include sufficient detail to implement LowMC. However, implementations need some
constants that are part of the LowMC definition. These parameters are different for
each of the three LowMC parameter sets in Table 2.

Kmatrix an array of n × k binary matrices, one for initial whitening, and one for
each LowMC round (r + 1 in total)

Lmatrix an array of n × n binary matrices, one for each LowMC round (r in total)

roundconstant an array of n-bit vectors, one for each LowMC round

We use the LowMC constants from the LowMC reference implementation [Tie17],
without modification. These are included in the Picnic reference implementation, in
the header file lowmc constants.c.

3.2 Hash functions

The hash functions in this specification are all based on the SHAKE128 or SHAKE256
SHA-3 functions [NIS15] that have variable output length. In this document when
we write H, this the SHAKE function given in Table 2 with the fixed output length
also specified in Table 2.

There are multiple hashing operations when computing signatures, once to com-
pute commitments, once to compute the challenge, (optionally) when computing
a second type of commitment, and when using a seed value in multiple places. We
prepend a fixed byte to the input of H in order to differentiate hash outputs in differ-
ent uses. When computing commitments we use H0 defined as H0(x) = H(0x00||x)
and when computing the challenge we use H1 defined as H1(x) = H(0x01||x). The
UR parameter sets also use H when computing the function G (defined in Section
4.5.6), and here we use H2 defined as H2(x) = H(0x02||x). Before each use of a seed
value, used in multiple places, we hash it before use with H2 in one instance and H4,
H5 in the others, which prepend the bytes 0x02, 0x04 and 0x05 respectively.

3.3 Key Derivation Functions

When creating and verifying signatures we must expand a short random value (128
to 512 bits) called the seed, into a longer one (about 1KB). This is done with a

4

550 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

extendable-output function (XOF), based on SHA3, called SHAKE [NIS15]. This
choice allows a single function family (SHA3) for both hashing and key derivation,
as SHAKE with a fixed output length is also a secure hash function. At security
level 1 we use SHAKE128 and security levels 3 and 5 we use SHAKE256. In this
specification all calls to the KDF specify the complete input as a bitstring, i.e.,
additional values such as the context, label and output length, must be encoded as
described here, and passed to the XOF as a single input.

3.4 Views

Signing and verification must compute the views of three players in the MPC protocol
simulation. An individual view object has three components

view.iShare The input key share of this player, k bits long.

view.transcript The transcript of all communication during the protocol. The
length of this depends on the number of AND gates in the LowMC instance
being used. In particular, the number of AND gates is 3rs, so the length of
the transcript is the number of bytes required to store 3rs bits.

view.oShare The output share of this player, k bits long.

Views must be serialized as the simple concatenation of the above three values when
serialized to compute commitments. In the UR variants we also compute additional
commitments with the function G. The input to G includes the input share only
if the view is index 2 (corresponding to the third party) followed by the transcript,
and not the output share.

4 The Picnic Signature Algorithm

This section describes the parameter sets for Picnic, and the three main operations
key generation, signing and verifying.

4.1 Parameters

Table 2 gives parameters for three security levels L1, L3 and L5, as described in
[oST16], corresponding to the security of AES-128, AES-192 and AES-256 (respec-
tively). For each of the three security levels there are two possible signature algo-
rithms, one based on the Fiat-Shamir transform (FS), and one based on the Unruh

5

— Internet: Portfolio 551

(UR) transform. For discussion of the differences between these two variants, see
[CDG+17].

All parameters are chosen such that they are expected to provide S bits of security
against classical attacks, and at least S/2 bits of security against quantum attacks.

Parameter Set S n k s r Hash/KDF Digest length T
picnic-L1-FS
picnic-L1-UR

128 128 128 10 20 SHAKE128 256 219

picnic-L3-FS
picnic-L3-UR

192 192 192 10 30 SHAKE256 384 329

picnic-L5-FS
picnic-L5-UR

256 256 256 10 38 SHAKE256 512 438

Table 2: Parameters by security level.

Parameter Set Public key Private key Signature
picnic-L1-FS 32 16 34000
picnic-L1-UR 32 16 53929
picnic-L3-FS 48 24 76740
picnic-L3-UR 48 24 121813
picnic-L5-FS 64 32 132824
picnic-L5-UR 64 32 209474

Table 3: Key and signature sizes (in bytes) by security level. For the FS variants,
the signature length varies based on the challenge, here we state the largest possible
signature. On average the signature will be slightly less than this.

4.2 Key Generation

This section describes how to generate a signing key pair. The public key is denoted
pk = (C, p) and the secret key is denoted sk. The input to key generation is a
security level (one of S = 128, 192 or 256). Note that for a key pair of security level
S it is technically possible to use it with both signature algorithms defined at this
level, e.g., a key pair created with the 128-bit parameter set may be used with both
picnic-L1-FS and picnic-L1-UR. It is not recommended to use a key pair with
multiple signature algorithms.

1. Choose a random n-bit string p, and a random k-bit string sk.

6

552 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

2. Using LowMC with the parameters given in Table 2, compute the encryption
of p with sk, C = E(sk, p).

3. Output: The pair (sk, pk). The secret key is sk, and the public key pk is (C, p).

4.3 Signing Operation

The functions matrix mul, mpc sbox, mpc xor, mpc and and H3 used to specify sign
are specified in later sections (Sections 4.5.4, 4.5.1, 4.5.3, 4.5.2 and 4.5.5 resp.).
The description of signature generation is independent of the security level, but
changes for the signature algorithms using the Unruh transform: picnic-L1-UR,
picnic-L3-UR and picnic-L5-UR. The description below is with respect to a fixed
security parameter, and the flag UR indicates whether the Unruh transform is used.

Input: Signer’s key pair (sk, pk), a message to be signed the byte array M , such
that 1 ≤ |M | ≤ 255 .

Output: Signature on M as a byte array.

1. Initialize a list of triples of views views[0..T-1][0..2], a list of commit-
ments C[0..T-1][0..2] (byte arrays, each of length ` H), and a list of seeds
seeds[0..T-1][0..2]. If UR is set, initialize a list of commitments G[0..T-1][0..2]
(byte arrays of variable length, not exceeding the length of a view, including
the input share. See Step 3d below.).

2. Populate seeds with 3T random seeds, each of length S bits. It is recommended
that these be derived deterministically, by calling the KDF in Table 2, with
input

skkMkpkkS

where S is encoded as a 16-bit little endian integer. The number of bytes
requested is 3T (S/8) (three seeds for each of T iterations, each of size S/8
bytes).

The test vectors associated with this document will use this method to sim-
plify testing. However, the specific method of generating seed does not affect
interoperability, and implementations may differ (e.g., by choosing the seeds
uniformly at random, using an alternative derivation method, or including al-
ternative inputs to derivation). For implementations seeking to randomize the
signature function, it is recommended to use the derivation described here, but
to append a 2S bit random value to the KDF input.

7

— Internet: Portfolio 553

3. For each parallel iteration t from 0 to T − 1:

(a) Create three random tapes, denoted rand[0..2], using the KDF specified
in Table 2, and the input seeds from Step 2. The seed is hashed with H2

then the digest and the output length are concatenated and input to
the KDF. The output length is encoded as a 16-bit little-endian integer.
Tape rand[0] and rand[1] have length k + 3rs bits, and tape rand[2]
has length 3rs bits. We use the notation rand[i].nextBit() to read the
next bit of the tape.

(b) Compute three shares of sk, denoted x[0..2], each of length k bits:

i. x[0] = first k bits of tape rand[1]
ii. x[1] = first k bits of tape rand[2]
iii. x[2] = sk ⊕ x[0] ⊕ x[1]

(c) Simulate the MPC protocol to compute the LowMC encrypt circuit, record-
ing the views of the three players. Let state[0..2], be a triple of n-bit
vectors.

i. Compute the initial key shares, and whitening:
key = matrix mul(x, Kmatrix[0])

ii. XOR the round key with p, the plaintext portion of the public key
(C, p). For i from 0 to 2:
state = mpc xor constant(key, p)

iii. For each LowMC round i from 1 to r
A. Compute the round i key shares:

key = matrix mul(x, Kmatrix[i])
The function matrix mul is defined in Section 4.5.4.

B. Apply substitution layer (s-boxes) to state:
state = mpc sbox(state, rand, views[t])
The function mpc sbox is defined in Section 4.5.1.

C. Apply affine layer to state:
state = matrix mul(state, Lmatrix[i-1])

D. Update the state with the XOR of the round constant and the
state:
state = mpc xor constant(state, roundconstant[i-1])

The function mpc xor constant is defined in Section 4.5.3.

8

554 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

E. Update the state with the XOR of the round key and the state:
state = mpc xor(state, key)

iv. Store the output shares in the views, for i from 0 to 2:
views[t][i].oShare = state[i]

(d) Form commitments C[t][0..2]. For i from 0 to 2:
C[t][i] = H0(H4(seed[i]), view[i])
If the flag UR is set, for i from 0 to 2, compute:
G[t][i]= G(H4(seed[i]), view[i])

Note that G is length-preserving, and when et = 0, the length of G[t][i]
is longer by n bits, since the view includes the input share in addition to
the transcript.

4. Compute the challenge e, by hashing the output shares, commitments, the
signer’s public key pk and the message M .
e = H3(

view[0][0].oShare, view[0][1].oShare, view[0][2].oShare,
...
view[t-1][0].oShare, view[t-1][1].oShare, view[t-1][2].oShare,
C[0][0], C[0][1], C[0][2],
...
C[t-1][0], C[t-1][1], C[t-1][2],
[G[0][0], G[0][1], G[0][2],
...
G[t-1][0], G[t-1][1], G[t-1][2],]
pk, M)

The function H3 is defined in Section 4.5.5, it is a hash function with output
in {0, 1, 2}t . The commitments G[i][j] must be included when the flag UR is
set, and omitted otherwise. We write e as (e0, . . . , et−1) where ei ∈ {0, 1, 2}.

5. For each round t from 0 to T − 1, assemble the proof. For the challenge
et ∈ {0, 1, 2}, compute i = et + 2 (mod 3) and set
bt = C[t][i], [G[t][i]]
Note that G[t][i] is only present if UR is set. Then,
if et = 0, set zt to
view[t][1].transcript, seed[t][0], seed[t][1]
else if et = 1, set zt to
view[t][2].transcript, seed[t][1], seed[t][2], view[t][2].iShare

9

— Internet: Portfolio 555

else if et = 2, set zt to
view[t][0].transcript, seed[t][2], seed[t][0], view[t][2].iShare

6. Serialize (e, b0, . . . , bt−1, z0, . . . , zt−1) as described in Section 5.1 and output it
as the signature.

4.4 Verification Operation

This section describes the Verify operation, to verify a signature created by the Sign
operation in Section 4.3. The functions matrix mul, mpc sbox verify, mpc xor,
mpc and and H3 used to specify verify are specified in later sections (Sections 4.5.4,
4.5.1, 4.5.3, 4.5.2 and 4.5.5 resp.). As with signing, the steps below work for all
security levels, and the flag UR is set for parameter sets using the Unruh transform.

Input: Signer’s public key pk, a message as a byte array M , such that 1 ≤ |M | ≤
255, a signature σ (also a byte array).

Output: valid if σ is a signature of M with respect to pk or invalid if not.

1. Deserialize the signature σ to (e, b0, . . . , bt−1, z0, . . . , zt−1) as described in Sec-
tion 5.2. If deserialization fails, reject the signature and output invalid. Write
e as (e0, . . . , et−1) where ei ∈ {0, 1, 2}.

2. Initialize lists to contain the three commitments C[0..t-1][0..2], output
shares outputs[0..t-1][0..2], and extra commitments G[0..t-1][0..2]
(if UR is set only), for each parallel iteration. These will be inputs to H3,
verification will re-compute some of these values, and use some provided as
part of the signature.

3. For each parallel iteration t from 0 to T − 1:

(a) Initialize two views view[0] and view[1], random tapes rand[0] and
rand[1], and key shares x[0] and x[1].

(b) For this step there are three cases, one for each challenge value, as in Step
5 of the Sign operation.
If et = 0:

i. Use the provided seed[t][0] to recompute the random tape rand[0].

ii. Use the provided seed[t][2] to recompute the random tape rand[1].

10

556 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

iii. Set view[0].iShare and x[0] to the first k bytes of rand[0].
iv. Set view[1].iShare and x[1] to the first k bytes of rand[1].

If et = 1:

i. Use the provided seed[t][1] to recompute the random tape rand[0].
ii. Use the provided seed[t][2] to recompute the random tape rand[1].
iii. Set view[0].iShare and x[0] to the first k bytes of rand[0].
iv. Set view[1].iShare and x[1] to the input share in zt.

If et = 2:

i. Use the provided seed[t][2] to recompute the random tape rand[0].
ii. Use the provided seed[t][0] to recompute the random tape rand[1].
iii. Set view[0].iShare and x[0] to the input share in zt.
iv. Set view[1].iShare and x[1] to the first k bytes of rand[1].

(c) Simulate the MPC protocol to compute the LowMC encrypt circuit. This
is similar to signing since the circuit is the same, but because we are only
simulating two of the parties instead of all three, the MPC subroutines
are slightly different.

i. Compute initial round keys key[0] and key[1]:
key = matrix mul(x, Kmatrix[0])
The function matrix mul is defined in Section 4.5.4.

ii. Initialize shares of the state state[0] and state[1] with p, the plain-
text portion of the public key (C, p), and the key.
state = mpc xor constant verify(key, p, et)

iii. For each LowMC round i from 1 to r
A. Compute the round i key shares

key = matrix mul(x, Kmatrix[i])

B. Apply substitution layer (s-boxes) to state:
state = mpc sbox verify(state, rand, views[t])

C. Apply affine layer to state:
state = matrix mul(state, Lmatrix[i-1])

D. Update the state with the XOR of the round constant and the
state:

11

— Internet: Portfolio 557

state = mpc xor constant verify(state, roundconstant[i-1], et)

E. Update the state with the XOR of the round key and the state:
state = mpc xor(state, key)

iv. Store the output shares in the views:
view[0].oShare = state[0]
view[1].oShare = state[1]

v. Update the list of commitments. Two commitments are recomputed
based on the recomputed views, and the third is provided in the proof.
C[t][et] = H0(H4(seed[0]), view[0])
C[t][et + 1 mod 3] = H0(H4(seed[1]), view[1])
C[t][et + 2 mod 3] = c

where c is the commitment provided as part of the proof, the first
element in bt. If UR is set, additionally update G as follows:
G[t][et] = G(H4(seed[0]), view[0])
G[t][et + 1 mod 3] = G(H4(seed[1]), view[1])
G[t][et + 2 mod 3] = c0

where c0 is the commitment provided as part of the proof, the second
element in bt.

vi. Update the list of output shares
outputs[t][et] = view[0].oShare
outputs[t][et + 1] = view[1].oShare
outputs[t][et + 2] = view[0].oShare ⊕ view[1].oShare ⊕ C

where C is the ciphertext component of the public key (C, p), and the
addition is done modulo 3 (as above).

(d) Recompute the challenge
e0 = H3(

outputs[0][0], outputs[0][1], outputs[0][2],
...
outputs[T-1][0], outputs[T-1][1], outputs[T-1][2],
C[0][0], C[0][1], C[0][2],
...
C[T-1][0], C[T-1][1], C[T-1][2],
[G[0][0], G[0][1], G[0][2],
...
G[T-1][0], G[T-1][1], G[T-1][2],]
pk, M)

12

558 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

The commitments G[i][j] must be included when the flag UR is set, and
omitted otherwise.

(e) If e and e0 are equal, output valid and otherwise output invalid.

4.5 Supporting Functions

The Sign (§4.3) and Verify (§4.4) operations use similar functions to simulate the
MPC protocol used in the proof of knowledge. This section describes these functions.

4.5.1 LowMC S-Box Layer: mpc sbox, mpc sbox verify

This section describes how the internal LowMC state is updated in the s-box layer.
The number of s-boxes is fixed per parameter set, see Table 2. The input is the three
shares of the state, random tapes and views. The tapes and the views are input
because the operations in the s-box layer use ANDs and so this function must update
the transcript of the MPC protocol. This function also depends on the parameter r,
defined in Table 2. The function mpc sbox is used when signing, and verification uses
mpc sbox verify, which has the same definition, but calls to mpc and are replaced
with calls to mpc and verify.

In the following pseudocode, indexing is bitwise and zero-based. The temporary
variables are triples of bits a[0..2], b[0..2] and c[0..2], of each of the three input
shares (ab, bc and ca have the same type).

Input: Shares of LowMC state state, random tapes rand, and views as defined in
Section 4.3. The input views a triple of views, corresponding to one parallel round.
Output: The input variable state is modified in place
Pseudocode:

for i from 0 to (3*r - 1)
for j from 0 to 2

a[j] = state[j][n - 1 - i - 2]
b[j] = state[j][n - 1 - i - 1]
c[j] = state[j][n - 1 - i]

ab = mpc_AND(a, b, rand, views)
bc = mpc_AND(b, c, rand, views)
ca = mpc_AND(c, a, rand, views)

for j from 0 to 2

13

— Internet: Portfolio 559

state[j][n - 1 - i - 2] = a[j] XOR bc[j]
state[j][n - 1 - i - 1] = a[j] XOR b[j] XOR ca[j]
state[j][n - 1 - i] = a[j] XOR b[j] XOR c[j] XOR ab[j]

4.5.2 MPC AND Operations: mpc and, mpc and verify

These functions take secret shares of bits a, b and compute the binary AND c =
a AND b, updating the transcript of the MPC protocol. The randomness is read
from the pre-computed random tapes, also provided as input. For signing, mpc and
takes three inputs, and for verification, a simpler two-input version, mpc and verify
is used. Note that in verification, one of the players’ output shares is provided as
input.

mpc and
Input: random tapes rand, the triple of views for this parallel round views, and
secret-shared inputs a[0..2], b[0..2]
Output: secret shares c[0..2] = a AND b, updates to the transcripts in views
Pseudocode:

r[0] = rand[0].nextBit()
r[1] = rand[1].nextBit()
r[2] = rand[2].nextBit()

for i from 0 to 2
c[i] = (a[i] AND b[(i + 1) % 3]) XOR

(a[(i + 1) % 3] AND b[i]) XOR
(a[i] AND b[i]) XOR
r[i] XOR r[(i + 1) % 3]

views[i].transcript.append(c[i])
return c

mpc and verify
Input: random tapes rand, the pair of views for this parallel round views, and
secret-shared inputs a[0..1], b[0..1]
Output: secret shares c[0..1] = a AND b, updates to the transcripts in views
Pseudocode:

r[0] = rand[0].nextBit()
r[1] = rand[1].nextBit()

14

560 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

c[0] = (a[0] AND b[1]) XOR (a[1] AND b[0]) XOR
(a[0] AND b[0]) XOR r[0] XOR r[1]

views[0].transcript.append(c[0])

c[1] = views[1].transcript.nextBit()

return c

4.5.3 MPC XOR Operations: mpc xor, mpc xor constant

This function takes secret-shared input bits a, b and computes the secret shares of
c = a ⊕ b. Unlike the AND operation, which requires communication between play-
ers, the XOR operation is done locally in the MPC protocol, and does not need to
update the views.

Input: m bit vectors of length L: a[0..m - 1][0..L - 1] and b[0..m - 1][0..L
- 1]
Output: XOR of the two inputs c[0..2][0..L - 1]
Pseudocode:

for i = 0 to m - 1
c[i] = a[i] XOR b[i] // XOR of L-bit strings

Note that (i) m is always 3 during the Sign operation, and 2 during verify, and
(ii) implementations may work on multiple bits simultaneously using the processor’s
XOR instruction on word size operands.

XOR with a constant When one of the operands is a public constant instead of a
secret share vector, the constant is XORed with only one of the secret shares. When
signing, in mpc xor constant, the first share is always XORed with the constant.
When verifying, in mpc xor constant verify, if the challenge et = 0 then we XOR
the first secret share with the constant, and when et = 2 we XOR the second secret
share with the constant. (This is because the state corresponding to the first player
is in a different position depending on the challenge.)

4.5.4 Binary Vector-Matrix Multiplication: matrix mul

This function computes a vector-matrix product, with elements in GF(2). For sign-
ing, three vectors x, y, and z in GF(2)k are input along with a single matrix M ∈
GF(2)k×k, and three vectors xM, yM and zM in GF(2)k are output. For signature

15

— Internet: Portfolio 561

verification, only x and y are input, and xM and yM are output. The pseudocode
below is modified for verification by omitting lines depending on z.

The function parity(v) is the usual parity function: on input a vector v, of length
k, it returns 1 if the number of 1 bits in v is odd, and zero otherwise. It can be
implemented as v0 ⊕ v1 ⊕ ... ⊕ vk−1.

Let x[i] denote the i-th bit of x, and M[i][j] denote the bit in the i-th row and
j-th column of M .

Input: three k-bit vectors x, y, z, a k-bit by k-bit matrix M
Output: three k-bit vectors a = xM , b = yM and c = zM
Pseudocode:

tempA, tempB, tempC are k-bit vectors
for i = 0 to k - 1

for j = 0 to k - 1
tempA[j] = x[j] AND M[i][j]
tempB[j] = y[j] AND M[i][j]
tempC[j] = z[j] AND M[i][j]

a[k - 1 - i] = parity(tempA)
b[k - 1 - i] = parity(tempB)
c[k - 1 - i] = parity(tempC)

Output (a,b,c)

Notes

1. If inputs and outputs may overlap (e.g., when computing x = xM) a temporary
variable is required for the output.

2. There are many ways to compute this function, implementations may use an
alternative algorithm for better efficiency. For example, see [Alb17].

4.5.5 Computing the Challenge: H3

The function H3 hashes an arbitrary length bitstring to a length T output in {0, 1, 2}
(i.e., H3 : {0, 1}∗ → {0, 1, 2}t). The hash function H is called on the input, then
iterated as required, to compute an output of length T .

In the pseudocode below, the hash function H is given in Table 2, along with the
value for the parameter T . Recall that H1 is defined as H1(x) = H(0x01||x).

16

562 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Input: bitstring b
Output: vector e, of integers in {0, 1, 2}
Pseudocode:

1. Compute h = H1(b), write h in binary as (h0, h1, ..., hS).

2. Iterate over pairs of bits (h0, h1), (h2, h3), If the pair is

(0, 0), append 0 to e,

(0, 1), append 1 to e,

(1, 0), append 2 to e,

(1, 1), do nothing.

If e has length T , return.

3. If all pairs are consumed and e still has fewer than T elements, set h = H(h)
and return to Step 2.

4.5.6 Function G

The function G has two inputs: a seed of length S bits, and a view, v, of varying
length. The output has length ` G, computed as the sum of the length of the seed
and the length of the view. Recall that not all views are equal length, ` G differs
depending on which player computed the view. G is implemented with the KDF
from Table 2, namely, with SHAKE and the following input:

H5(seed)kvk` G

The integer ` G is encoded as a 16-bit little endian integer.

5 Serialization

In this section we specify how to serialize and deserialize Picnic keys and signatures.

5.1 Serialization of Signatures

This section specifies how to serialize signatures created in Section 4.3.
This is a binary, fixed-length encoding, designed to minimize the space required

by the signature. The components of the signature (views, seeds, commitments, etc.)

17

— Internet: Portfolio 563

are all of fixed length for a given parameter set. The Fiat-Shamir parameter sets
have signatures that vary in size, depending on the challenge; note that in Step 5, an
additional input share is output when the challenge is 1 or 2. The serialization does
not include an identifier indicating the parameter set, as not all applications require
it.

Input: The signature (e, b0, . . . , bT −1, z0, . . . , zT −1), as computed in Section 4.3,
Step 5.

Output: A byte array B, encoding the signature.

1. Write the challenge to B, using 2T bits, padding with zero bits on the right to
the nearest byte.

2. For each t from 0 to T − 1, append (bt, zt) as follows. For values that do not
use an even number of bytes, pad with zero bits to the next byte.

(a) Append bt, a commitment of length ` H , and if the UR flag is set, also
append the second commitment (denoted G[t][i] in Step 3d of signing).

(b) Append zi (in the order presented in Step 5 of Sign)

i. Append the transcript.

ii. Append the two seed values in zt,

iii. If et is 1 or 2, append the input share.

3. Output B.

5.2 Deserialization of Signatures

This section describes how to deserialize a byte array created by Section 5.1 to a
signature for use in verification. The deserialization process reads the input bytes
linearly. Since the signature length can vary depending on the challenge (encoded
first in the byte array), it is recommended that implementations first compute the
expected length from e, and reject the signature before parsing further, if B does
not have the expected number of remaining bytes.

Input: A byte array B, encoding the signature.

18

564 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Output: The signature (e, b0, . . . , bT −1, z0, . . . , zT −1), as computed in Section 4.3,
Step 5, or null if deserialization fails.

1. Read the first (2T + 7)/8 bytes from B. If the read fails, return null. Ensure
that each pair of bits in the first 2T bits are in {0, 1, 2} and return null if
not. If padding bits are required for this value of T (see §5.1), ensure that all
padding bits are zero, and return null if not. Assign these bytes to e. We use
the notation e = (e0, . . . , eT −1) to denote the individual pairs of bits.

2. For each t from 0 to T − 1, read (bt, zt) from B as follows. If any of the reads
are not possible because B is too short, abort and return null.

(a) Create bt by reading a commitment of length ` H from B. If UR is set, also
read a second commitment from B, of length 3rs + n bits when et == 0
and 3rs bits otherwise.

(b) Read zt, as follows:

i. Read the transcript from B, assign it to the first component of zt.
Recall that the length of the transcript is 3rs bits (where r and s are
specified in Table 2).

ii. Read the first seed value of length S bits from B, append it to zt.
iii. Read the second seed value of length S bits from B, append it to zt.
iv. If et is 1 or 2, read an input share of length S bits from B and append

it to zt.

3. Output (e, b0, . . . , bT −1, z0, . . . , zT −1).

5.3 Serialization of Picnic Keys

A Picnic public key (C, p) should be serialized as the bits of C, followed by the
bits of p. Both are first converted to byte arrays, are both S bits long, and S is
guaranteed to be a multiple of eight. For a given parameter set, public keys can
therefore be unambiguously parsed. Note that the length of a serialized public key
uniquely identifies the security level, but not the exact parameter set, e.g., public
keys for both Picnic-L1-FS and Picnic-L1-UR have the same length. Applications
that handle multiple parameter sets are responsible for encoding the parameter set
along with the public key.

Serializing the private key is done by serializing the S bits of sk, as a byte array.
As with public keys, the length of the private key identifies the security level, but not
the parameter set. Applications working with private keys for multiple parameter
sets must also serialize the parameter set.

19

— Internet: Portfolio 565

6 Additional Considerations

6.1 Signing Large Messages

Note that the sign operation makes two passes over M , once to generate the per-
signature randomness, and once when computing the challenge. In applications
where this cost is prohibitive, it is recommended to first hash M , and pass H(M) to
the signature algorithm specified here. The function H must be collision resistant,
and the performance of picnic signatures is only weakly affected by the output length.
Implementations that must pre-hash M should use SHAKE-256 with 512-bit digests,
SHA3-512, or SHA-512.

A signing key used with pre-hashing must not be used without it, and vice-versa.

6.2 Test Vectors

The reference implementation1 and the submission package for the NIST Post-
Quantum Standardization process contain test vectors that implementations may
use to verify conformance with this specification. The test vectors contain serialized
versions of Picnic key pairs, messages and the corresponding Picnic signature. The
intermediate values list the individual components of the signature, that should be
produced after deserialization.

Note that key generation tests the correctness of an implementation’s LowMC
implementation, and in particular, that all of the constants required by LowMC are
correct. In order to test the output of signing against a known value, implementations
must use the de-randomized implementation specified here (§4.3, Step 2), where the
per-signature ephemeral random values are derived from the signer’s secret key and
the message to be signed (as opposed to being randomly generated).

References

[Alb17] Martin Albrecht. m4ri: Further reading. m4ri Wiki, 2017. Accessed June
2017.

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge
Tiessen, and Michael Zohner. Ciphers for MPC and FHE. In EURO-
CRYPT, 2015.

1Available online at https://github.com/Microsoft/Picnic.

20

566 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

[ARS+16] Martin Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen,
and Michael Zohner. Ciphers for MPC and FHE. Cryptology ePrint
Archive, Report 2016/687, 2016.

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebas-
tian Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Za-
verucha. Post-quantum zero-knowledge and signatures from symmetric-
key primitives. Cryptology ePrint Archive, Report 2017/279 and ACM
CCS 2017, 2017.

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster
zero-knowledge for boolean circuits. In USENIX Security, 2016.

[NIS15] NIST. SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions. National Institute of Standards and Technology
(NIST), FIPS PUB 202, U.S. Department of Commerce, 2015.

[oST16] National Institute of Standards and Technology. Submission require-
ments and evaluation criteria for the post-quantum cryptography
standardization process, December 2016. https://beta.csrc.nist.
gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/
call-for-proposals-final-dec-2016.pdf.

[Tie17] Tyge Tiessen. LowMC reference implementation, September
2017. Available at https://github.com/LowMC/lowmc, HEAD was
3994bc857661ac33134b36163b131a215f0fe9c3 when constants were gen-
erated.

21

— Internet: Portfolio 567

Submission to NIST’s post-quantum project:

lattice-based digital signature scheme qTESLA

Name of the cryptosystem: qTESLA

Principal and auxiliary submitters:

Nina Bindel, Technische Universität Darmstadt,
(Principal submitter) Hochschulstrasse 10, 64289 Darmstadt, Germany,

Email: nbindel@cdc.informatik.tu-darmstadt.de,
Phone: 004961511620667

Signature:

Sedat Akleylek, Ondokuz Mayis University, Turkey
Erdem Alkim, Ege University, Turkey
Paulo S. L. M. Barreto, University of Washington Tacoma, USA
Johannes Buchmann, Technische Universität Darmstadt, Germany
Edward Eaton, ISARA Corporation, Canada
Gus Gutoski, ISARA Corporation, Canada
Juliane Krämer, Technische Universität Darmstadt, Germany
Patrick Longa, Microsoft Research, USA
Harun Polat, Technische Universität Darmstadt, Germany
Jefferson E. Ricardini, University of São Paulo, Brazil
Gustavo Zanon, University of São Paulo, Brazil

Inventors of the cryptosystem:

All submitters by name based on a previous scheme by Shi Bai and Steven Galbraith and
extensive previous works as explained in the body of this document.

Owners of the cryptosystem:

None (dedicate to the public domain)

1

568 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Contents

1 Introduction 3
1.1 Related work . 3

2 Specification 4
2.1 Basic signature scheme . 4
2.2 Formal description of qTESLA . 6
2.3 Correctness of the scheme . 7
2.4 Implementation details of the required functions 9

2.4.1 Gaussian sampling . 9
2.4.2 Deterministic random bit generation 10
2.4.3 Generation of a: GenA . 10
2.4.4 Encoding function . 10
2.4.5 Hash and pseudo-random functions 11

2.5 System parameters and parameter selection 12

3 Performance analysis 15

4 Known answer values 16

5 Expected security strength 16
5.1 Provable security in the (quantum) random oracle model 17
5.2 Bit security of our proposed parameter sets 19

5.2.1 Correspondence between security and hardness 19
5.2.2 Estimation of the hardness of R-LWE 19

5.3 Resistance to implementation attacks . 21
5.4 Deterministic vs. probabilistic signature scheme 21

6 Advantages and limitations 22

2

— Internet: Portfolio 569

1 Introduction

This document presents a detailed specification of qTESLA, a post-quantum signature
scheme based on the hardness of the decisional ring learning with errors (R-LWE) problem.
In contrast to other alternatives, qTESLA is a conservative yet efficient signature scheme
that has been instantiated according to the provided security reduction. That is, qTESLA
instantiations are provably secure in the (quantum) random oracle model. To this end, the
scheme comes accompanied by a non-tight reduction in the random oracle model, and a
tight reduction in the quantum random oracle model from R-LWE.

Concretely, qTESLA is designed to target three security levels:

• qTESLA-128: NIST’s security category 1.

• qTESLA-192: NIST’s security category 3.

• qTESLA-256: NIST’s security category 5.

Despite the aforementioned security assurances in its parameter selection, qTESLA still
achieves good performance with a competitive memory footprint. Furthermore, design
decisions have been made towards enabling simple, easy-to-protect implementations.

In the remainder of this section, we describe previous works related to the proposed signa-
ture scheme qTESLA. In Section 2, we give the specification details of the scheme, including
a basic and a formal algorithmic description, the functions that are required for its imple-
mentation, and the proposed parameter sets. In Section 3, we analyze the performance of
our implementations. Section 4 includes the details of our known answer values. Then, we
discuss the (provable) security of our proposal in Section 5, including an analysis of the
concrete security level and the security against implementation attacks. Section 6 ends
this document with a summary of the advantages and limitations of qTESLA.

1.1 Related work

The signature scheme proposed in this submission is the result of a long line of research.
The first work in this line is the signature scheme proposed by Bai and Galbraith [14]
which is based on the Fiat-Shamir construction of Lyubashevsky [50]. The scheme by Bai
and Galbraith is constructed over standard lattices and comes with a (non-tight) security
reduction from the learning with errors (LWE) and the short integer solution problem
(SIS) in the random oracle model. Dagdelen et al. presented improvements and the first
implementation of the Bai-Galbraith scheme [27]. The scheme was subsequently studied
under the name TESLA by Alkim, Bindel, Buchmann, Dagdelen, Eaton, Gutoski, Krämer,
and Pawlega [9], who provided an alternate security reduction from the LWE problem in
the quantum random oracle model.

3

570 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

A variant of TESLA over ideal lattices was derived under the name ring-TESLA [1] by Ak-
leylek, Bindel, Buchmann, Krämer, and Marson. Since then, subsequent works [16,41] have
been presented. Most notably, a version of the scheme ring-TESLA called TESLA# [16]
by Barreto, Longa, Naehrig, Ricardini, and Zanon included several implementation im-
provements. Moreover, there exist several works [19, 20, 36] concerned with the analysis
of ring-TESLA with respect to implementation attacks, i.e., fault and side-channel at-
tacks.

The signature scheme presented in the following assembles the advantages acquired in the
prior works resulting in the quantum-secure signature scheme qTESLA.

Acknowledgments

We are grateful to Michael Naehrig for his valuable feedback.

SA and EA are partially supported by TÜBITAK under grant no. EEEAG-116E279.
NB is partially supported by the German Research Foundation (DFG) as part of project
P1 within the CRC 1119 CROSSING.
JR is supported by the joint São Paulo Research Foundation (FAPESP)/Intel Research
grant 2015/50520-6 ”Efficient Post-Quantum Cryptography for Building Advanced Security
Applications”.

2 Specification

Next, we give an informal description of the basic scheme that is used to specify qTESLA.
A formal specification of qTESLA’s key generation, signing and verification algorithms
then follows in Section 2.2. The correctness of the scheme is discussed in Section 2.3.
We describe the implementation of the functions required by qTESLA in Section 2.4, and
explain all the system parameters and the proposed parameter sets in Section 2.5.

2.1 Basic signature scheme

Informal descriptions of the algorithms that give rise to the signature scheme qTESLA are
shown in Algorithms 1, 2 and 3. Below, we first define two basic terms that are required
by the algorithms, namely, B-short and well-rounded.

An integer polynomial y is B-short if each coefficient is at most B in absolute value. We
call an integer polynomial w well-rounded if w is (bq/2c−LE)-short and [w]L is (2d−LE)-
short, where [·]L is the value represented by the d least significant bits of w. Similarly,

4

— Internet: Portfolio 571

Algorithm 1 Informal description of the key generation

Require: -
Ensure: Secret key sk = (s, e, a), public key pk = (a, t)

1: a← Rq invertible ring element
2: Choose s, e ∈ R with entries from Dσ.
3: If the h largest entries of e sum to LE then sample new e and retry at step 2.
4: If the h largest entries of s sum to LS then sample new s and retry at step 2.
5: t = as+ e ∈ Rq.
6: Return secret key sk = (s, e) and public key pk = (a, t).

Algorithm 2 Informal description of the signature generation

Require: Message m, secret key sk = (s, e, a),
Ensure: Signature (z, c).

1: Choose y uniformly at random among B-short polynomials in Rq.
2: c← H([ay]M ,m).
3: z ← y + sc.
4: If z is not (B − LS)-short then retry at step 1.
5: If ay − ec is not well-rounded then retry at step 1.
6: Return signature (z, c).

Algorithm 3 Informal description of the verification

Require: Message m, public key pk = (a, t), purported signature (z, c)
Ensure: “Accept” or “reject”.

1: If z is not (B − LS)-short then return reject.
2: w ← az − tc mod q
3: If H([w]M ,m) 6= c then return reject.
4: Return accept.

[·]M is the value represented by the corresponding most significant bits. For simplicity
we assume that the hash oracle H(·) maps from {0, 1}∗ to H, where H denotes the set of
polynomials c ∈ R with coefficients in {−1, 0, 1} with exactly h nonzero entries, i.e., we
ignore the encoding function F introduced in Section 2.2.

As can be seen, the description in Algorithm 2 implies that the signature scheme is non-
deterministic, i.e., that different randomness is required for each signing operation, even if
the message is the same. Specifically, this feature is fixed by the random generation of the
polynomial y in Step 1 of Algorithm 2.

In Section 2.2, we discuss how the scheme can be converted to deterministic. Deterministic

5

572 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

signatures have the advantage that different randomness is used for different messages with
very high probability and that sampling can be implemented more easily since access to
a source of high-quality randomness is not needed. We discuss the (dis-)advantages of
deterministic vs. probabilistic signatures in more detail in Section 5.4.

2.2 Formal description of qTESLA

Below, we define all the necessary functions, sets, and system parameters in qTESLA.

The description of the scheme depends on the following system parameters: λ, κ, n, q,
σ, LE , LS , B, d, and h. Let Zq = Z/qZ, R = Z[x]/〈xn + 1〉, Rq = Zq[x]/〈xn + 1〉,
Rq,[I] = {f ∈ Rq | f =

∑n−1
i=0 fix

i, fi ∈ [−I, I]}, and Hn,h = {f ∈ Rq | f =
∑n−1

i=0 fix
i, fi ∈

{−1, 0, 1}, ∑n−1
i=0 |fi| = h}. Let R be a ring then we denote the inverse elements in this

ring by R×. Let f =
∑n−1

i=0 fix
i ∈ R. Then we define the reduction (f mod q) of f

modulo q to be (f mod q) =
∑n−1

i=0 (fi mod q)xi ∈ Rq. Let d ∈ N and c ∈ Z. We denote
by [c]L the unique integer in (−2d−1, 2d−1] ⊂ Z such that c = [c]L modulo 2d. Let [·]M
be the function [·]M : Z→ Z, c 7→ (c− [c]L)/2d. Furthermore, let f =

∑n−1
i=0 fix

i ∈ Rq,
then [f]L =

∑n−1
i=0 [fi]L x

i and [f]M =
∑n−1

i=0 [fi]M xi. Let f ∈ Rq be a polynomial with
coefficients being ordered (without losing any generality) as |f1| ≥ |f2| ≥ ... ≥ |fn|. Then
we define maxi(f) = fi.

The centered discrete Gaussian distribution for x ∈ Z with standard deviation σ is defined
to be Dσ = ρσ(x)/ρσ(Z), where σ > 0, ρσ(x) = exp(−x

2

2σ2), and ρσ(Z) = 1 + 2
∑∞

x=1 ρσ(x).
We write c ←σ Z to denote sampling a value c with distribution Dσ. For a polynomial
c ∈ R, we write c←σ R to denote sampling each coefficient of c with distribution Dσ. For
a finite set S, we denote sampling the element s uniformly from S with s←$ S.

We define the following functions (refer to the specified sections for explicit details about
their implementation):

• The generation of the polynomial a as GenA : {0, 1}κ → R×q (cf. Section 2.4.3),

• an encoding function to encode hash values to polynomials Enc : {0, 1}κ → Hn,h (cf.
Section 2.4.4),

• the two pseudo random functions PRF1 : {0, 1}κ × {0, 1}∗ → {0, 1}κ and PRF2 :
{0, 1}κ × Z→ Rq,[B] (cf. Section 2.4.5), and

• a hash function H : {0, 1}∗ → {0, 1}κ (cf. Section 2.4.5).

The details of qTESLA’s key generation, signing and signature verification are given in
Algorithms 6, 7, and 8, respectively. The two subroutines checkE and checkS that are
called during key generation are depicted in Algorithms 4 and 5, respectively.

6

— Internet: Portfolio 573

Algorithm 4 Subroutine checkE to ensure
correctness of the scheme; checkE ensures
that ‖ec‖∞ ≤ LE
Require: e ∈ R
Ensure: {0, 1} . false, true

1: if
∑h

i=1 maxi(e) > LE then
2: return 0
3: end if
4: return 1

Algorithm 5 Subroutine checkS to sim-
plify the security reduction; checkS ensures
that ‖sc‖∞ ≤ LS
Require: s ∈ R
Ensure: {0, 1} . false, true

1: if
∑h

i=1 maxi(s) > LS then
2: return 0
3: end if
4: return 1

Algorithm 6 qTESLA’s key generation

Require: -
Ensure: sk = (s, e, seedy, seeda), pk = (seeda, t)

1: seeda, seedy ←$ {0, 1}κ
2: a← GenA(seeda)
3: s←σ R
4: if checkS(s) = 0 then
5: Restart at step 3
6: end if
7: e←σ R
8: if checkE(e) = 0 then
9: Restart at step 7

10: end if
11: t = as+ e mod q
12: sk ← (s, e, seedy, seeda)
13: pk ← (seeda, t)
14: return sk, pk

Remark 1. We note that the description of our scheme can be easily generalized to
use more than one sample of the ring learning with errors problem. In particular, that
would mean that the public key consist of seeda1 , ..., seedak (corresponding to a1, ..., ak) and
t1, ..., tk, and that the secret key consist of the polynomials s, e1, ..., ek, seedy. Our analysis
of the expected security also holds for a generalization with k > 1. However, the description
and implementation of the scheme are substantially simpler for k = 1.

2.3 Correctness of the scheme

According to Algorithms 6 and 7, the following holds for an honestly generated signature
(c′, z) with c = Enc(c′) and elements from the key generation a, t, s, e:

7

574 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Algorithm 7 qTESLA’s signature generation

Require: m, sk = (s, e, seedy, seeda)
Ensure: c′, z

1: a← GenA(seeda)
2: counter← 0
3: rand← PRF1(seedy,m)
4: y ← PRF2(rand, counter)
5: v = ay mod q
6: c′ ← H([v]M ,m)
7: c← Enc(c′)
8: z ← y + sc
9: if z /∈ Rq,[B−LS] then

10: counter + +
11: Restart at step 4
12: end if
13: w ← v − ec mod q
14: if ‖[w]L‖∞ > 2d − LE ∨ ‖w‖∞ > bq/2c − LE then
15: counter + +
16: Restart at step 4
17: end if
18: return (c′, z)

Algorithm 8 qTESLA’s signature verification

Require: m, (c′, z), pk = (seeda, t)
Ensure: {0, 1} . reject, accept

1: c← Enc(c′)
2: a← GenA(seeda)
3: w ← az − tc mod q
4: if z ∈ Rq,[B−LS] ∧ c = H([w]M ,m) then
5: return 1
6: end if
7: return 0

z ∈ Rq,[B−U], ‖sc‖∞ ≤ LS , ‖ec‖∞ ≤ LE , ‖[ay − ec]L‖∞ ≤ 2d − LE , and ‖ay − ec‖∞ ≤
bq/2c − LE . In order for the verification algorithm to accept a signature it has to hold
that: (i) z ∈ Rq,[B−U], which holds trivially, and (ii) [ay]M = [az − tc]M , which we argue
next.

8

— Internet: Portfolio 575

We know that

[az − tc]M = [ay + asc− asc− ec]M (1)

= [ay − ec]M (2)

=
ay − ec− [ay − ec]L

2d
. (3)

We know that ‖[ay − ec]L‖∞ < 2d−LE and ‖ay− ec‖∞ ≤ bq/2c−LE . Hence, ‖ay− ec−
[ay − ec]L‖∞ < q/2, and thus, no wrap-around occurs. Furthermore, since ‖ec‖∞ ≤ LE
and ‖[ay − ec]L‖∞ ≤ 2d − LE , we know that −ec − [ay − ec]L = [−ec− (ay − ec)]L and
hence,

ay − ec− [ay − ec]L
2d

=
ay − [ay]L

2d
= [ay]M . (4)

2.4 Implementation details of the required functions

2.4.1 Gaussian sampling

One of the advantages of qTESLA is that Gaussian sampling is only required during key
generation to sample s and e (see Alg. 6). Nevertheless, certain applications might re-
quire an efficient and secure implementation of key generation and that, in particular, be
protected against timing and cache attacks. In the following, we adopt the Gaussian sam-
pler proposed in [16], which is an improvement upon the sampler proposed by Ducas et
al. [29, Section 6].

The basic idea of the Gaussian sampler by Ducas et al. [29, Algorithms 10–12] is to start
from a distribution that approximates the desired Gaussian distribution. From there, a
high-quality Gaussian is obtained by rejection sampling guided by Bernoulli distributions
Bρ with parameters ρ related to the standard deviation σ of the desired Gaussian distri-
bution. Ducas et al. implement those Bernoulli distributions by decomposing them into `
certain base distributions (Bρ0 ,Bρ1 , . . . ,Bρ`−1

) where the ρ constants are precomputed to
the desired accuracy, and then sampling from those base distributions to that accuracy.
Even though this Bernoulli decomposition is reportedly quite efficient, its running time
highly depends on the private bits. Besides that, each Bcρ must be sampled to the same
precision as the target distribution, which is why the total amount of entropy needed to
obtain one Gaussian sample is much higher than theoretically necessary, roughly O(`λ)
bits rather than O(λ) for security level λ.

However, because qTESLA only needs a basic Gaussian sampler for key generation, it
is possible to obtain a much simpler construction [16]. In particular, only one Bernoulli
distribution Bρ is needed, instead of ` base distributions (Bρ0 ,Bρ, . . . ,Bρ`−1

). Thus, the bias

9

576 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

is simply computed by ρ = exp(−t/2σ2) using well-known exponentiation techniques. The
value ρ is an approximation of a real number in the interval [0, 1] to the desired precision.
For more details, refer to [16] and [29, Section 6].

2.4.2 Deterministic random bit generation

qTESLA requires the deterministic generation of random bits to produce seeds from ran-
dom pre-seed values. Specifically, the key generation algorithm requires the generation of
seeds seeda and seedy in Step 1 (Alg. 6). This is done with the SHA-3 derived extendable
output function cSHAKE. The format to call this function is given by cSHAKE(X,L, “ ”, S)
for an input bit string X and a domain separator S [45] (note that the function-name bit
string is left empty). The function returns a bit string of L bits as output.

2.4.3 Generation of a: GenA

In qTESLA, a polynomial a is freshly generated per secret/public keypair using a seed
seeda. This seed is then stored as part of the public key so that the signing and verification
operations can regenerate a.

The approach above permits to save bandwidth since we only need κ bits to store seeda
instead of the ndlog(q)e bits that are required to represent the full polynomial. Moreover,
the use of a fresh a per keypair makes more difficult the introduction of backdoors and
reduces drastically the scope of all-for-the-price-of-one attacks [10,16].

The procedure to generate a is as follows. First, a pre-seed is obtained from the system
RNG. This pre-seed is then hashed using cSHAKE to obtain seeda, as described in Sec-
tion 2.4.2. Finally, to generate a via the expansion of seeda, we use cSHAKE [45] such that
the output size is enough to fill out all the coefficients of the polynomial. Moreover, the
output of cSHAKE is filtered to make sure that a belongs to the correct ring. Note that,
as a precaution, we avoid exposing directly the output of the system RNG through seeda,
and use a hashed value instead.

2.4.4 Encoding function

The encoding function Enc takes the output of the hash function H and maps it to a
vector with entries in {−1, 0, 1} of length n and weight h (representing a polynomial of
degree n − 1). In the signature generation we need to map the hash input ([v]M ,m) to
a polynomial c ∈ Hn,h ⊂ Rq (cf. line 6 and 7 of Algorithm 7). We break this up into
Enc(H([v]M ,m)) = Enc(c′) = c to obtain smaller signatures (c′, z) ∈ {0, 1}κ ×Rq.

10

— Internet: Portfolio 577

We implement the encoding function Enc as in [1] and as depicted in Algorithm 9. The
elements r1, ..., rh are chosen randomly by a PRF, given c′ ← H([v]M ,m) as input. The
value cpos is the (pos)-th element of the vector c ∈ Hn,h, which is initialized as a zero
vector. This algorithm is an extension of an algorithm originally proposed in [32, Section
4.4] which in turn relies on [29].

Algorithm 9 Encoding function Enc

Require: c′ ∈ {0, 1}κ
Ensure: c ∈ Hn,h

1: r1, ..., rh−1, rh ← PRF(c′)
2: for i = 1, ..., h: do
3: pos← (ri � 8) ∨ (ri+1)
4: if ri+2 mod 2 = 1 then
5: cpos ← −1
6: else
7: cpos ← 1
8: end if
9: end for

10: return c

2.4.5 Hash and pseudo-random functions

qTESLA’s signing procedure requires the hash function H as well as the pseudo-random
functions PRF1 and PRF2. We adopt SHA-3 [33] for function H, and cSHAKE [45] for
functions PRF1 and PRF2.

PRF1 takes as input the seed seedy and the message m and maps it to a byte array, i.e.,
PRF1 : {0, 1}κ×{0, 1}∗ → {0, 1}κ (cf. line 3 of Algorithm 7). To do this we use the output
of cSHAKE.

PRF2 takes as input the values rand and counter and maps them to a ring element, i.e.,
PRF2 : {0, 1}κ × Z → Rq,[B] (cf. line 4 of Algorithm 7). To do this we use the output
of cSHAKE and split it into n chunks representing the coefficients of the polynomial y in
Rq,[B].

It is worth noting that we take the hash output size κ to be larger or equal to the security
level λ. This is consistent with the use of the hash in a Fiat-Shamir style signature scheme
such as qTESLA. In the Fiat-Shamir paradigm for signatures, preimage resistance is rele-
vant while collision resistance is much less, given that we take the hash size to be enough
to resist preimage attacks1.

1We chose the hash size aiming for security of Category 5, according to NIST’s categories of security

11

578 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

2.5 System parameters and parameter selection

In this section, we describe qTESLA’s system parameters and our choice of parameter sets.
We summarize all bounds and our concrete parameter sets in Table 1. We explain how we
estimate the bit security of our signature scheme in Section 5.2.

Herein, we propose three parameter sets that we classify according to NIST’s categories of
security as follows:

qTESLA-128: NIST’s security category 1,
qTESLA-192: NIST’s security category 3,
qTESLA-256: NIST’s security category 5.

Our parameters are chosen according to the security reduction provided in Theorem 6,
Section 5.1. This implies the following: suppose that parameters are constructed for a
certain security level. By virtue of our security reduction these parameters correspond
to an instance of the R-LWE problem. Since our parameters are chosen according to the
provided security reduction, this reduction provably guarantees that our scheme has the
selected security level as long as the corresponding R-LWE instance is intractable. In
other words, hardness statements for R-LWE instances have a provable consequence for
the security levels of our scheme.

Since the presented reduction is tight, the tightness gap of our reduction is equal to 1 for
our choice of parameters and, hence, the concrete bit security of our signature scheme is
essentially the same as the bit hardness of the underlying R-LWE instance. We make our
sage script used to choose parameters available. It is called parameterchoice.sage and
can be found in the submission folder “Script to choose parameters”.

Let λ be the security parameter, i.e., the targeted bit security of the instantiation is λ. Let
n ∈ Z>0 be the dimension, i.e., n− 1 is the polynomial degree. To use efficient polynomial
multiplication, i.e., the number theoretic transform (NTT) in the ring Rq, we restrict
ourselves to a polynomial degree of a power of two, i.e, n = 2l for l ∈ N. Let σ be the
standard deviation of the centered discrete Gaussian distribution that is used to sample
the coefficients of the secret and error polynomials. To use the fast Gaussian sampler
as described in Section 2.4.1, we choose σ = ξ√

2 ln 2
for some ξ ∈ Z>0. The parameter

κ defines the output (resp., input) length of random functions described in Section 2.4.5.
The parameter h defines the encoding function described in Section 2.4.4. More concretely,
it defines the number of non-zero elements of the output of the encoding function.

The values LE and LS are used to bound the coefficients in the error and secret polynomials

for preimage resistance. In a scenario that excludes Groover’a algorithm a hash function with an output
length of λ is expected to have preimage resistance of 2λ. When considering the quadratic acceleration of
Groover’s algorithm, the preimage resistance is only ≈ 2λ/2. In such a case, the hash output length should
be 2λ for an aspired security level of λ.

12

— Internet: Portfolio 579

Table 1: Description and bounds of the parameters according to the tight security reduction
in the quantum random oracle model with qh = 2128 and qs = 264; we choose M = 0.3; we
write parameters used in the implementation in bold

Param. Description Requirement qTesla-128 qTesla-192 qTesla-256

λ security parameter - 128 192 256
n dimension (n− 1 is the poly. degree) power-of-two 1 024 2 048 2 048

σ, ξ standard deviation of centered dis-
crete Gaussian distribution

σ = ξ√
2 ln 2

8.5, 10

q modulus q = 1 mod 2n, 8 058 881 12 681 217 27 627 521
qn ≥ |∆S| · |∆L| · |∆H|, ≤ 223 ≤ 224 ≤ 225

qn ≥ 24λ+n(d+1)3q3
s(qs+qh)2

h # of non-zero entries of output ele-
ments of Enc

2h ·
(
n
h

)
≥ 22λ 36 50 72

κ output length hash function H and
input length GenA, PRF1, PRF2,
Enc

κ ≥ λ 256

LE, ηE bound in checkE ηE · h · σ 798, 2.48 1 117, 2.68 1 534, 2.48
LS, ηS bound in checkS ηS · h · σ 758, 2.61 1 138, 2.63 1 516, 2.51

B determines the interval the random-
ness is chosen in during sign

B ≥
n√M+2LS−1

2(1− n√M)
, 220 − 1 221 − 1 222 − 1

near to power-of-two

d number of rounded bits
(

1− 2·LE+1
2d

)n
≥ 0.3, 21 22 23

d > log2(B)

|∆H|
see definition below in the text

∑h
j=0

∑h−j
i=0

(
n′
2i

)
22i
(
n′−2i
j

)
2j ≈ 2447 ≈ 2675 ≈ 2898

|∆S| (4(B − LS) + 1)n ≈ 222526 ≈ 247102 ≈ 249150

|∆L| (2d+1 + 1) 222 + 1 223 + 1 224 + 1

δw acc. prob. of w in line 19 during sign experimentally 0.50 0.33 0.33
δz acc. prob. z in line 19 during sign experimentally 0.50 0.25 1.00

δkeygen acc. prob. of key pairs experimentally 1.00

sig size theoretical size signature [byte] κ+ n(dlog2(B − LS)e+ 1) 2 720 5 664 5 920
pk size theoretical size public key [byte] n(dlog2(q)e) + κ 2 976 6 176 6 432
sk size theoretical size secret key [byte] 2n(dlog2(t · σ + 1)e) + 2κ

with t = 13.4, 16.4, or 18.9
1 856 4 160 4 128

during checkE and checkS, respectively. However, since the rejection probability of key
pairs during the key generation is close to zero for our parameter sets (as determined
experimentally) the key space is not restricted noticeably. Both bounds, LE and LS , impact
the rejection probability during the signature generation, as follows. Larger the values of
LE and LS will increase the acceptance probability during the key generation. But they
will also decrease acceptance probability in the signature generation line 14 and line 9,
respectively. We determine the best trade-off between those two acceptance probabilities
experimentally. We start choosing LE = ηE ·h ·σ (resp., LS = ηS ·h ·σ) with ηE = ηS = 2.8

13

580 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

and try different values for ηE , ηS ∈ [2.0, 3.0]. Let M = 0.3 be a value of our choosing that
determines (together with LS and B) the acceptance probability of the rejection sampling
in line 9 Algorithm 7. The parameter B defines the interval of the random polynomial y (cf.
line 4 of Algorithm 7) and it is determined by M and the parameter LS as follows:

(
2B − 2LS + 1

2B + 1

)n
≥M ⇔ B ≥

n
√
M + 2LS − 1

2(1− n
√
M)

.

We select the rounding value d to be larger than log2(B) and such that the acceptance
probability of the check ‖[w]L‖∞ > 2d−LE in Line 14 of Algorithm 7 is upper bounded by
0.7 when using the sage script to choose parameters. Changing the value LE as described
above, impacts the rejection probability of w as well. We determine the acceptance prob-
ability δz of z and δw of w during sign and the acceptance probability of key pairs δkeygen
experimentally and summarize the result in Table 1.

The parameter q is chosen to fulfill several bounds and assumptions that are motivated by
the security reduction or efficient implementation requirements. To simplify our statement
in the security reduction we ensure that qn ≥ |∆S| · |∆L| · |∆H| with the following definition
of sets: S is the set of polynomials z ∈ Rq,[B−LS] and ∆S = {z − z′ : z, z′ ∈ S}, H is the set
of polynomials c ∈ Rq,[1] with exactly h nonzero coefficients and ∆H = {c− c′ : c, c′ ∈ H},
and ∆L = {x − x′ : x, x′ ∈ R and [x]M = [x′]M ∈ Rq,[2d−1]}. To choose parameters ac-
cording to the security reduction the following equation (cf. Theorem 6) has to hold:

23λ+n(d+1) · 3 · q3
s(qs + qh)2

qn
≤ 2−λ ⇔ q ≥

(
24λ+n(d+1) · 3 · q3

s(qs + qh)2
)1/n

.

To be able to use fast polynomial multiplication we choose q to be a prime integer such
that q mod 2n = 1.

As stated in the NIST call for proposals (Section 4.A.4), we choose the number of classical
queries to the sign oracle to be qs = 264 for all our parameter sets. Moreover, we choose
the number of queries of a hash function to be qh = 2128.

Key and signature sizes Given all parameters as explained above, we determine the
key and signature sizes as follows. The theoretical length of the signature in bits is given
by κ+ n · (dlog2(B − LS)e+ 1) and the public key is represented by n · (dlog2(q)e) + κ
bits. To determine the size of the secret key we note that for t > 0 it holds that
Prx←σZ [|x| > tσ] ≤ 2e−t

2/2. For example for t = 13.4, t = 16.4, and t = 18.9 the proba-
bility Prx←σZ [|x| > tσ] is less or equal 2−128, 2−192, and 2−256, respectively. Therefore, the
theoretical size of the secret key is given by n · (dlog2(14σ + 1)e) + n · (dlog2(t · σ + 1)e) + 2κ
bits with t = 13.4, t = 16.4, and t = 18.9 for qTesla-128, qTesla-192, and qTesla-256, re-
spectively.

14

— Internet: Portfolio 581

Table 2: Different key and signature sizes of our proposed parameter sets; we abbreviate
theoretical sizes with TS and sizes as used in the implementations with IS; sizes are given
in bytes.

Parameter set TS/IS public key secret key signature

qTesla-128
TS 2 976 1 856 2 720
IS 4 128 2 112 3 104

qTesla-192
TS 6 176 4 160 5 664
IS 8 224 8 256 6 176

qTesla-256
TS 6 432 4 128 5 920
IS 8 224 8 256 6 176

We determined the key and signature sizes in our reference implementation as smallest
suitable data type which can hold max((dlog2(14σ+ 1)e), (dlog2(t ·σ+ 1)e)), which is byte
for qTesla-128, and 16 bit integer for qTesla-192, and qTesla-256. Table 2 shows key and
signature sizes according to the theoretical sizes and sizes as in the implementations for
our three proposed parameter sets in comparison.

3 Performance analysis

The submission package includes a simple yet efficient reference implementation written
exclusively in C.

To evaluate the performance of the provided implementation, we ran our benchmarking
suite on a machine powered by a 2.40 GHz Intel Core i5-6300U (Skylake) processor, running
Ubuntu 16.04.3 LTS. As is standard practice, TurboBoost was disabled during the tests.
For compilation we used clang version 3.8.0 with the command clang -O3. See Table 3
for the results.

Scheme keygen sign verify
total

(sign + verify)

qTESLA-128 3 402 2 495 520 3 015

qTESLA-192 5 875 9 686 1 065 10 751

qTESLA-256 12 433 26 063 1 310 38 496

Table 3: Performance (in thousands of cycles) of qTESLA on a 2.40 GHz Intel Core i5-
6300U (Skylake) processor. Cycle counts are rounded to the nearest 103 cycles.

The results in Table 3 correspond to a relatively simple implementation of qTESLA. Nev-
ertheless, they demonstrate that the scheme is practical for most applications. We expect

15

582 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

significant improvements in the future with a fully optimized implementation.

4 Known answer values

The submission includes KAT values with tuples that contain message size (mlen), message
(msg), public key (pk), secret key (sk), signature size (smlen) and signature (sm) values for
all the proposed security levels. The KAT files can be found in the media folder: \KAT\

PQCsignKAT_qTesla-128.rsp, \KAT\PQCsignKAT_qTesla-192.rsp, and \KAT\PQCsignKAT_

qTesla-256.rsp for qTESLA-128, qTESLA-192 and qTESLA-256, respectively.

5 Expected security strength

It this section we discuss the expected security strength of and possible attacks against
qTESLA. This includes two statements about the theoretical security and the parameter
choices depending on them. To this end we first define the hardness assumptions qTESLA
is based on.

We define the ring short integer solution problem (R-SIS) similar to [30].
Definition 2 (Ring short integer solution problem R − SISn,k,q,β). Given a1, ..., ak ←$

Rq. Then the ring short integer solution problem R − SISn,k,q,β is to find solutions
u1, ..., uk, uk+1 ∈ Rq, ui 6= 0 for at least one i, such that (a1, ..., ak, 1) · (u1, ..., uk+1)T =
a1u1 + ...+ akuk + uk+1 = 0 mod q and ‖u1‖, ..., ‖uk+1‖ ≤ β.
We define the learning with errors distribution and the ring learning with errors problem
(LWE) in the following.
Definition 3 (Learning with Errors Distribution). Let n, q > 0 be integers, s ∈ R, and χ be
a distribution over R. We define by Ds,χ the LWE distribution which outputs (a, 〈a, s〉+e) ∈
Rq ×Rq, where a←$ Rq and e← χ.

Since our signature scheme is based on the decisional learning with errors problem, we
omit the definition of the search version and state only the decisional learning with errors
problem.
Definition 4 (Ring Learning with Errors Problem R − LWEn,m,q,χ). Let n, q > 0 be
integers and χ be a distribution over R. Moreover, let s ∈ R and Ds,χ be the learning
with errors distribution. Given m tuples (a1, t1), ..., (am, tm), the decisional ring learning
with errors problem R − LWEn,m,q,χ is to distinguish whether (ai, ti) ← U(Rq × Rq) or
(ai, ti)← Ds,χ for all i.

16

— Internet: Portfolio 583

5.1 Provable security in the (quantum) random oracle model

The security of our scheme qTESLA is supported by two statements reducing the hard-
ness of lattice-based assumptions to the security of our proposed signature scheme in the
(quantum) random oracle model. In this subsection we give the two statements but we do
not give formal security proofs since they are very close to the original results as explained
below.

The first reduction (cf. Theorem 5) follows the approach proposed by Bai and Galbraith [14]
closely and gives a non-tight reduction from R-LWE and R-SIS to the existentially unforge-
ability under chosen-message attack (EUF-CMA) of qTESLA in the random oracle model.

Theorem 5. Let 2n ·
(
n
h

)
≥ 2λ, (2R+1)2 ≥ qn2κ, and q > 4B. If there exists an adversary

A that forges a signature of the signature scheme qTESLA described in Section 2.2 in time
tΣ and with success probability εΣ, then there exists a reduction R that solves either

• the R− LWEn,m,q,σ with m = 1 problem in time tLWE ≈ tΣ with εLWE ≥ εΣ/2, or

• the R−SISn,k,q,β problem with β = max{k2d−1, 2(B−U)}+2hR in time tSIS ≈ 2tΣ

with εSIS ≥ 1
2(εΣ − 1

2κ)
(

(εΣ− 1
2κ

)

qh
− 1

2κ

)
+ εΣ/2 with our choice of parameters.

The second security reduction (cf. Theorem 6) gives a tight reduction in the quantum
random oracle model from R-LWE to EUF-CMA of qTESLA. In our opinion the second
theorem is much stronger since it shows security against adversaries that have quantum
access to a quantum random oracle and we will therefore always refer to Theorem 6 when
we talk about the security of the scheme. We emphasize that Theorem 6 gives a reduc-
tion from the decisional ring learning with errors problem where in Theorem 5 also the
decisional ring SIS problem is used. Currently, Theorem 6 holds assuming a conjecture as
stated and explained below.

Theorem 6. Let the parameters be as in Table 1. Furthermore, assume that Conjec-
ture 7 holds. If there exists an adversary A that forges a signature of the signature scheme
qTESLA described in Section 2.2 in time tΣ and with success probability εΣ, then there
exists a reduction R that solves the R−LWEn,m,q,σ problem with m = 1 in time tLWE ≈ tΣ
with εΣ ≤ 23λ+(d+1) ·3·q3

s(qs+qh)2

q + 2qh+5
2λ

+ εLWE with our choice of parameters.

The proof follows the approach proposed in [9] except for the computation of the two
probabilities coll(a, e) and nwr(a, e) that we explain in the following. For simplicity we
assume that the randomness is sampled uniformly random in Rq,[B] as in Algorithm 2. We
define ∆L to be the set {x − x′ : x, x′ ∈ R and [x]M = [x′]M ∈ Rq,[2d−1]}. Furthermore,
we call a polynomial w well-rounded if w is in Rq,[bq/2c−L] and [w] ∈ Rq,[(2d−L)]. We define

17

584 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

the following quantities for keys (a, t), (s, e)

nwr(a, e)
def
= Pr

(y,c)∈Y×H
[ay − ec not well-rounded] (5)

coll(a, e)
def
= max

(w)∈W

{
Pr

(y,c)∈Y×H
[[ay − ec]M = w]

}
. (6)

Informally speaking nwr(a, e) refers to the probability over random (y, c) that ay − ec is
not well-rounded. This quantity varies as a function of a, e. In contrast to [9], we cannot
upper bound this in general in the ring setting. Hence, we first assume that nwr(a, e) < 2

3
and afterwards check experimentally that this holds true. As our acceptance probability
of w in line 19 of Algorithm 7 (signature generation) is at least 0.34 for all parameter sets
(cf. δw in Table 1), the bound nwr(a, e) < 2

3 holds.

Secondly, we need to bound the probability coll(a, e). In [9, Lemma 4] the corresponding
probability coll(A,E) for standard lattices is upper bounded. Unfortunately, we were
not able to transfer the proof to the ring setting for the following reason. In the proof
of [9, Lemma 4], it is used that if the randomness y is not equal to 0 the vector Ay
is uniformly random distributed over Zq and hence also Ay − Ec is uniformly random
distributed over Zq. This does not necessarily hold if the polynomial y is chosen uniformly
in Rq,[B]. Moreover, in Equation (99) in [9], ψ denotes the probability that a random vector
x ∈ Zmq is in ∆L:

ψ
def
= Pr

x∈Zmq
[x ∈ ∆L] ≤

(
2d+1

q

)m
. (7)

The quantity ψ is a function of the TESLA parameters q,m, d. It is negligibly small.

We cannot prove a similar statement for the signature scheme qTESLA over ideals. In-
stead, we need to conjecture the following.

Conjecture 7. Let I be a non-zero ideal in Rq and let r ∈ Rq be a fixed choice of ring
elements. Then it holds that the probability over a uniformly distributed element x ←$ I
that x+ r ∈ ∆L is negligibly small.

The intuition behind our conjecture is as follows. Let ψI denote the probability that a
random element from the ideal I lands in ∆L. We know that ψI is small when the ideal
I = Rq, i.e., a negligibly small fraction of elements from Rq are in ∆L. Furthermore, the
set ∆L appears to have no relationship with the ideal structure of the ring, so it seems
reasonable to view each ideal as a ”random” subset of Rq in the following sense: No larger
or smaller portion of elements in the ideal I is in ∆L than that portion of elements of Rq
that is in ∆L.

Hence, the corresponding statement described above and needed in [9, Lemma 4] translates
for qTESLA to the following. If y 6= 0 then ay is a uniformly random element of some non-

18

— Internet: Portfolio 585

zero ideal I. The polynomial c is fixed and the polynomial e is independent of the polynomial
a, and y. Hence, by our conjecture (with x = ay and r = ec) it holds that the probability
of Equation (107) in [9] is negligibly small. Thus, assuming that our conjecture holds
true, [9, Lemma 4] and hence the security reduction in [9] holds for qTESLA as well.

5.2 Bit security of our proposed parameter sets

In the following we describe how we estimate the concrete security of our proposed parame-
ters. To this end, we first describe how the security of our scheme depends on the hardness
of R-LWE and afterwards we describe how we derive the bit hardness of the underlying
R-LWE instance. We classify our three parameter sets according to NIST’s categories of
security in Section 2.5.

5.2.1 Correspondence between security and hardness

The security reduction given in Section 5.1, Theorem 6 provides a reduction from the
hardness of the decisional ring learning with errors problem and bounds explicitly the
forging probability with the success probability of the reduction. More formally, let εΣ
and tΣ denote the success probability and the run time of a forger against our signature
scheme and let εLWE and tLWE denote analogous quantities for the reduction presented
in the proof of Theorem 6. We say that R-LWE is η-bit hard if tLWE/εLWE ≥ 2η; and we
say that the signature scheme is λ-bit secure if tΣ/εΣ ≥ 2λ.

Since we choose parameters such that εLWE ≈ εΣ and tΣ ≈ tLWE , the bit hardness of the
R-LWE instance is the same as the bit security of our signature scheme.

5.2.2 Estimation of the hardness of R-LWE

Since the introduction of the learning with errors problem over rings [52], it is an open
question whether the R-LWE problem is as hard as the LWE problem. Several results exist
that exploit the ideal structure of some ideal lattices [23, 26, 35, 37]. However, up to now,
these results are not known to be applicable to R-LWE. In particular, the found weaknesses
do not apply to our instances. Consequently, we estimate the hardness of R-LWE using
state-of-the-art attacks against LWE.

Albrecht, Player, and Scott [8] presented the LWE-Estimator, a software to estimate the
hardness of LWE given the matrix dimension n, the modulus q, the relative error rate

α =
√

2πσ
q , and the number of given LWE samples. The LWE-Estimator estimates the

hardness against the fastest LWE solvers currently known, i.e., it outputs an upper (conser-
vative) bound on the number of operations an attack needs to break a given LWE instance.

19

586 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

In particular, the following attacks are considered in the LWE-Estimator : The meet-in-
the-middle exhaustive search, the coded Blum-Kalai-Wassermann algorithm [42], the dual
lattice recently published [3], the enumeration approach by Linder and Peikert [49], the
primal attack described in [6,15], and the Arora-Ge algorithm [11] using Gröbner bases [4].
Moreover, the latest analysis to compute the block sizes used in the lattice basis reduction
BKZ published recently by Albrecht et al. [2] are implemented.

Furthermore, quantum speed-ups for the sieving algorithm used in BKZ [47, 48] are con-
sidered. Another recent quantum attack, called quantum hybrid attack, by Göpfert, van
Vredendaal, and Wunderer [40] is not considered in our analysis (and the LWE-Estimator).
The hybrid attack is most efficient on the learning with errors problem with very small
secret and error, e.g., binary or ternary. Since the coefficients of the secret and error of
qTESLA are chosen Gaussian distributed, the attack is not efficiently applicable on our
instances.

The LWE-Estimator is the result of many different contributions and contributors. It is
open source and hence easily checked and maintained by the community. Hence, we find
the LWE-Estimator to be a suitable tool to estimate the hardness of our chosen LWE
instances. We integrated the LWE-Estimator with commit-id 9302d42 on 2017-09-27 in
our sage script.

In the following we describe very briefly the most efficient LWE solvers for our instances, i.e.,
the decoding attack and the embedding approach, following closely the description of [18].
The Blum-Kalai-Wasserman algorithm [5, 46] is omitted since it requires exponentially
many samples.

The embedding attack. The standard embedding attack solves LWE via reduction to
the unique shortest vector problem (uSVP). During the reduction an m + 1-dimensional
lattice that contains the error vector e is created. Since e is very short for typical LWE
instances, this results in a uSVP instance that is usually solved by applying basis reduc-
tion.

Let (A, c = As+ e mod q) and t be the distance dist(c, L(A)) = ‖c− x‖ where x ∈ L(A),
such that ‖c−x‖ is minimized. Then the lattice L(A) can be embedded in the lattice L(A′),

with A′ =

(
A c
0 t

)
. If t < λ1(L(A))

2γ , the higher-dimensional lattice L(A′) has a unique

shortest vector c′ = (−e, t) ∈ Zm+1
q with length ‖c′‖ =

√
mα2q2/(2π) + |t|2 [27,51]. In the

LWE-Estimator t = 1 is used. Therefore, e can be extracted from c′, As is known, and s
can be solved for. Based on Albrecht et al. [7], Göpfert shows [39, Section 3.1.3] that the

standard embedding attack succeeds with non-negligible probability if δ0 ≤
(
q1− nm

√
1
e

ταq

) 1
m

,

20

— Internet: Portfolio 587

where m is the number of LWE samples. The value τ is experimentally determined to be
τ ≤ 0.4 for a success probability of ε = 0.1 [7].

The efficiency of the embedding attack highly depends on the number of samples. In
case of LWE instances with limited number of samples, the lattice Λ⊥q (Ao) = {v ∈
Zm+n+1|Ao · v = 0 mod q} with Ao =[A|I|b] can be used as the embedding lattice.

The decoding attack. The decoding attack treats an LWE instance as an instance
of the bounded distance decoding problem (BDD). The attack can be divided into two
phases: Basis reduction and finding closest vector to target vector. In the first phase,
basis reduction algorithms like BKZ [55] are applied. Afterwards, in the second phase, the
nearest plane algorithm [13] (or variants) are applied to find the closest vector to As and
thereby eliminate the error vector e of the LWE instance. Now, the secret can be accessed,
as the closest vector equals an LWE instance’s As.

5.3 Resistance to implementation attacks

Recently, the scheme ring-TESLA [1] was analyzed with respect to cache side channels
with the software tool CacheAudit [20]. It was the first time that a post-quantum scheme
was analyzed with program analysis. The authors found potential cache side channels, pro-
posed countermeasures, and showed the effectiveness of their mitigations with CacheAudit.
Since the implementation of ring-TESLA is similar to our implementation of qTESLA, we
implemented all countermeasures proposed in [20] to secure our scheme against bit leakage
via cache side channels.

The implementation of ring-TESLA was also analyzed regarding fault attacks [19,36] and
it was found that ring-TESLA is vulnerable to fewer fault attacks then, e.g., the signature
scheme BLISS [29]. Due to the similarities of the implementations of ring-TESLA and
qTESLA, the results from [19] are transferable to qTESLA. Another possible fault attack
is described in Section 5.4.

5.4 Deterministic vs. probabilistic signature scheme

The following discussion is about how to generate the randomness y in Algorithm 7, line
4-6, and how different approaches prevent or enable different attacks.

In the current description in Algorithm 7, signatures are generated deterministically, i.e.,
for the same message always the same signature is generated. To this end an additional
secret seedy is part of the secret key. The value seedy is used to generate a randomness rand
and afterwards, rand is used to generate the polynomial y. The advantage of this approach

21

588 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

is that a different randomness is used for different messages with very high probability.
Hence, attacks that exploit a fixed randomness, such as done for Sony’s playstation 3 [22],
are prevented. Another advantage is that no access to a source of high-quality randomness
is needed.

Our approach, however, might open a vulnerability to a fault attack proposed in [53] and
briefly described in the following: Assume a signature (z, c) is generated for message m.
Afterwards, a signature for the same message m is asked again. However, during the
generation of the second signature a fault is injected on the hash value c yielding the
value cfaulted, hence the second signature is (zfaulted, cfaulted). Computing z − zfaulted =
sc − scfaulted = s(c − cfaulted), gives the s since c − cfaulted is known to the attacker. The
authors of [53] argue that the attack is rather realistic and that it is applicable to all
deterministic Schnorr-like signatures. To prevent the fault attack but to still get new
randomness for every message one could use weak randomness as input for the PRF. For
example, instead of using the same seedy from the secret key, seedy ←$ {0, 1}κ could be
sampled freshly every time. This would yield again a probabilistic signature scheme. Hence,
we decided to stick to our proposal. Furthermore, in [53] the attack is only described against
ECDSA and EdDSA signatures. Due to the rejection sampling and other correctness checks
during the signature generation, this fault attack might not be as successful on our signature
scheme as it is on ECDSA and EdDSA signatures.

6 Advantages and limitations

In this section we summarize the advantages and limitations of our proposed signature
scheme qTESLA. Within that we compare our scheme with other post-quantum and clas-
sical signatures.

Security of our signature scheme. Our signature scheme is provably EUF-CMA se-
cure: a security reduction from the hardness of the decisional ring learning with errors
problem to EUF-CMA security of our scheme is given. Our security reduction (cf. Theo-
rem 6) is given in the quantum random oracle model, i.e., a quantum adversary is allowed
to ask the random oracle in super position. Our security reduction is based on a variant of
our scheme over standard lattices [9]. To port the reduction given in [9], we use a heuristic
argument as explained in Section 5.1. Our security reduction is explicit, i.e., we can ex-
plicitly give the relation between the success probabilities of solving the R-LWE problem
and to forge signatures of qTESLA. Our security reduction is tight which is a desirable
property because when choosing the scheme’s parameters according to security reductions,
tight reductions lead to smaller parameters and hence better performance.

22

— Internet: Portfolio 589

Choice of parameters. Parameters can be chosen either heuristically or according to
existing security reductions. The heuristic approach identifies the security level of an
instantiation of a scheme by a certain parameter set with the hardness level of the instance
of the underlying lattice problem that corresponds to these parameters regardless of the
tightness gap of the provided security reduction. The parameter choice according to a
reduction can be considered as a more convincing security argument since it provably
guarantees that our scheme has the selected security level as long as the corresponding
R-LWE instance is intractable. Our three parameter sets are chosen regarding our given
quantum security reduction.

The security of our proposed parameter sets are estimated against known state-of-the-art
classical and quantum algorithms to solve the learning with errors problem. Furthermore,
our parameters are chosen with a comfortable gap between the targeted and the estimated
bit security they provide such that they might be secure against improved or unknown LWE
solvers as well. Moreover, our choice of parameters is easy comprehensible: All relations be-
tween the parameters are explained and we make our sage script used to choose parameters
available2. Hence, if more parameter sets are needed they can be chosen easily.

Ease of Implementation. qTESLA has a very compact structure consisting of a few,
ease-to-implement functions. Moreover, in contrast to popular R-LWE based schemes,
qTESLA does not enforce the use of the number theoretic transform (NTT), i.e., its use
is optional and the scheme remains fully compatible with an implementation that uses a
straightforward schoolbook polynomial multiplication. This design decision enables the
possibility of even simpler implementations. Another advantage of qTESLA is that Gaus-
sian sampling is only required during key generation. Even if the fast Gaussian sampler
included in this document is not used, most applications will not be impacted by the use
of a slower Gaussian sampler.

Implementation attacks. We protect the signature generation against cache side chan-
nels by implementing the countermeasures proposed in [20]. Furthermore, the predecessor
of our proposed scheme was already analyzed with respect to fault attacks [19,36].

Applicability of our scheme. Our proposal is a good candidate to be integrated to hy-
brid signature schemes easing the transition from classical to post-quantum cryptography.
The key sizes of all three parameter sets are small enough to be used in hybrid signature
schemes [21]. Following [21] it should be appropriate to be used in X.509 standard version
3 [25], to be used in TLSv1.2 [28] for most browsers and libraries tested in [21], and to

2It is called parameterchoice.sage and can be found in the submission folder
“Script to choose parameters”.

23

590 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

be used in the Cryptographic Message Syntax (CMS) [43] that is the main cryptographic
component of S/MIME [54].

Comparison with selected state-of-the-art signature schemes. In the following we
give a comparison of the key and signature sizes with selected classical and post-quantum
signature schemes. We do not compare qTESLA with other post-quantum signatures
regarding the running time because cycle counts, in particular for lattice-based signature
schemes, are usually given for optimized implementations that utilize fast AVX2 arithmetic.
Such optimizations, however, are not requested by NIST. A comparison of cycle counts
obtained from different platforms might be misleading.

Table 4 summarizes the key and signature sizes of selected signature schemes. Moreover, it
also states the underlying computational assumptions although not all construction do rely
provably on the corresponding hardness assumption. Furthermore, only few of the param-
eters in the table are chosen according to provided security reductions and the bit security
of the parameters are not always estimated against classical and quantum adversaries. We
distinguish the different was to choose parameters in the table.

As can be seen in Table 4, qTESLA is among the post-quantum schemes with the smallest
signature size if parameters are chosen with regard to quantum algorithms. In particular,
the signature size of qTESLA is several magnitudes smaller than hash-based and multi-
variate signatures. Only the lattice-based scheme BLISS has noticeably smaller signatures.
The parameters proposed for BLISS, however, are not chosen with state-of-the-art meth-
ods, not according to the provided security reduction, and the bit security is not estimated
against quantum adversaries.

In comparison with the classical signature schemes RSA and ECDSA for the same security
level, qTESLA has larger signature sizes. However, qTESLA is comparable with RSA-3072
in view of secret key size.

24

— Internet: Portfolio 591

Table 4: Overview of selected state-of-the-art post-quantum and classical signature
schemes; signature and key sizes are given in byte [B]; we write “–” if no correspond-
ing data is available

Software/
Scheme

Comp.
Assum.

Bit
Security

Key Size
[B]

Sig. Size
[B]

Selected lattice-based signatures schemes

qTESLA qTesla-128a

(this document)
R-LWE 128b pk: 2 976

sk: 1 856
2 720

qTESLA qTesla-192a

(this document)
R-LWE 192b pk: 6 176

sk: 4 160
5 664

qTESLA qTesla-256a

(this document)
R-LWE 256b pk: 6 432

sk: 4 128
5 920

Dilithium -high
[30]

module SIS
module LWE

125b pk: 1 472
sk: –

2 700

GPV-polya

[34, 38]
R-SIS 96c pk: 55 705

sk: 26 316
32 972

BLISS-B-IV
[31,57]

R-SIS,
NTRU

182c pk: 896
sk: 384

812

Selected other post-quantum signature schemes

gravity-SPHINCS
[12]

Hash collisions,
2nd preimage

128b pk: 32
sk: 64

22 304

SPHINCS-256
[17]

Hash collisions,
2nd preimage

128b pk: 1 056
sk: 1 088

41 000

MQDSS-31-64
[24]

Multivariate
Quadratic system

128b pk: 72
sk: 64

40 952

Selected classic signature schemes

RSA-3072
[56]

Integer
Factorization

128d pk: 384
sk: 1 728

384

ECDSA (P-256)
[44]

Elliptic Curve
Discrete Logarithm

128d pk: 64
sk: 96

64

aParameters are chosen according to given security reduction in the quantum random oracle model.
bBit security analyzed against classical and quantum adversaries.
cBit security analyzed against classical adversaries.
dBroken against quantum computers (bit security analyzed against classical adversaries).

25

592 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

References

[1] Sedat Akleylek, Nina Bindel, Johannes A. Buchmann, Juliane Krämer, and Gior-
gia Azzurra Marson. An efficient lattice-based signature scheme with provably secure
instantiation. In David Pointcheval, Abderrahmane Nitaj, and Tajjeeddine Rachidi,
editors, Progress in Cryptology - AFRICACRYPT 2016 - 8th International Conference
on Cryptology in Africa, volume 9646 of LNCS, pages 44–60. Springer, 2016.

[2] Martin Albrecht, Florian Göpfert, Fernando Vidria, and Thomas Wunderer. Revisiting
the Expected Cost of Solving uSVP and Applications to LWE. In ASIACRYPT 2017
- Advances in Cryptology, to appear. Springer, 2017.

[3] Martin R. Albrecht. On Dual Lattice Attacks Against Small-Secret LWE and Pa-
rameter Choices in HElib and SEAL. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, Advances in Cryptology - EUROCRYPT 2017 - 36th Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques,
Paris, France, April 30 - May 4, 2017, Proceedings, Part II, volume 10211 of LNCS,
pages 103–129, 2017.

[4] Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, Robert Fitzpatrick, and Lu-
dovic Perret. Algebraic algorithms for LWE problems. ACM Comm. Computer Alge-
bra, 49(2):62, 2015.

[5] Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, Robert Fitzpatrick, and Lu-
dovic Perret. On the complexity of the BKW algorithm on LWE. Designs, Codes and
Cryptography, 74(2):325–354, 2015.

[6] Martin R. Albrecht, Robert Fitzpatrick, and Florian Göpfert. On the efficacy of
solving LWE by reduction to unique-svp. In Hyang-Sook Lee and Dong-Guk Han,
editors, Information Security and Cryptology - ICISC 2013, volume 8565 of LNCS,
pages 293–310. Springer, 2013.

[7] Martin R. Albrecht, Robert Fitzpatrick, and Florian Göpfert. On the efficacy of solving
LWE by reduction to unique-SVP. In Hyang-Sook Lee and Dong-Guk Han, editors,
ICISC 13: 16th International Conference on Information Security and Cryptology,
volume 8565 of Lecture Notes in Computer Science, pages 293–310, Seoul, Korea,
November 27–29, 2014. Springer, Heidelberg, Germany.

[8] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of
learning with errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015.

[9] Erdem Alkim, Nina Bindel, Johannes A. Buchmann, Özgür Dagdelen, Edward Eaton,
Gus Gutoski, Juliane Krämer, and Filip Pawlega. Revisiting TESLA in the quantum
random oracle model. In Tanja Lange and Tsuyoshi Takagi, editors, Post-Quantum

26

— Internet: Portfolio 593

Cryptography - 8th International Workshop, PQCrypto 2017, volume 10346 of LNCS,
pages 143–162. Springer, 2017.

[10] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum
key exchange - A new hope. In Thorsten Holz and Stefan Savage, editors, 25th USENIX
Security Symposium, USENIX Security 16, pages 327–343. USENIX Association, 2016.

[11] Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors. In
Luca Aceto, Monika Henzinger, and Jiri Sgall, editors, Automata, Languages and
Programming, volume 6755 of LNCS, pages 403–415. Springer, 2011.

[12] Jean-Philippe Aumasson and Guillaume Endignoux. Improving stateless hash-based
signatures. Cryptology ePrint Archive, Report 2017/933, 2017. https://eprint.

iacr.org/2017/933.

[13] László Babai. On lovász’ lattice reduction and the nearest lattice point problem. In
K. Mehlhorn, editor, STACS 1985. Springer, 1985.

[14] Shi Bai and Steven D. Galbraith. An improved compression technique for signatures
based on learning with errors. In Josh Benaloh, editor, Topics in Cryptology – CT-
RSA 2014, volume 8366 of Lecture Notes in Computer Science, pages 28–47, San
Francisco, CA, USA, February 25–28, 2014. Springer, Heidelberg, Germany.

[15] Shi Bai and Steven D. Galbraith. Lattice decoding attacks on binary LWE. In Willy
Susilo and Yi Mu, editors, ACISP 14: 19th Australasian Conference on Information
Security and Privacy, volume 8544 of Lecture Notes in Computer Science, pages 322–
337, Wollongong, NSW, Australia, July 7–9, 2014. Springer, Heidelberg, Germany.

[16] Paulo S. L. M. Barreto, Patrick Longa, Michael Naehrig, Jefferson E. Ricardini, and
Gustavo Zanon. Sharper ring-lwe signatures. Cryptology ePrint Archive, Report
2016/1026, 2016. http://eprint.iacr.org/2016/1026.

[17] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben Niederha-
gen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe, and Zooko Wilcox-
O’Hearn. SPHINCS: practical stateless hash-based signatures. In Elisabeth Oswald
and Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015 - 34th An-
nual International Conference on the Theory and Applications of Cryptographic Tech-
niques, volume 9056 of LNCS, pages 368–397. Springer, 2015.

[18] Nina Bindel, Johannes Buchmann, Florian Göpfert, and Markus Schmidt. Estima-
tion of the hardness of the learning with errors problem with a restricted number of
samples. Cryptology ePrint Archive, Report 2017/140, 2017. https://eprint.iacr.
org/2017/140.

[19] Nina Bindel, Johannes Buchmann, and Juliane Krämer. Lattice-based signature
schemes and their sensitivity to fault attacks. In 2016 Workshop on Fault Diagnosis

27

594 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

and Tolerance in Cryptography, FDTC 2016, pages 63–77. IEEE Computer Society,
2016.

[20] Nina Bindel, Johannes Buchmann, Juliane Krämer, Heiko Mantel, Johannes Schickel,
and Alexandra Weber. Bounding the cache-side-channel leakage of lattice-based sig-
nature schemes using program semantics. In Proceedings of the 10th International
Symposium on Foundations & Practice of Security (FPS), 2017. To appear.

[21] Nina Bindel, Udyani Herath, Matthew McKague, and Douglas Stebila. Transitioning
to a quantum-resistant public key infrastructure. In Tanja Lange and Tsuyoshi Takagi,
editors, Post-Quantum Cryptography - 8th International Workshop, PQCrypto 2017,
volume 10346 of LNCS, pages 384–405. Springer, 2017.

[22] bushing, marcan, and sven. Console hacking 2010 – ps3 epic fail. 27th Chaos Communi-
cation Congress, 2010. https://events.ccc.de/congress/2010/Fahrplan/events/
4087.en.html.

[23] Peter Campbell, Michael Groves, and Dan Shepherd. SOLILOQUY:
A cautionary tale. ETSI 2nd Quantum-Safe Crypto Workshop, 2014.
http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_

Attacks/S07_Groves_Annex.pdf.

[24] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska, and Peter
Schwabe. From 5-pass MQ -based identification to MQ -based signatures. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology - ASIACRYPT 2016
- 22nd International Conference on the Theory and Application of Cryptology and
Information Security, volume 10032 of LNCS, pages 135–165, 2016.

[25] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. RFC 5280 (Proposed Standard), May 2008.

[26] Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering short gen-
erators of principal ideals in cyclotomic rings. In Marc Fischlin and Jean-Sébastien
Coron, editors, Advances in Cryptology - EUROCRYPT 2016 - 35th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
volume 9666 of LNCS, pages 559–585. Springer, 2016.

[27] Özgür Dagdelen, Rachid El Bansarkhani, Florian Göpfert, Tim Güneysu, Tobias Oder,
Thomas Pöppelmann, Ana Helena Sánchez, and Peter Schwabe. High-speed signatures
from standard lattices. In Diego F. Aranha and Alfred Menezes, editors, Progress in
Cryptology – LATINCRYPT 2014, volume 8895 of LNCS, pages 84–103. Springer,
2015.

28

— Internet: Portfolio 595

[28] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246 (Proposed Standard), August 2008.

[29] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice sig-
natures and bimodal gaussians. In Ran Canetti and Juan A. Garay, editors, Advances
in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, volume 8042 of
LNCS, pages 40–56. Springer, 2013.

[30] Leo Ducas, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler,
and Damien Stehle. CRYSTALS – Dilithium: Digital Signatures from Module Lattices.
Cryptology ePrint Archive, Report 2017/633, 2017. http://eprint.iacr.org/2017/
633.

[31] Léo Ducas. Accelerating bliss: the geometry of ternary polynomials. Cryptology
ePrint Archive, Report 2014/874, 2014. http://eprint.iacr.org/2014/874/.

[32] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice sig-
natures and bimodal gaussians. Cryptology ePrint Archive, Report 2013/383, 2013.
https://eprint.iacr.org/2013/383.

[33] M. J. Dworkin. SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions. National Institute of Standards and Technology (NIST), Gaithersburg
(MD), USA, 8 2015.

[34] Rachid El Bansarkhani and Jan Sturm. An efficient lattice-based multisignature
scheme with applications to bitcoins. In Sara Foresti and Giuseppe Persiano, edi-
tors, CANS 2016, pages 140–155, Cham, 2016. Springer International Publishing.

[35] Yara Elias, Kristin E. Lauter, Ekin Ozman, and Katherine E. Stange. Provably weak
instances of ring-lwe. In Rosario Gennaro and Matthew Robshaw, editors, Advances
in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, volume 9215 of
LNCS, pages 63–92. Springer, 2015.

[36] Thomas Espitau, Pierre-Alain Fouque, Benôıt Gérard, and Mehdi Tibouchi. Loop-
abort faults on lattice-based fiat-shamir and hash-and-sign signatures. In Roberto
Avanzi and Howard M. Heys, editors, Selected Areas in Cryptography - SAC 2016 -
23rd International Conference, volume 10532 of Lecture Notes in Computer Science,
pages 140–158. Springer, 2017.

[37] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology
– EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer Science, pages 1–17,
Athens, Greece, May 26–30, 2013. Springer, Heidelberg, Germany.

29

596 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

[38] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Proceedings of the fortieth annual ACM
symposium on Theory of computing (STOC 2008), pages 197–206. ACM, 2008.

[39] Florian Göpfert. Securely Instantiating Cryptographic Schemes Based on the Learning
with Errors Assumption. PhD thesis, Darmstadt University of Technology, Germany,
2016.

[40] Florian Göpfert, Christine van Vredendaal, and Thomas Wunderer. A hybrid lattice
basis reduction and quantum search attack on LWE. In Tanja Lange and Tsuyoshi
Takagi, editors, Post-Quantum Cryptography - 8th International Workshop, PQCrypto
2017, volume 10346 of LNCS, pages 184–202. Springer, 2017.

[41] Shay Gueron and Fabian Schlieker. Optimized implementation of ring-TESLA.
GitHub at https://github.com/fschlieker/ring-TESLA, 2016.

[42] Qian Guo, Thomas Johansson, and Paul Stankovski. Coded-bkw: Solving LWE us-
ing lattice codes. In Rosario Gennaro and Matthew Robshaw, editors, Advances in
Cryptology – CRYPTO 2015, volume 9215 of LNCS, pages 23–42. Springer, 2015.

[43] R. Housley. Cryptographic Message Syntax (CMS). RFC 5652 (INTERNET STAN-
DARD), September 2009.

[44] James Howe, Thomas Pöppelmann, Máire O’neill, Elizabeth O’sullivan, and Tim
Güneysu. Practical lattice-based digital signature schemes. ACM Trans. Embed.
Comput. Syst., 14, 2015.

[45] John Kelsey. Sha-3 derived functions: cshake, kmac, tuplehash, and parallelhash.
NIST Special Publication, 800:185, 2016.

[46] Paul Kirchner and Pierre-Alain Fouque. An improved BKW algorithm for lwe with
applications to cryptography and lattices. In Rosario Gennaro and Matthew Robshaw,
editors, Advances in Cryptology – CRYPTO 2015, volume 9215 of LNCS, pages 43–62.
Springer, 2015.

[47] Thijs Laarhoven. Search problems in cryptography. PhD thesis, Eindhoven University
of Technology, 2016.

[48] Thijs Laarhoven, Michele Mosca, and Joop Pol. Solving the Shortest Vector Prob-
lem in Lattices Faster Using Quantum Search. In Philippe Gaborit, editor, Post-
Quantum Cryptography, volume 7932 of Lecture Notes in Computer Science, pages
83–101. Springer Berlin Heidelberg, 2013.

[49] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based
encryption. In Aggelos Kiayias, editor, Topics in Cryptology – CT-RSA 2011, volume
6558 of LNCS, pages 319–339. Springer, 2011.

30

— Internet: Portfolio 597

[50] Vadim Lyubashevsky. Lattice signatures without trapdoors. In David Pointcheval and
Thomas Johansson, editors, Advances in Cryptology – EUROCRYPT 2012, volume
7237 of Lecture Notes in Computer Science, pages 738–755, Cambridge, UK, April 15–
19, 2012. Springer, Heidelberg, Germany.

[51] Vadim Lyubashevsky and Daniele Micciancio. On bounded distance decoding, unique
shortest vectors, and the minimum distance problem. In Advances in Cryptology -
CRYPTO 2009, 29th Annual International Cryptology Conference, pages 577–594.
Springer, 2009.

[52] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. In Henri Gilbert, editor, Advances in Cryptology – EURO-
CRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages 1–23, French
Riviera, May 30 – June 3, 2010. Springer, Heidelberg, Germany.

[53] Damian Poddebniak, Juraj Somorovsky, Sebastian Schinzel, Manfred Lochter, and
Paul Rösler. Attacking deterministic signature schemes using fault attacks. Cryptology
ePrint Archive, Report 2017/1014, 2017. http://eprint.iacr.org/2017/1014.

[54] B. Ramsdell and S. Turner. Secure/Multipurpose Internet Mail Extensions (S/MIME)
Version 3.2 Message Specification. RFC 5751 (Proposed Standard), January 2010.

[55] Claus P. Schnorr and Taras Shevchenko. Solving subset sum problems of densioty close
to 1 by randomized BKZ-reduction. Cryptology ePrint Archive, Report 2012/620,
2012. http://eprint.iacr.org/2012/620.

[56] Mikael Sjöberg. Post-quantum algorithms for digital signing in Public Key Infrastruc-
tures. PhD thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2017.

[57] Thomas Wunderer. Revisiting the hybrid attack: Improved analysis and refined
security estimates. Cryptology ePrint Archive, Report 2016/733, 2016. https:

//eprint.iacr.org/2016/733.

31

598 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Name of Proposal:

Rainbow

Principal Submitter:

Jintai Ding

email: jintai.ding@gmail.com
phone: 513 556 - 4024

organization: University of Cincinnati
postal address: 4314 French Hall, OH 45221 Cincinnati, USA

Auxiliary Submitters: Ming-Shing Chen, Albrecht
Petzoldt, Dieter Schmidt, Bo-Yin Yang

Inventors: c.f. Submitters

Owners: c.f. Submitters

Jintai Ding (Signature)

Additional Point of Contact:
Bo-Yin Yang

email: by@crypto.tw
phone: 886-2-2788-3799
Fax: 886-2-2782-4814

organization: Academia Sinica
postal address: 128 Academia Road, Section 2

Nankang, Taipei 11529, Taiwan

1

— Internet: Portfolio 599

Rainbow - Algorithm Specification and

Documentation

Type: Signature scheme

Family: Multivariate Cryptography, SingleField
schemes

1 Algorithm Specification

In this section we present the Rainbow signature scheme as proposed in [7].

1.1 Parameters

� finite field F = Fq with q elements

� integers 0 < v1 < · · · < vu < vu+1 = n

� index sets Vi = {1, . . . , vi}, Oi = {vi + 1, . . . , vi+1} (i = 1, . . . , u)
Note that each k ∈ {v1 + 1, . . . , n} is contained in exactly one of the sets
Oi.

� we have |Vi| = vi and set oi := |Oi| (i = 1, . . . , u)

� number of equations: m = n− v1

� number of variables: n

2

600 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

1.2 Key Generation

Private Key. The private key consists of

� two invertible affine maps S : Fm → Fm and T : Fn → Fn

� the quadratic central map F : Fn → Fn, consisting of m multivariate
polynomials f (v1+1), . . . , f (n).
Remember that, according to the definition of the sets Oi (see Section
1.1), there exists, for any k ∈ {v1 + 1, . . . , n} exactly one ` ∈ {1, . . . , u}
such that k ∈ O`. The polynomials f(k) (k = v1 + 1, . . . , n) are of the
form

f (k)(x1, . . . , xn) =
∑

i,j∈V`,i≤j
α

(k)
ij xixj

+
∑

i∈V`,j∈O`

β
(k)
ij xixj +

∑

i∈V`∪O`

γ
(k)
i xi + δ(k), (1)

where ` ∈ {1, . . . , u} is the only integer such that k ∈ O` (see above). The

coefficients α
(k)
ij , β

(k)
ij , γ

(k)
i and δ(k) are randomly chosen F elements.

The size of the private key is

m · (m+ 1)︸ ︷︷ ︸
affine map S

+ n · (n+ 1)︸ ︷︷ ︸
affine map T

+
u∑

i=1

(
vi · (vi + 1)

2
+ vi · oi + vi + oi + 1

)

︸ ︷︷ ︸
central map F

field elements.

Public Key. The public key is the composed map

P = S ◦ F ◦ T : Fn → Fn

and therefore consists of m quadratic polynomials in the ring F[x1, . . . , xn].
The size of the public key is

m · (n+ 1) · (n+ 2)

2

field elements.

3

— Internet: Portfolio 601

1.3 Signature Generation

Given a document d to be signed, one uses a hash function H : {0, 1} → Fm to
compute the hash value h = H(d) ∈ Fm. A signature z ∈ Fn of the document
d is then computed as follows.

1. Compute x = S−1(h) ∈ Fm.

2. Compute a pre-image y ∈ Fn of x under the central map F . This is done
as shown in Algorithm 1.

3. Compute the signature z ∈ Fn by z = T −1(y).

Algorithm 1 Inversion of the Rainbow central map

Input: Rainbow central map F = (f (v1+1), . . . , f (n)), vector x ∈ Fm.
Output: vector y ∈ Fn with F(y) = x.

1: Choose random values for the variables y1, . . . , yv1 and substitute these val-
ues into the polynomials f (i) (i = v1 + 1, . . . , n).

2: for ` = 1 to u do
3: Perform Gaussian Elimination on the polynomials f (i) (i ∈ O`)

to get the values of the variables yi (i ∈ O`).
4: Substitute the values of yi (i ∈ O`) into the polynomials f (i)

(i = v`+1 + 1, . . . , n).
5: end for

1.4 Signature Verification

Given a document d and a signature z ∈ Fn, the authenticity of the signature
is checked as follows.

1. Use the hash function H to compute the hash value h = H(d) ∈ Fm.

2. Compute h′ = P(z) ∈ Fm.

If h′ = h holds, the signature z is accepted, otherwise it is rejected.

The Rainbow signature scheme can be defined for any number of layers u. For
u = 1 we obtain the well known UOV signature scheme. However, choosing
u = 2 leads to a better scheme wth more efficient computations and smaller key
sizes at the same level of security. Choosing u > 2 gives only a very small benefit
in terms of performance, but needs larger keys to reach the same security level.
Therefore, for ease of implementation, 2 is a common choice for the number
of Rainbow layers. For ease of implementation and performance issues, it is
further common to choose the size of the two Rainbow layers (i.e. the values of
o1 and o2) to be equal. In our parameter recommendations, we follow these two

4

602 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

guidelines 1.

The following algorithms RainbowKeyGen, RainbowSign and RainbowVer illus-
trate the key generation, signature generation and signature verification pro-
cesses of Rainbow in algorithmic form.

Algorithm 2 RainbowKeyGen: Key Generation of Rainbow

Input: Rainbow parameters (q, v1, o1, o2)
Output: Rainbow key pair (sk, pk)

1: m← o1 + o2

2: n← m+ v1

3: repeat
4: MS ← Matrix(q,m,m)
5: until IsInvertible(MS) == TRUE
6: cS ←R Fm

7: S ← Aff(MS , cS)
8: InvS ←M−1

S

9: repeat
10: MT ← Matrix(q, n, n)
11: until IsInvertible(MT) == TRUE
12: cT ←R Fn

13: T ← Aff(MT , cT)
14: InvT ←M−1

T

15: F ← Rainbowmap(q, v1, o1, o2)
16: P ← S ◦ F ◦ T
17: sk ← (InvS, cS ,F , InvT, cT)
18: pk ← P
19: return (sk, pk)

The possible input values of Algorithm RainbowKeyGen are specified in Sec-
tion 1.8. Matrix(q,m, n) returns an m × n matrix with coefficients chosen
uniformly at random in Fq, while Aff(M, c) returns the affine map M · x + c.
Rainbowmap(q, v1, o1, o2) returns a Rainbow central map according to the pa-

rameters (q, v1, o1, o2) (see equation (1)). The coefficients α
(k)
ij , β

(k)
ij , γ

(k)
i and

δ(k) are hereby chosen uniformly at random from Fq.

Altogether, we need in RainbowKeyGen the following number of randomly chosen

1In the parameter set IIIb we slightly differ from this rule by choosing o2 > o1. The reason
for this is that, in this case, an unbalanced design of the Rainbow layers provides higher
security against quantum attacks.

5

— Internet: Portfolio 603

Fq-elements:

m · (m+ 1)︸ ︷︷ ︸
affine map S

+ n · (n+ 1)︸ ︷︷ ︸
affine map T

+ o1 ·
(
v1 · (v1 + 1)

2
+ v1 · o1 + v1 + o1 + 1

)

︸ ︷︷ ︸
central polynomials of the first layer

+ o2 ·
(

(v1 + o1) · (v1 + o1 + 1)

2
+ (v1 + o1) · o2 + v1 + o1 + o2 + 1

)

︸ ︷︷ ︸
central polynomials of the second layer

Algorithm 3 RainbowSign: Signature generation process of Rainbow

Input: Rainbow private key (InvS, cS ,F , InvT, cT), document d
Output: signature z ∈ Fn such that P(z) = H(d)

1: h← H(d)
2: x← InvS · (h− cS)
3: y← InvF(F ,x)
4: z← InvT · (y − cT)
5: return z

Algorithm 4 InvF: Inversion of the Rainbow central map

Input: Rainbow central map F = (f (v1+1), . . . , f (n)), vector x ∈ Fm.
Output: vector y ∈ Fn with F(y) = x.

1: repeat
2: y1, . . . , yv1 ←R F
3: f̂ (v1+1), . . . , f̂ (n) ← f (v1+1)(y1, . . . , yv1), . . . , f (n)(y1, . . . , yv1

).

4: t, (yv1+1, . . . , yv2)← Gauss(f̂ (v1+1) = xv1+1, . . . , f̂
(v2) = xv2)

5: if t == TRUE then
6: f̂ (v2+1), . . . , f̂ (n) ← f̂ (v2+1)(yv1+1, . . . , yv2), . . . , f̂ (n)(yv1+1, . . . , yv2)

7: t, (yv2+1, . . . , yn)← Gauss(f̂ (v2+1) = xv2+1, . . . , f̂
(n) = xn)

8: end if
9: until t == TRUE

10: return y = (y1, . . . , yn)

In Algorithm InvF, the function Gauss returns a binary value t ∈ {TRUE,
FALSE} indicating whether the given linear system is solvable, and if so a
random solution of the system. In InvF we make use of at least v1 random
field elements (depending on how often we have to perform the loop to find a
solution).

1.5 Changes needed to achieve EUF-CMA Security

The standard Rainbow signature scheme as described above provides only uni-
versal unforgeability. In order to obtain EUF-CMA security, we apply a trans-
formation similar to that in [15]. The main difference is the use of a random

6

604 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Algorithm 5 RainbowVer: Signature verification of Rainbow

Input: document d, signature z ∈ Fn

Output: TRUE or FALSE
1: h← H(d)
2: h′ ← P(z)
3: if h’==h then
4: return TRUE
5: else
6: return FALSE
7: end if

binary vector r called salt. Instead of generating a signature for h = H(d) as in
Algorithm RainbowSign, we generate a signature for H(H(d)||r). The modified
signature has the form σ = (z, r), where z is a standard Rainbow signature.
By doing so, we ensure that an attacker is not able to forge any (hash value/
signature) pair. In particular, we apply the following changes to the algorithms
RainbowKeyGen, RainbowSign and Rainbowver.

� In the algorithm RainbowKeyGen?, we choose an integer ` as the length of
a random salt; ` is appended both to the private and the public key.

� In the algorithm RainbowSign?, we choose first randomly the values of the
vinegar variables ∈ F v1 ; after that, we choose a random salt r ∈ {0, 1}`
and perfom the standard Rainbow signature generation process for h =
H(H(d)||r) to obtain a signature σ = (z||r). If the linear system in step
2 of the signature generation process has no solutions, we choose a new
value for the salt r and try again.

� The verification algorithm RainbowVer? returns TRUE if P(z) = H(H(d)||r),
and FALSE otherwise

Algorithms RainbowKeyGen?, RainbowSign? and RainbowVer? show the modi-
fied key generation, signing and verification algorithms.

Algorithm 6 KeyGen?: Modified Key Generation Algorithm for Rainbow

Input: Rainbow parameters (q, v1, o1, o2), length ` of salt
Output: Rainbow key pair (sk, pk)

1: pk, sk ← RainbowKeyGen(q, v1, o1, o2)
2: sk ← sk, `
3: pk ← pk, `
4: return (sk, pk)

7

— Internet: Portfolio 605

Algorithm 7 RainbowSign?: Modified signature generation process for Rain-
bow
Input: document d, Rainbow private key (InvS, cS ,F , InvT, cT), length ` of

the salt
Output: signature σ = (z, r) ∈ Fn × {0, 1}` such that P(z) = H(H(d)||r)

1: repeat
2: y1, . . . , yv1 ←R F
3: f̂ (v1+1), . . . , f̂ (n) ← f (v1+1)(y1, . . . , yv1), . . . , f (n)(y1, . . . , yv1)

4: (F̂ , cF)← Aff−1(f̂ (v1+1), . . . , f̂ (n))
5: until IsInvertible(F̂) == TRUE
6: InvF = F̂−1

7: repeat
8: r ← {0, 1}`
9: h← H(H(d)||r)

10: x← InvS · (h− cS)
11: (yv1+1, . . . , yv2)← InvF · ((xv1+1, . . . , xv2)− cF)

12: f̂ (v2+1), . . . , f̂ (n) ← f̂ (v2+1)(yv1+1, . . . , yv2
), . . . , f̂ (n)(yv1+1, . . . , yv2)

13: t, (yv2+1, . . . , yn)← Gauss(f̂ (v2+1) = xv2+1, . . . , f̂
(n) = xn)

14: until t == TRUE
15: z = InvT · (y − cT)
16: σ ← (z, r)
17: return σ

In Algorithm RainbowSign?, the function Aff−1 takes as input an affine map
G = M · x+ c and returns M and c.
Note that, in line 9 of the algorithm, we do not computeH(d||r), butH(H(d)||r).
In case we have to perform this step several times for a long message d, this
improves the efficiency of our scheme significantly.

Algorithm 8 RainbowVer?: Modified signature verification process for Rain-
bow

Input: document d, signature σ = (z, r) ∈ Fn × {0, 1}`
Output: boolean value TRUE or FALSE

1: h← H(H(d)||r)
2: h′ ← P(z)
3: if h’ == h then
4: return TRUE
5: else
6: return FALSE
7: end if

8

606 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Similar to [15] we find that every attacker, who can break the EUF-CMA se-
curity of the modified scheme, can also break the standard Rainbow signature
scheme.

In order to get a secure scheme, we have to ensure that no salt is used for
more than one signature. Under the assumption of up to 264 signatures being
generated with the system [13], we choose the length of the salt r to be 128 bit
(independent of the security level).

1.6 Note on the hash function

In our implementation we use SHA-2 as the underlying hash function. The
SHA-2 hash function family contains the four hash functions SHA224, SHA256,
SHA384 and SHA512 with output lengths of 224, 256, 384 and 512 bits re-
spectively. In the Rainbow instances aimed at NIST security categories I and
II (see Section 1.8), we use SHA256 as the underlying hash function. In the
Rainbow instances for the security categories III/IV and V/VI, we use SHA384
and SHA512 respectively.

In case a slightly longer (non standard) hash output is needed for our scheme
(Rainbow schemes over GF(31) and GF(256)), we proceed as follows. In order
to obtain a hash value of length 256 < k < 384 bit for a document d, we set

H(d) = SHA256(d) || SHA256(SHA256(d))|1,...,k−256.

(analogously for hash values of length 384 < k < 512 bits and k > 512 bits)
By doing so, we ensure that a collision attack against the hash function H is at
least as hard as a collision attack against SHA256 (rsp. SHA384, SHA512).

1.7 Note on the generation of random field elements

During the key and signature generation of Rainbow, we make use of a large
number of random field elements. These are obtained by calling a cryptographic
random number generator such as that from the OpenSSL library. The random
number generator used in our implementations is the AES CTR_DRBG function.In
debug mode, our software can either generate the random bits and store them
in a file, or read the required random bits from a file (for Known Answer Tests).
In the case of Rainbow over GF(31), we use a sort of “rejection sampling”.
We first generate a random byte, corresponding to an integer v ∈ {0, . . . , 255}.
We reject v, if v < 8. Otherwise, the random GF(31) element v′ is given by
v′ = v mod 31 ∈ {0, . . . , 31}.

1.8 Parameter Choice

We propose the following nine parameter sets for Rainbow

Ia (F, v1, o1, o2) = (GF(16), 32, 32, 32) (64 equations, 96 variables)

9

— Internet: Portfolio 607

Ib (F, v1, o1, o2) = (GF(31), 36, 28, 28) (56 equations, 92 variables)

Ic (F, v1, o1, o2) = (GF(256), 40, 24, 24) (48 equations, 88 variables)

IIIb (F, v1, o1, o2) = (GF(31), 64, 32, 48) (80 equations, 144 variables)

IIIc (F, v1, o1, o2) = (GF(256), 68, 36, 36) (72 equations, 140 variables)

IVa (F, v1, o1, o2) = (GF(16), 56, 48, 48) (96 equations, 152 variables)

Vc (F, v1, o1, o2) = (GF(256), 92, 48, 48) (96 equations, 188 variables)

VIa (F, v1, o1, o2) = (GF(16), 76, 64, 64) (128 equations, 204 variables)

VIb (F, v1, o1, o2) = (GF(31), 84, 56, 56) (112 equations, 196 variables)

The proposed parameter sets are denoted as follows: The roman number in-
dicates the NIST security category which the given Rainbow instance aims at
(see Section 5.2). The letter indicates the finite field used in the scheme (a for
GF(16), b for GF(31) and c for GF(256)). Note that, in some cases, a given pa-
rameter set fulfills the requirements of more than one of the security categories.
For example, the Rainbow instance Ib (using GF(31) as underlying field) was
designed to meet the criteria of NIST security categories I and II.

Additionally, we give here four further parameter sets providing less security
and demonstrating certain issues how the parameter choice affects the security
of the scheme.

0a (F, v1, o1, o2) = (GF(256), 40, 16, 16)
For the parameter set 0a, the number of equations (given by o1 + o2)
contained in the public key is not large enough to prevent direct attacks
against the scheme. In fact, the complexity of this attack against the given
Rainbow instance is only about 2109 classical gate equivalents.

0b (F, v1, o1, o2) = (GF(256), 24, 24, 24)
For the parameter set 0b, the value of v1 is too small to prevent the
Rainbow-Band-Separation attack. In fact, the complexity of this attack
against the given Rainbow instance is only about 2119 classical gate equiv-
alents.

0c (F, v1, o1, o2) = (GF(256), 40, 36, 12)
While, for the parameter set 0c, both the number of equations and vari-
ables are the same as for parameter set Ic, it provides significantly less
security. The reason for this is the small value of o2, which makes the
scheme vulnerable to the HighRank attack. The security of this Rainbow
instance is therefore only about 2120 classical gate equivalents.

0d (F, v1, o1, o2) = (GF(256), 40, 8, 40)
While, for the parameter set 0d, both the number of equations and vari-
ables are the same as for parameter set Ic, it provides significantly less

10

608 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

security. The reason for this is the high value of o2, which makes the
scheme vulnerable to the UOV attack. The security of this Rainbow in-
stance is therefore only about 284 classical gate equivalents.

1.8.1 Data Conversion between bitstrings and GF(31) elements

When using Rainbow with GF(31) as the underlying finite field, we have to con-
vert sequences of GF(31) elements into bitstrings and vice versa. During key
generation, the public and private keys are generated as sequences of GF(31)
elements and have to be converted into bitstrings for storage. In the signature
generation process, we have to convert the private key and the hash value of
the document (bitstrings) into sequences of GF(31) elements, generate the sig-
nature as a sequence of GF(31) elements and store it as a bitstring. During
signature varification, we have to convert the public key, the hash value and the
signature into sequences of GF(31) elements before running Algorithm 8. In
order to perform this conversion, we proceed as follows.

To convert a sequence of GF(31) elements into a bitstring, we store 3 GF(31)
elements in two bytes. In case the number of GF(31) elements is not divisible
by three, we store each of the last k mod 3 GF(31) elements into 8 bits. There-
fore, the length of the bitstring needed to store a key or signature of k GF(31)
elements can be computed as

lengthbitstring = (k div 3) · 16 + (k mod 3) · 8 bits.

To compute the length of a hash value fitting into k GF(31) elements, we com-
pute

lengthhash value = (k div 5) · 24 + (k mod 5) · 4 bits.

This uses the fact that 5 GF(31) elements can be effficiently used to store 3
bytes, while every additional GF(31) element can cover four bits.

11

— Internet: Portfolio 609

2 Key Storage

2.1 Representation of Finte Field Elements

2.1.1 GF(31)

Elements of GF(31) are stored as integers in the range of 0 to 30. Any number
out of this range, for example 31, is considered as a format error.
In order to reduce the key size, we apply the “packing operations” described in
Section 1.8.1.

2.1.2 GF(16)

Elements of GF(2) are stored as one bit 0 or 1. Elements of GF(4) are stored in
two bits as linear polynomials over GF(2). The constant term of the polynomial
is hereby stored in the least significant bit. Elements of GF(16) are stored in 4
bits as linear polynomials over GF(4). The constant term of the polynomial is
hereby stored in the 2 least significant bits. Two adjacent GF(16) elements are
packed into one byte.

2.1.3 GF(256)

Elements of GF(256) are stored in one byte as linear polynomials over GF(16).
The constant term of the polynomial is hereby stored in the 4 least significant
bits.

2.2 Public Key

The public key P of Rainbow is a system of m multivariate quadratic poynomials
in n variables (we write P := MQ(m,n)). The monomials are ordered in the
graded-reverse-lexicographic order.

y1 = q1,1,1x1x1 + q2,1,1x2x1 + q2,2,1x2x2 + q3,1,1x3x1 + q3,2,1x3x2 + · · ·
+ l1,1x1 + l2,1x2 + · · ·+ ln,1xn + c1

y2 = q1,1,2x1x1 + q2,1,2x2x1 + q2,2,2x2x2 + q3,1,2x3x1 + q3,2,2x3x2 + · · ·
+ l1,2x1 + l2,2x2 + · · ·+ ln,2xn + c2
...

ym = q1,1,mx1x1 + q2,1,mx2x1 + q2,2,mx2x2 + q3,1,mx3x1 + q3,2,mx3x2 + · · ·
+ l1,mx1 + l2,mx2 + · · ·+ ln,mxn + cm (2)

Hereby, qi,j,k is the coefficient of the quadratic monomial xixj of the polynomial
yk, li,k the coefficient of the linear monomial xi in yk and ck the constant
coefficient of yk (1 ≤ j ≤ i ≤ n, 1 ≤ k ≤ m).
In the key file we store the coefficients of the linear terms first, followed by those
of the quadratic and constant terms.

12

610 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

If we consider the indices of the coefficients li,k, qi,j,k and ck as 2-, 3- and 1-digit
numbers respectively, we order the coefficient with smaller indices in front. The
coefficient sequence of the MQ(m,n) system (2) , is therefore stored (for the
underlying fields GF(16) and GF(256)) in the form

[l1,1, l1,2, . . . , l1,m, l2,1, . . . , ln,m, q1,1,1, q1,1,2, . . . , q1,1,m, q2,1,1, . . . , qn,n,m, c1, . . . , cm].

2.2.1 The case of GF(31)

For the underlying field GF(31), we store the coefficients of the public key in a
slightly different order to improve the performance of the verification process.
While we still store the coefficients of the linear terms in front of those of the
quadratic and constant terms, the coefficients of the linear and quadratic blocks
are stored in “two-column” manner. By doing so, the coefficient sequence of the
MQ(m,n) system (2) has the form

[l1,1, l2,1, l1,2, l2,2, . . . , l1,m, l2,m, l3,1, l4,1 . . . , ln−1,m, ln,m,

q1,1,1, q2,1,1, q1,1,2, q2,1,2, . . . , q1,1,m, q2,1,m, q3,1,1, q4,1,1, . . . , qn−1,n,m, qn,n,m,

c1, c2, . . . , cm].

The reason for storing the public key in this form is explained in Section 3.2.1.
Note that, in order to be stored in this way, the number of variables in the
public key must be even. However, for our parameter sets (see Section 1.8), this
is the case.
After having generated the coefficient sequence, we apply the “packing opera-
tions” of Section 1.8.1 to reduce the size of the public key.

2.3 Secret Key

The secret key comprises the three components T ,S, and F . These components
are stored in the order T ,S, and F .

2.3.1 The affine maps T and S
Suppose the affine map T : Fn → Fn is given by

T (x) =

t11 t12 . . . t1n

...
. . .

tn1 tn2 . . . tnn

x1

...
xn

+

c1
...
cn

 .

We store the matrix in column-major form. Hence, the affine map T is stored
as a sequence

[t11, t21, . . . , tn1, t12, . . . , tnn, c1, , . . . , cn] .

The affine map S : Fm → Fm is stored in the same manner.

13

— Internet: Portfolio 611

2.3.2 The central map F
The central map F consists of two layers of quadratic equations. Recall that
F = (f (v1+1)(x), . . . , f (n)(x)) and

f (k)(x) =
∑

i,j∈V`,i≤j
α

(k)
ij xixj +

∑

i∈V`,j∈O`

β
(k)
ij xixj +

∑

i∈V`∪O`

γ
(k)
i xi + δ(k),

where ` ∈ {1, 2} is again the only integer such that k ∈ O`.

For the first layer we have V1 := {1, . . . , v1} and O1 := {v1 + 1, . . . , v1 + o1}, for
the second layer V2 := {1, . . . , v2 = v1 +o1} and O2 := {v2 +1, . . . , n = v2 +o2}.
The two layers of the central map F are stored separately.

While storing the first layer of F , the coefficients of the equations f (v1+1), . . . , f (v2)

are further divided into 3 parts denoted as “vv”, “vo” , and “o-linear”. They are
stored in the secret key in the order “o-linear”, followed by “vo” , and followed
by “vv”.

vv : The “vv” part is an MQ(o1, v1) system, whose components are of the
form ∑

i,j∈V1,i≤j
α

(k)
ij xixj +

∑

i∈V1

γ
(k)
i xi + δ(k) for k ∈ O1 .

It is stored in the same manner as theMQ(m,n) system of the public key (see
Section 2.3). Note that the “vv” part contains, additionally to the coefficients
of the quadratic v × v terms, the coefficients of the terms linear in the Vinegar
variables and all the constant terms of the map F .

vo : The “vo” part contains the remaining quadratic terms which are

∑

i∈V1

∑

j∈O1

β
(k)
ij xixj =

[
xv1+1, . . . , xv1+o1

]

β
(k)
11 . . . β

(k)
v11

...
. . .

β
(k)
1o1

. . . β
(k)
v1o1

x1

...
xv1

 for k ∈ O1 .

The “vo” part is stored in the form of o1 column-major o1×v1 matrices, yielding
the sequence

[β
(v1+1)
11 , . . . , β

(v1+1)
1o1

, β
(v1+1)
21 , . . . , β(v1+1)

v1o1 , β
(v1+2)
11 , . . . , β(v1+o1)

v1o1].

o-linear : This part contains the coefficients of the remaining linear terms in
the oil variables xv1+1, . . . , xv2 of the first layer. These terms are given by

fv1+1(x)

...
fv2(x)

 = . . .+

γ
(v1+1)
v1+1 . . . γ

(v1+1)
v2

...
. . .

γ
(v2)
v1+1 . . . γ

(v2)
v2

xv1+1

...
xv2

 .

14

612 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

The “o-linear” part is stored in the form of a row-major matrix, yielding the
sequence

[γ
(v1+1)
v1+1 , . . . , γ(v1+1)

v2 , γ
(v1+2)
v1+1 , . . . , γ(v2)

v2
].

The coefficients of the second Rainbow layer are stored in the same way.

2.3.3 The case of GF(31)

For the underlying field GF(31), the coefficient sequence of the “vv” terms is
stored in the same “two-column” format as the public key (see Section 2.2.1).
Furthermore, all the column-major matrices in T and S as well as the “vo” part
of F are also stored in “two-column” form. For example, the coefficients of the
map T are stored as the sequence

[t11, t1,2, t2,1, t2,2, t3,1, . . . , tn,2, t1,3, . . . , tn,n−1, tn,n, c1, . . . , cn].

Note again that we use here the fact that n is an even number. The row-major
matrix in “o-linear” is stored as described in the previous section.
After having generated the coefficient sequence of the private key, we apply the
“packing operations” of Section 1.8.1 to reduce the key size.

3 Implementation Details

3.1 Arithmetic over Finite Fields

For GF(31), the straightforward use of arithmetic operations of the AVX2 in-
struction set is possible. We use (V)PMULHRSW (packed multiply high rounded
signed word) to take remainders by 31 which is faster than using shifts.

3.1.1 The case of GF(16)

For multiplications over GF(16), our general strategy is the use of VPSHUFB/TBL
for multiplication tables. While multiplying a bunch a of GF(16) elements stored
in an SIMD register with a scalar b ∈ GF(16), we load the table of results of
multiplication with b and follow with one (V)PSHUFB for the result a · b.

Time-Constancy issues: Addressing table entries is a side-channel leakage
which reveals the value of b to a cache-time attack [4].
When time-constancy is needed, the straightforward method is again to use
VPSHUFB. However, we do not use multpilication tables as above, but logarithm
and exponentiation tables, and store the result in log-form if warranted. That is,
we compute a · b = g(logg a+logg b), and due to the characteristic of (V)PSHUFB,
setting logg 0 = −42 is sufficient to make this operation time-constant even

15

— Internet: Portfolio 613

when multiplying three elements.2 We shall see a different method below when
working on an constant-time evaluation of a multivariate quadratic system over
GF(16) (in the following sections, we denote this task shortly by “Evaluation of
MQ”).

3.1.2 The case of GF(256)

Multiplications over GF(256) can be implemented using 2 table lookup instruc-
tions in the mainstream Intel SIMD instruction set. One (V)PSHUFB is used for
the lower 4 bits, the other one for the top 4 bits.

Time-Constancy issues: For time-constant multiplications, we adopt the
tower field representation of GF(256) which considers an element in GF(256)
as a degree-1 polynomial over GF(16). The sequence of tower fields from which
we build GF(256) is the following:

GF(4) := GF(2)[e1]/(e2
1 + e1 + 1),

GF(16) := GF(4)[e2]/(e2
2 + e2 + e1),

GF(256) := GF(16)[e3]/(e2
3 + e3 + e2e1) .

Using this representation, we can build constant-time multiplications over GF(256)
from the techniques of GF(16). A time-constant GF(256) multiplication costs
about 3 GF(16) multplications for multiplying 2 degree-1 polynomials over
GF(16) with the Karatsuba method and one extra table lookup instruction
for reducing the degree-2 term.

3.2 The Public Map and Evaluation of MQ

The public map of Rainbow is a straightforward evaluation of an MQ system.

3.2.1 Evaluation of MQ over GF(31)

The matrix-like coefficients of P are stored as 8-bit values because we heavily
rely on the AVX2 instruction VPMADDUBSW. In one instruction, VPMADDUBSW com-
putes two 8-bit SIMD multiplications and a 16-bit SIMD addition.
All these operations are time-constant.
In order to perform these operations efficiently, we store the coefficients of the
public key as described in Section 2.2.1.
Because VPMADDUBSW takes both a signed and an unsigned operand, one of the
matrix and the monomial vector must be stored as signed bytes and one as
unsigned bytes. Since 64 ·31 ·15 = 29760 < 215, we can handle two YMM registers
full of monomials before performing reductions on each individual accumulator.
During computation, field elements are expressed as signed 16-bit values. If
m = 64, we require 1024 bits of storage for each vector, precisely fitting in four
256-bit SIMD (YMM) registers.

2Here, g is a generator of the multiplicative group GF(16)?.

16

614 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

To efficiently compute all polynomials for a given set of monomials, we keep
all required data in registers and try to avoid register spilling throughout the
computation, as much as possible.

3.2.2 Evaluation of MQ over GF(16) and GF(256)

For pure public-key operations, the multiplications over GF(16) can be done
by simply (1) loading the multiplication tables (multab) by the value of the
multiplier and (2) performing a VPSHUFB for 32 results simultaneously. The
multiplications over GF(256) can be performed with the same technique via 2
VPSHUFB instructions, using the fact that one lookup covers 4 bits. Another
trick is to multiply a vector of GF(16) elements by two GF(16) elements with
one VPSHUFB since VPSHUFB can actually be seen as 2 independent PSHUFB in-
structions.

3.2.3 Constant-Time Evaluation of MQ over GF(16) and GF(256)

While time-constancy issues are not important for the public key operations,
we have to consider this issue during the evaluation of the “vv” terms of the
central map F .
In order to achieve time-constancy, we have to avoid loading multab according
to a secret index for preventing cache-time attacks. To do this, we “generate”
the desired multab instead of “loading” it by a secret value. More precisely,
when evaluating MQ with a vector w = (w1, w2, . . . , wn) ∈ GF(16)n, we can
achieve a time-constant evaluation if we already have the multab of w, which
is (w1 · 0x0, . . . , w1 · 0xf), . . . , (wn · 0x0, . . . , wn · 0xf), in the registers. 3 In
other words, instead of performing memory access indexed by a secret value,
we perform a sequential memory access indexed by the index of variables to
prevent revealing side-channel information.
We show the generation of multab for elements w ∈ GF(16) in Figure 1. A
further matrix-transposition-like operation is needed to generate the desired
multab. The reason for this is that the initial byte from each register forms
our first new table, corresponding to w1, the second byte from each register is
the table of multiplication by w2, etc. Computing one of these tables costs 16
calls of PSHUFB and we can generate 16 or 32 tables simultaneously using the
SIMD environment. The amortized cost for generating one multab is therefore
1 PSHUFB plus some data movements.
As a result, the constant-time evaluation of MQ over GF(16) or GF(256) is
only slightly slower than the non-constant time version.

3Note here and in the following. If we have a natural basis (b0 = 1, b1, . . .) of a binary field
GF(q), we represent bj by 2j for convenience. So b1 is 2, 1 + b1 is 3, . . . , 1 + b1 + b2 + b3
is 0xF for elements of GF(16), and analogously for larger fields; using the same method, the
AES field representation of GF(28) is called 0x11B because it uses x8 + x4 + x3 + x + 1 as
irreducible polynomial.

17

— Internet: Portfolio 615

w · 0x0
w · 0x1

...

w · 0xf

7−→

w1 · 0x0
w1 · 0x1

...

w1 · 0xf

,

w2 · 0x0
w2 · 0x1

...

w2 · 0xf

, . . .

w15 · 0x0
w15 · 0x1

...

w15 · 0xf

Figure 1: Generating multab for w = (w1, w2, . . . w16). After w · 0x0, w · 0x1,
. . . , w · 0xf are calculated, each row stores the results of multiplications and
the columns are the multab corresponding to w1, w2, . . . , w15. The multab of
w1, w2, . . . ,w15 can be generated by collecting data in columns.

3.3 Gaussian Elimination in Constant Time

We use constant-time Gaussian elimination in the signing process of Rainbow.
Constant-time Gaussian elimination was originally presented in [1] for GF(2)
matrices and we extend the method to other finite fields. The problem of elim-
inations is that the pivot may be zero and one has to swap rows with zero
pivots with other rows, which reveals side-channel information. To test pivots
against zero and switch rows in constant time, we can use the current pivot as
a predicate for conditional moves and switch with every possible row which can
possibly contain non-zero leading terms. This constant-time Gaussian elimina-
tion is slower than a straigtforward Gaussian elimination (see Table 1), but is
still an O(n3) operation.

Table 1: Benchmarks on solving linear systems with Gauss elimination on Intel
XEON E3-1245 v3 @ 3.40GHz, in CPU cycles.

system plain elimination constant version

GF(16), 32× 32 6,610 9,539
GF(31), 28× 28 7,889 10,227
GF(256), 20× 20 4,702 9,901

18

616 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

4 Performance Analysis

4.1 Key and Signature Sizes

parameter parameters public key private key hash size signature
set (F, v1, o1, o2) size (kB) size (kB) (bit) size (bit) 1

Ia (GF(16),32,32,32) 148.5 97.9 256 512
Ib (GF(31),36,28,28) 148.3 103.7 268 624
Ic (GF(256),40,24,24) 187.7 140.0 384 832

IIIb (GF(31),64,32,48) 512.1 371.4 384 896
IIIc (GF(256),68,36,36) 703.9 525.2 576 1,248

IVa (GF(16),56,48,48) 552.2 367.3 384 736

Vc (GF(256), 92,48,48) 1,683.3 1,244.4 768 1,632

VIa (GF(16), 76,64,64) 1,319.7 871.2 512 944
VIb GF(31), 84,56,56) 1,321.0 922.4 536 1,176

1 128 bit salt included

Table 2: Key and Signature Sizes for Rainbow

19

— Internet: Portfolio 617

4.2 Performance on the NIST Reference Platform

Processor: Intel(R) Xeon(R) CPU E3-1225 v5 @ 3.30GHz (Skylake)
Clock Speed: 3.30GHz
Memory: 64GB (4x16) ECC DIMM DDR4 Synchronous 2133 MHz (0.5 ns)
Operating System: Linux 4.8.5, GCC compiler version 6.4
No use of special processor instructions

parameter set key gen. sign. gen. sign. verif.

Ia
cycles 1,302M 601k 350k

time (ms) 394 0.182 0.106
memory 3.3MB 3.0MB 2.6MB

Ib
cycles 4,578M 2,044k 1,944k

time (ms) 1,387 0.619 0.589
memory 3.6MB 3.3MB 2.9MB

Ic
cycles 4,089M 1,521k 939k

time (ms) 1,239 0.461 0.285
memory 3.3MB 3.0MB 2.8MB

IIIb
cycles 26,172M 5,471k 4,908k

time (ms) 7,931 1.658 1.487
memory 5.7MB 3.6MB 3.9MB

IIIc
cycles 31,612M 4,047k 2,974k

time (ms) 9,579 1.226 0.901
memory 4.6MB 2.9MB 3.1MB

IVa
cycles 11,176M 1,823k 1,241k

time (ms) 3,387 0.552 0.376
memory 4.3MB 3.0MB 2.8MB

Vc
cycles 116,046M 8,688k 6,174k

time (ms) 35,165 2.633 1.871
memory 7.0MB 3.7MB 3.9MB

VIa
cycles 45,064M 3,916k 2,897k

time (ms) 13,655 1.187 0.878
memory 6.1MB 3.8MB 3.8MB

VIb
cycles 164,689M 16,755k 11,224k

time (ms) 49,906 5.077 3.401
memory 10.3MB 4.4MB 6.0MB

Table 3: Performance of Rainbow on the NIST Refernce Platform
(Linux/Skylake)

20

618 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

4.3 Performance on Other Platforms

Processor: Intel(R) Xeon(R) CPU E3-1225 v5 @ 3.30GHz (Skylake)
Clock Speed: 3.30GHz
Memory: 64GB (4x16) ECC DIMM DDR4 Synchronous 2133 MHz (0.5 ns)
Operating System: Linux 4.8.5, GCC compiler version 6.4
Use of AVX2 vector instructions

parameter set key gen. sign. gen. sign. verif.

Ia
cycles 1,081M 75.5 k 25.5 k

time (ms) 328 0.023 0.008
memory 3.0MB 3.0MB 2.8MB

Ib
cycles 141M 426k 496k

time (ms) 42.83 0.129 0.15
memory 3.6MB 3.2MB 2.9MB

Ic
cycles 183M 111k 57.5k

time (ms) 55.4 0.034 0.017
memory 3.3MB 3.0MB 2.8MB

IIIb
cycles 813M 1,469k 1,791k

time (ms) 246 0.445 0.543
memory 5.9MB 4.1MB 4.1MB

IIIc
cycles 1,430M 326k 275k

time (ms) 433 0.099 0.083
memory 4.6MB 3.5MB 3.3MB

IVa
cycles 8,673M 899k 181k

time (ms) 2,628 0.272 0.055
memory 4.1MB 3.3MB 3.2MB

Vc
cycles 4,633M 616k 472k

time (ms) 1,404 0.187 0.143
memory 7.0MB 4.2MB 4.5MB

VIa
cycles 6,689M 575k 367k

time (ms) 2,027 0.174 0.111
memory 6.1MB 3.8MB 3.8MB

VIb
cycles 3,518M 3,655k 4690k

time (ms) 1,066 1.108 1.421
memory 10.0MB 5.3MB 6.0MB

Table 4: Performance of Rainbow on Linux/Skylake (AVX2)

21

— Internet: Portfolio 619

Processor: Intel(R) Xeon(R) CPU D-1541 @ 2.10GHz (Broadwell)
Clock Speed: 2.1GHz
Memory: 64GB (4x16) ECC DIMM DDR4 Synchronous 2133 MHz (0.5 ns)
Operating System: Linux 4.8.5, GCC compiler version 6.4
Use of AVX2 vector instructions

parameter set key gen. sign. gen. sign. verif.

Ia
cycles 1,147M 80.1k 27.0k

time (ms) 546 0.038 0.013
memory 3.0MB 2.9MB 2.7MB

Ib
cycles 150M 452k 526k

time (ms) 71.4 0.216 0.250
memory 3.7MB 3.2MB 2.8MB

Ic
cycles 194M 118k 61k

time (ms) 92 0.056 0.029
memory 3.1MB 3.2MB 2.7MB

IIIb
cycles 899M 1,282k 1,790k

time (ms) 428 0.714 0.852
memory 5.8MB 3.9MB 3.9MB

IIIc
cycles 1,535M 338k 274k

time (ms) 736 0.161 0.130
memory 4.6MB 3.4MB 3.3MB

IVa
cycles 9,161M 954k 212k

time (ms) 3,464 0.454 0.101
memory 4.2MB 3.2MB 3.1MB

Vc
cycles 5,019M 662k 472k

time (ms) 2,390 0.315 0.225
memory 6.9MB 4.1MB 4.2MB

VIa
cycles 45,182M 3,292k 2,899k

time (ms) 13,882 0.998 0.878
memory 6.7M 3.1M 3.5M

VIb
cycles 3,651M 3,697k 4,647k

time (ms) 1,738 1.761 2.213
memory 10.0MB 5.2MB 6.0MB

Table 5: Performance of Rainbow on Linux/Broadwell (AVX2)

4.4 Note on the measurements

Turboboost is disabled on our platforms. The main compilation flags are gcc

-O2 -std=c99 -Wall -Wextra (-mavx2). The used memory is measured dur-
ing an actual run using /usr/bin/time -f "%M" (average of 10 runs). For key
generation we take the average of 10 runs; for signature generation and verifi-

22

620 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

cation the average of 500 runs. As expected, Skylake is superior to Broadwell
(which is almost the same as Haswell) in almost all cases.

4.5 Note on Rainbow schemes over GF(31)

For “b” (GF(31)) parameters, both the public map and the private map are on
the order of a few cycles per byte of key, which represents an ∼ 1.5× slowdown
from GF(31) MQ evaluation in the literature. The main reason for this is that
all keys are packed as mentioned in the implementation section. If we verify or
(more likely) sign multiple times using the same key, this time goes down.

4.6 Trends as the number n of variables increases

Signing: The secret map involves Gaussian Elimination and time-constant
MQ evaluation. Both are O(n3) operations.

Verification: The public map involves straightforward MQ evaluations and
in the case of “b” (GF(31)) parameters unpacking. These are O(n3) operations
(note: the public key size is also n3).

Key Generation: Key generation is done via the standard method (interpo-
lation) which is of order O(n5), The size of the resulting public key is O(n3).

These theoretical estimations match very well the above experimental data
(when looking at Rainbow instances over the same base field).

23

— Internet: Portfolio 621

5 Expected Security Strength

The following table gives an overview over the 6 NIST security categories pro-
posed in [13]. The three values for the number of quantum gates correspond to
values of the parameter MAXDEPTH of 240, 264 and 296.

category log2 classical gates log2 quantum gates
I 143 130 / 106 / 74
II 146
III 207 193 / 169 / 137
IV 210
V 272 258 / 234 / 202
VI 274

Table 6: NIST security categories

All known attacks against Rainbow are basically classical attacks, some of which
can be sped up by Grover’s algorithm. Due to the long serial computation of
Grover’s algorithm and the large memory consumption of the attacks, we feel
safe in choosing a value of MAXDEPTH between 264 and 296.

5.1 General Remarks

The Rainbow signature scheme as described in Section 1.5 of this proposal ful-
fills the requirements of the EUF-CMA security model (existential unforeability
under chosen message attacks). The parameters of the scheme (in particular
the length of the random salt) are chosen in a way that up to 264 messages can
be signed with one key pair. The scheme can generate signatures for messages
of arbitrary length (as long as the underlying hash function can process them).

5.2 Practical Security

In this section we analyze the security offered by the parameter sets proposed
in Section 1.8.

Since there is no proof for the practical security of Rainbow, we choose the
parameters of the scheme in such a way that the complexities of the known
attacks against the scheme (see Section 6) are beyond the required levels of
security.

The formulas in Section 6 give complexity estimates for the attacks in terms
of field multiplications. To translate these complexities into gate counts as pro-
posed in the NIST specification, we assume the following.

� one field multiplication in the field GF(q) takes about log2(q)2 bit multi-
plications (AND gates) and the same number of additions (XOR gates).

24

622 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

� for each field multiplication performed in the process of the attack, we also
need an addition of field elements. Each of these additions costs log2(q)
bit additions (XOR).

Therefore, the number of gates required by an attack can be computed as

#gates = #field multiplications · (2 · log2(q)2 + log2(q)).

The following tables show the security provided by the proposed Rainbow in-
stances against

� direct attacks (Section 6.2)

� the MinRank attack (Section 6.3)

� the HighRank attack (Section 6.4)

� the UOV attack (Section 6.5) and

� the Rainbow Band Separation (RBS) attack (Section 6.6).

While the direct attack is a signature forgery attack, which has to be performed
for each message separately, the MinRank, HighRank, UOV and RBS attack
are key recovery attacks. After having recovered the Rainbow private key using
one of these attacks, an adversary can generate signatures in the same way as
a legitimate user.

For each parameter set and each attack, the first entry in the cell shows (the
base 2 logarithm of) the number of classical gates, while the second entry (if
available) shows (the base 2 logarithm of) the number of logical quantum gates
needed to perform the attack. In each row, the value printed in bold shows the
complexity of the best attack against the given Rainbow instance.

parameter parameters log2(#gates)
set (F, v1, o1, o2) direct MinRank HighRank UOV RBS

Ia (GF(16),32,32,32)
164.5 161.3 150.3 149.2 145.0
146.5 95.3 86.3 87.2 145.0

Ib (GF(31),36,28,28)
160.4 212.9 161.5 198.4 148.1
129.3 121.2 92.1 111.7 145.6

Ic (GF(256),40,24,24)
151.6 358.5 215.9 337.4 148.2
130.8 194.5 119.9 181.4 148.2

A collision attack against the hash function underlying the Rainbow instances Ia,
Ib and Ic is at least as hard as a collision attack against SHA256 (see Section 1.6).
Therefore, the three Rainbow instances Ia, Ib and Ic meet the requirements of
security category I. The Rainbow instances Ib and Ic also meet the requirements
of security category II.

25

— Internet: Portfolio 623

parameter parameters log2(#gates)
set (F, v1, o1, o2) direct MinRank HighRank UOV RBS

IIIb (GF(31),64,32,48)
214.4 354.0 262.5 260.9 216.9
179.4 193.0 143.6 144.5 214.5

IIIc (GF(256),68,36,36)
215.2 585.1 313.9 563.8 217.4
183.5 309.1 169.9 295.8 217.4

A collision attack against the hash functions underlying the Rainbow instances
IIIb and IIIc is at least as hard as a collision attack against SHA384. There-
fore, the Rainbow instances IIIb and IIIc meet the requirements of the security
categories III and IV.

parameter parameters log2(#gates)
set (F, v1, o1, o2) direct MinRank HighRank UOV RBS
IVa (GF(16),56,48,48) 233.4 259.9 216.3 247.5 215.5

A collision attack against the hash function underlying the Rainbow instance
IVa is at least as hard as a collision attack against SHA384. Therefore, the
Rainbow instance IVa meets the requirements of security category IV.

parameter parameters log2(#gates)
set (F, v1, o1, o2) direct MinRank HighRank UOV RBS

Vc (GF(256),92,48,48)
275.4 778.8 411.2 747.4 278.6
235.5 406.8 219.2 393.4 278.6

A collision attack against the hash functions underlying the Rainbow instance
Vc is at least as hard as a collision attack against SHA512. Therefore, the
Rainbow instance Vc meets the requirements of the security categories V and
VI.

parameter parameters log2(#gates)
set (F, v1, o1, o2) direct MinRank HighRank UOV RBS
VIa (GF(16),76,64,64) 302.6 341.6 281.6 329.2 278.1
VIb (GF(31),84,56,56) 289.9 454.9 303.5 440.2 279.8

A collision attack against the hash functions underlying the Rainbow instances
VIa and VIb is at least as hard as a collision attack against SHA512. There-
fore, the Rainbow instances VIa and VIb meet the requirements of the security
category VI.

5.2.1 Overview

The following table gives an overview of the security provided by our Rainbow
instances. For each of the 6 NIST security categories [13] it lists the proposed

26

624 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Rainbow instances meeting the corresponding requirements.

security
category GF(16) GF(31) GF(256)

I Ia Ib Ic
II - Ib Ic
III - IIIb IIIc
IV IVa IIIb IIIc
V - - Vc
VI VIa VIb VIc

Table 7: Proposed Rainbow Instances and their Security Categories

As can be seen from the table, we have, for each of the 6 NIST security cat-
egories, one Rainbow instance over the field GF(256). Over the smaller fields
GF(16) and GF(31), some of the security categories (especially the quantum
ones I, III and V) are not occupied. The reason for this are the large parame-
ters needed to prevent in particular the quantum HighRank attack, which make
these schemes inefficient.

5.3 Side Channel Resistance

In our implementation of the Rainbow signature scheme (see Section 3) all key
dependent operations are performed in a time-constant manner. Therefore, our
implementation is immune against timing attacks.

27

— Internet: Portfolio 625

6 Analysis of Known Attacks

Known attacks against the Rainbow signature scheme include

� collision attacks against the hash function (Section 6.1)

� direct attacks (Section 6.2)

� the MinRank attack (Section 6.3)

� the HighRank attack (Section 6.4)

� The Rainbow-Band-Separation (RBS) atttack (Section 6.6)

� The UOV attack (Section 6.5)

In the presence of quantum computers, one also has to consider brute force
attacks accelerated by Grover’s algorithm (see Section 6.7).
While direct and brute force attacks are signature forgery attacks, which have
to be performed for every message separately, rank attacks as well as the RBS
and UOV attack are key recovery attacks. After having recovered the Rainbow
private key using one of these attacks, the attacker can generate signatures in
the same way as a legitimate user.

6.1 Collision attacks against the hash function

Since the Rainbow signature scheme follows the Hash then Sign approach, it can
be attacked by finding collisions of the used hash function. We do not consider
specific attacks against hash functions here, but consider the used hash function
H as a perfect random function H : {0, 1}? → Fm.
Therefore, in order to prevent a (classical) collision attack against the hash
function used in the Rainbow scheme, the number m of equations in the public
system of Rainbow must be chosen such that

m · log2q ≥ seclev,

where q is the cardinality of the finite field and seclev is the required level of
security. In other words, in order to prevent collision attacks against the used
hash function, the number m of equations in the public key (and central map)
of Rainbow must be chosen to be at least

m ≥ 2 · seclev

log2q
.

By this choice of m, we ensure that a (classical) collision attack against the hash
function used in the Rainbow scheme requires at least 2seclev evaluations of the
hash function H.

28

626 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

6.2 Direct Attacks

The most straightforward attack against multivariate schemes such as Rainbow
is the direct algebraic attack, in which the public equation P(z) = h is consid-
ered as an instance of the MQ-Problem. Since the public system of Rainbow is
an underdetermined system with n ≈ 1.5 ·m, the most efficient way to solve this
equation is to fix n−m variables to create a determined system before applying
an algorithm such as XL or a Gröbner Basis technique such as F4 or F5 [10]. It
can be expected that the resulting determined system has exactly one solution.
In some cases one obtains even better results when guessing additional variables
before solving the system (hybrid approach) [2]. The complexity of solving such
a system of m quadratic equations in m variables using an XL Wiedemann
approach can be estimated as

Complexitydirect; classical = mink

(
qk · 3 ·

(
m− k + dreg

dreg

)2

·
(
m− k

2

))

field multiplications, where dreg is the so called degree of regularity of the system.
As it was shown by experiments, the public systems of Rainbow behave very
similar to random systems. We therefore can estimate the degree of regularity
as the smallest integer d for which the coefficient of td in

(1− t2)m

(1− t)m−k

is non-positive.

In the presence of quantum computers, the additional guessing step of the hy-
brid approach might be sped up by Grover’s algorithm. By doing so, we can
estimate the complexity of a quantum direct attack by

Complexitydirect; quantum = mink

(
qk/2 · 3 ·

(
m− k + dreg

dreg

)2

·
(
m− k

2

))

field multiplications. Here, the value of dreg can be estimated as above.

6.3 The MinRank Attack

In the MinRank attack [3] the attacker tries to find a linear combination of
the public polynomials of minimal rank. In the case of Rainbow, such a linear
combination of rank v2 corresponds to a linear combination of the central poly-
nomials of the first layer. By finding o1 of these low rank linear combinations,
it is therefore possible to identify the central polynomials of the first layer and
to recover an equivalent Rainbow private key. As shown by Billet et al. [3], this
step can be performed by

ComplexityMinRank; classical = qv1+1 ·m ·
(
n3

3
− m2

6

)
(3)

29

— Internet: Portfolio 627

field multiplications.

By the use of Grover’s algorithm in the searching step, we can reduce this
complexity to

ComplexityMinRank; quantum = q
v1+1

2 ·m ·
(
n3

3
− m2

6

)
(4)

field multiplications.

There exists an alternative formulation of the MinRank attack, the so called
Minors Modelling. In this formulation, the MinRank problem is solved by solv-
ing a system of nonlinear polynomial equations (given by the v2 + 1 minors of
the matrix representing the required linear combination). The complexity of
this attack can be estimated as

ComplexityMinRank; Minors =

(
n+ v2 + 1

v2 + 1

)ω

,

where 2 < ω ≤ 3 is the linear algebra constant of solving a system of linear
equations.
However, in the case of Rainbow, this complexity is higher than that of the Min-
Rank attack using linear algebra techniques (see equation (3)). Furthermore,
since we deal with a highly overdetermined system here, the MinRank attack
using Minors Modelling can not be sped up by quantum techniques.

When analyzing the security of our Rainbow instances (see Section 5.2), we
therefore use equations (3) and (4) to estimate the complexity of the MinRank
attack.

6.4 The HighRank attack

The goal of the HighRank attack [5] is to identify the (linear representation of
the) variables appearing the lowest number of times in the central polynomials
(these correspond to the Oil-variables of the last Rainbow layer, i.e. the variables
xi with i ∈ Ou). The complexity of this attack can be estimated as

ComplexityHighRank; classical = qou · n
3

6
.

In the presence of quantum computers, we can speed up the searching step using
Grover’s algorithm. Such we get

ComplexityHighRank; quantum = qou/2 · n
3

6
.

field multiplications.

30

628 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

6.5 UOV - Attack

Since Rainbow can be viewed as an extension of the well known Oil and Vinegar
signature scheme [11], it can be attacked using the UOV attack of Kipnis and
Shamir [12].
One considers Rainbow as an UOV instance with v = v1 + o1 and o = o2. The
goal of this attack is to find the pre-image of the so called Oil subspace O under
the affine transfomation T , where O = {x ∈ Fn : x1 = · · · = xv = 0}. Finding
this space allows to separate the oil from the vinegar variables and recovering
the private key.
The complexity of this attack can be estimated as

ComplexityUOV−Attack; classical = qn−2o2−1 · o4
2

field multiplications.
Using Grover’s algorithm, this complexity might be reduced to

ComplexityUOV−Attack; quantum = q
n−2o2−1

2 · o4
2

field multiplications.

6.6 Rainbow-Band-Separation Attack

The Rainbow-Band-Separation attack [8] aims at finding linear transformations
S and T transforming the public polynomials into polynomials of the Rainbow
form (i.e. Oil × Oil terms must be zero). To do this, the attacker has to
solve several nonlinear multivariate systems. The complexity of this step is
determined by the complexity of solving the first (and largest) of these systems,
which consists of n + m − 1 quadratic equations in n variables. Since this
is an overdetermined system (more equations than variables), we usually do
not achieve a speed up by guessing variables before applying an algorithm like
XL. However, in order to be complete, we consider the hybrid approach in our
complexity estimate. Such we get

ComplexityRBS; classical = mink · qk · 3 ·
(
n+ dreg − k

dreg

)2

·
(
n− k

2

)

field multiplications. Again, the multivariate quadratic systems generated by
this attack behave much like random systems. We can therefore estimate the
value of dreg as the smallest integer d, for which the coefficient of td in

(1− t2)m+n−1

(1− t)n−k

is non-positive.

31

— Internet: Portfolio 629

By using Grover’s algorithm, we can speed up the guessing step of the hybrid
approach. By doing so, we get

ComplexityRBS; quantum = mink · qk/2 · 3 ·
(
n+ dreg − k

dreg

)2

·
(
n− k

2

)

field multiplications. The value of dreg can be estimated as above.
However, as the optimal number k of variables to be guessed during the attack
is very small (in most cases it is 0), the impact of quantum speed up on the
complexity of the Rainbow-Band-Separation attack is quite limited.

6.7 Quantum Brute-Force-Attacks

In the presence of quantum computers, a brute force attack against the scheme
can be sped up drastically using Grover’s algorithm. For example, in [16] it was
shown that a binary system of m equations in m variables can be solved using

2m/2 · 2 ·m3

bit operations. In general, we expect due to Grover’s algorithm a quadratic
speed up of a brute force attack. To reach a security level of seclev bits, we
therefore need at least

m ≥ 2 · seclev

log2q

equations.
However, this condition is already needed to prevent collision attacks against
the hash function. Therefore, we do not consider quantum brute force attacks
in the parameter choice of our Rainbow instances.

32

630 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

7 Advantages and Limitations

The main advantages of the Rainbow signature scheme are

� Efficiency. The signature generation process of Rainbow consists of sim-
ple linear algebra operations such as matrix vector multiplication and
solving linear systems over small finite fields. Therefore, the Rainbow
scheme can be implemented very efficiently and is one of the fastest avail-
able signature schemes [9].

� Short signatures. The signatures produced by the Rainbow signature
scheme are of size only a few hundred bits and therefore much shorter than
those of RSA and other post-quantum signature schemes (see Section 4.1).

� Modest computational requirements. Since Rainbow only requires
simple linear algebra operations over a small finite field, it can be efficiently
implemented on low cost devices, without the need of a cryptographic
coprocessor [6].

� Security. Though there does not exist a formal security proof which
connects the security of Rainbow to a hard mathematical problem such
as MQ, we are quite confident in the security of our scheme. Rainbow is
based on the well known UOV signature scheme, against which, since its
invention in 1999, no attack has been found. Rainbow itself was proposed
in 2005, and the last attack requiring a parameter change was found in
2008 (ten years ago). Since then, despite of rigorous cryptanalysis, no
attack against Rainbow has been developed. We furthermore note here
that, in contrast to some other post-quantum schemes, the theoretical
complexities of the known attacks against Rainbow match very well the
experimental data. So, all in all, we are quite confident in the security of
the Rainbow signature scheme.

� Simplicity. The design of the Rainbow schemes is extremely simple.
Therefore, it requires only minimum knowledge in algebra to understand
and implement the scheme. This simplicity also implies that there are
not many structures of the scheme which could be utilized to attack the
scheme. Therefore it is very unlikely that there are additional structures
that can be used to attack the scheme which have not been discovered
during more than 12 years of rigorous cryptanalysis.

On the other hand, the main disadvantage of Rainbow is the large size of the
public and private keys. The (public and private) key sizes of Rainbow are,
for security levels beyond 128 bit, in the range of 100 kB-1 MB and therefore
much larger than those of classical schemes such as RSA and ECC and some
other post-quantum schemes. However, due to increasing memory capabilities
even of medium devices (e.g. smartphones), we do not think that this will be
a major problem. Furthermore, we would like to point out that there exists a

33

— Internet: Portfolio 631

technique to reduce the public key size of Rainbow by up to 65 % [14]. How-
ever such techniques in general come with the cost of a slower key generation
process, and more important, these techniques often make the security analysis
harder. This is why we do not want to apply these techniques for now. Never-
theless, in the future, we may apply these techniques, in particular, for special
applications.

References

[1] D.J. Bernstein, T. Chou, P. Schwabe: McBits: Fast constant-time code
based cryptography. CHES 2013, LNCS vol. 8086, pp. 250 - 272. Springer,
2013.

[2] L. Bettale, J.-C. Faugére, L. Perret: Hybrid approach for solving multivari-
ate systems over finite fields. Journal of Mathematical Cryptology, 3: 177-
197, 2009.

[3] O. Billet, H. Gilbert. Cryptanalysis of Rainbow: SCN 2006, LNCS vol.
4116, pp. 336 - 347. Springer, 2006.

[4] J. Bonneau, I. Mironov: Cache-Collision Timing Attacks Against AES.
CHES 2006, LNCS vol. 4249, pp. 201 - 215. Springer, 2006.

[5] D. Coppersmith, J. Stern, S. Vaudenay: Attacks on the birational signature
scheme. CRYPTO 1994, LNCS vol. 773, pp. 435 - 443. Springer, 1994.

[6] P. Czypek, S. Heyse, E. Thomae: Efficient implementations of MQPKS on
constrained devices. CHES 2012, LNCS vol. 7428, pp. 374-389. Springer,
2012.

[7] J. Ding, D. Schmidt: Rainbow, a new multivariable polynomial signature
scheme. ACNS 2005, LNCS vol. 3531, pp. 164 - 175. Springer, 2005.

[8] J. Ding, B.-Y. Yang, C.-H. O. Chen, M.-S. Che, C.-M. Cheng: New
differential-algebraic attacks and reparametrization of Rainbow. ACNS
2008, LNCS vol. 5037, pp. 242 - 257. Springer, 2008.

[9] eBACS: ECRYPT Benchmarking of Cryptographic Systems.
https://bench.cr.yp.to

[10] J.-C. Faugére: A new effcient algorithm for computing Gröbner Bases (F4).
Journal of Pure and Applied Algebra, 139:61 - 88, 1999.

[11] A. Kipnis, J. Patarin, L. Goubin: Unbalanced Oil and Vinegar schemes.
EUROCRYPT 1999, LNCS vol. 1592, pp. 206 - 222. Springer, 1999.

[12] A. Kipnis, A. Shamir: Cryptanalysis of the Oil and Vinegar signature
scheme. CRYPTO 1998, LNCS vol. 1462, pp. 257 - 266. Springer, 1998.

34

632 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

[13] NIST: Submission Requirements and Evaluation Criteria for the
Post-Quantum Cryptography Standardization Process. Available at
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/

documents/call-for-proposals-final-dec-2016.pdf

[14] A. Petzoldt, S. Bulygin, J. Buchmann: CyclicRainbow - a Multivariate
Signature Scheme with a Partially Cyclic Public Key. INDOCRYPT 2010,
LNCS vol. 6498, pp. 33 - 48. Springer, 2010.

[15] K. Sakumoto, T. Shirai, H. Hiwatari: On Provable Security of UOV and
HFE Signature Schemes against Chosen-Message Attack. PQCrypto 2011,
LNCS vol. 7071, pp 68 - 82. Springer, 2011.

[16] P. Schwabe, B. Westerbaan: Solving Binary MQ with Grover’s Algorithm.
SPACE 2016, LNCS vol. 10076, pp. 303 - 322. Springer 2016.

35

— Internet: Portfolio 633

Ramstake
KEM Proposal for NIST PQC Project

November 30, 2017

cryptosystem name Ramstake
principal submitter Alan Szepieniec

imec-COSIC KU Leuven
alan.szepieniec@esat.kuleuven.be
tel. +3216321953
Kasteelpark Arenberg 10 bus 2452
3001 Heverlee
Belgium

auxiliary submitters -
inventors / developers same as principal submitter; relevant

prior work is credited as appropriate
owner same as principal submitter
backup contact info alan.szepieniec@gmail.com
signature

1

634 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Contents

1. Introduction 2

2. Specification 4
2.1. Parameters . 4
2.2. Tools . 5

2.2.1. Error-Correcting Codes . 5
2.2.2. CSPRNG . 5

2.3. Description . 6
2.3.1. Serialization of Integers . 6
2.3.2. Data Structures . 6
2.3.3. Algorithms . 7

2.4. Parameter Sets . 11

3. Performance 11
3.1. Failure Probability . 11
3.2. Complexity . 12

3.2.1. Asymptotic . 12
3.2.2. Pratice . 13
3.2.3. Memory and Pseudorandomness 13

4. Security 14
4.1. Hard Problems . 14
4.2. SNOTP-to-KEM Construction . 15
4.3. Attacks . 15

4.3.1. Slice and Dice . 15
4.3.2. Spray and Pray . 16
4.3.3. Stupid Brute Force . 17
4.3.4. Lattice Reduction . 17
4.3.5. Algebraic System Solving . 17
4.3.6. Error Triggering . 17

5. Advantages and Limitations 18

A. IP Statement 19
A.1. Statement by Submitter . 19
A.2. Statement By Implementation Owner 20

1. Introduction

The long-term security of confidential communication channels relies on their ca-
pacity to resist attacks by quantum computers. To this end, NIST envisions a tran-
sition away from public key cryptosystems that are known to fail in this scenario,
and towards the so-called post-quantum cryptosystems. One of the functionalities
in need of a post-quantum solution that is essential for securing online communi-
cation is ephemeral key exchange. This protocol enables two parties to agree on a

2

— Internet: Portfolio 635

shared secret key at a cost so insignificant as to allow immediate erasure of all secret
key material after execution, as an additional security measure. In the case where
the order of the messages need not be interchangeable, this functionality is beau-
tifully captured by the key encapsulation mechanism (KEM) formalism of Cramer
and Shoup [6]. The same formalism has the added benefit of capturing the syntax
and security of the first part of IND-CCA-secure arbitrary-length hybrid encryption
schemes, enabling a separation of the public key layer from the symmetric key layer.
The desirable properties of a post-quantum KEM are obvious upon consideration.

It should be fast and it should generate short messages, not require too much memory
and be implementable on a small area or in a few lines of code. It should inspire
confidence by relying on long-standing hard problems or possibly even advertising
a proof of security. However, this design document is predicated on the greater
importance of a property not included in the previous enumeration: simplicity. The
requirement for advanced degrees in mathematics on the part of the implementers
presents a giant obstacle to mass adoption, whereas no such obstacle exists for
mathematically straightforward schemes. More importantly, complexity has the
potential to hide flaws and insecurities as they can only be exposed by experts in
the field. In contrast, a public key scheme that is accessible to a larger audience is
open to scrutiny from that same larger audience, and should therefore engender a
greater confidence than a scheme that only a few experts were not able to break.
This document presents Ramstake, a post-quantum key encapsulation mecha-

nism that excels in this category of simplicity. Aside from the well-established tools
of hash functions, pseudorandom number generators, and error-correcting codes,
Ramstake requires only high school mathematics. Though not optimized for mes-
sage size and speed, Ramstake is still competitive in these categories with messages
of less than one hundred kilobytes generated in a handful of milliseconds on a reg-
ular desktop computer at the highest security level. For security, Ramstake relies
on a relatively new and under-studied hard problem, which requires several years
of attention attention from the larger cryptographic community before it inspires
confidence. The flipside of this drawback is the advantage associated with problem
diversity: Ramstake is likely to remain immune to attacks that affect other branches
of post-quantum cryptography.

Innovation. In a nutshell, this hard problem requires finding sparse solutions to
linear equations modulo a large Mersenne prime, i.e. a prime of the form p =
2π − 1. The binary expansions of the solution (x1, x2) consist overwhelmingly of
zeros. Specifically, these integers can be described as

wX
2ejxi = . (1)

j=1

We refer to the integer’s Hamming weight w as the number of ones; their positions ej
are generally chosen uniformly at random from {0, . . . π − 1}. Ramstake’s analogue
of the discrete logarithm problem requires finding x1 and x2 of this form from G and
H = x1G + x2 mod p. This is an affine variant of the Low Hamming Weight Ratio
problem of the Aggarwal et al. Mersenne prime cryptosystem [1], whose task is to
obtain f and g of this form (1) from H = fg−1 mod p.

3

636 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Where the Aggarwal et al cryptosystem builds on the indistinguishability of low
Hamming weight ratios, Ramstake builds on a noisy Diffie-Hellman protocol [2, 3]
instead. Alice and Bob agree on a random integer G between 0 and p. Alice
chooses sparse integers x1 and x2 and sends H = x1G + x2 mod p to Bob. Bob
chooses sparse integers y1 and y2 and sends F = y1G + y2 mod p to Alice. Alice
computes Sa = x1F mod p and Bob computes Sb = y1G mod p and both integers
approximate S = x1y1G mod p in the following sense: since p is a Mersenne prime,
reduction modulo p does not increase the integer’s Hamming weight and as a result
the differences Sa − S = x1y2 mod p and Sb − S = y1x2 mod p have a sparse binary
expansion. Therefore, if x1, x2, y1, y2 have a sufficiently low Hamming weight, the
binary expansions of Sa and Sb agree in most places. Alice and Bob have thus
established a shared noisy secret stream of data, or since it will be used as a one-
time pad, a shared noisy one-time pad (SNOTP, “snow-tipi”).

From SNOTP to KEM. There are various constructions in the literature for ob-
taining KEMs from SNOTPs, each different in its own subtle way. The next couple of
paragraphs give a high-level description of a generic transformation targeting IND-
CCA security, which is inspired by the “encryption-based approach” of NewHope-
Simple [4]. This construction makes abstraction of the underlying sparse integer
mathematics.
The encapsulation algorithm is a deterministic algorithm taking a fixed-length

random seed s as an explicit argument. If more randomness is needed than is con-
tained in this seed, it is generated from a cryptographically secure pseudorandom
number generator (CSPRNG). The algorithm outputs a ciphertext c and a symmet-
ric key k.
The encapsulation algorithm uses an error-correcting code such as Reed-Solomon

or BCH to encode the seed s into a larger bitstring. Then the ciphertext c consists of
three parts: 1) a contribution to the noisy Diffie-Hellman protocol; 2) the encoding
of the seed but one-time-padded with the encapsulator’s view of the SNOTP; and
3) the hash of the seed. The decapsulation algorithm computes its own view of
the SNOTP using the Diffie-Hellman contribution and undoes the one-time pad
to obtain the encoding up to some errors. Under certain conditions, the error-
correcting code is capable of retrieving the original seed s from this noisy codeword.
At this point, the decapsulation algorithm runs the encapsulation algorithm with
the exact same arguments, thus guaranteeing that the produced symmetric key k is
the same for both parties. Robust IND-CCA security comes from the fact that the
decapsulator can compare bit by bit the received ciphertext against the one that
was recreated from the transmitted seed, in addition to verifying the seed’s hash
against the one that was part of the ciphertext.

2. Specification

2.1. Parameters

The generic description of the scheme refers the following parameters without ref-
erence to their value. Concrete values are given in Section 2.4.

4

— Internet: Portfolio 637

• p — the Mersenne prime modulus, satisfies p = 2π − 1;

• π — the number of bits in the binary expansion of p;

• w — the Hamming weight, which determine the number of ones in the binary
expansion of secret sparse integers;

• ν — the number of codewords to encode the transmitted seed into;

• n — the length of a single codeword (in number of bytes);

• κ — the targeted security level (in log2 of classical operations);

• λ — the length of seed values (in number of bits);

• χ — the length of the symmetric key (in number of bits).

2.2. Tools

2.2.1. Error-Correcting Codes

Ramstake relies on Reed-Solomon codes over GF(28) with designed distance δ = 224
and dimension k = 32. Codewords are n = 255 field elements long and if there are
111 or fewer errors they can be corrected. With this choice of finite field, one field
element coincides with one byte. The following subroutines are used abstractly:

• encode takes a string of 8k = 256 bits and outputs a sequence of 8n bits that
represents the Reed-Solomon encoding of the input.

• decode takes a string of 8n bits representing a noisy codeword and tries to
decode it. If the codeword is decodable, this routine returns the error symbol
⊥.

This abstract interface suffices for the description of the KEM. Moreover, any con-
crete instantiation can be exchanged for any other instantiation that adheres to the
same interface, or that modifies the interface slightly to retain compatibility.

2.2.2. CSPRNG

Both key generation and encapsulation require a seed expander. All randomness
can be generated up front; there is no need to record state and update it as pseudo-
randomness is generated. We use xof(s, ̀) to denote the invocation of the CSPRNG
to generate a string of ` pseudorandom bytes from the seed s.
This abstract interface suffices for the description of the KEM. In the implemen-

tations, xof is instantiated with SHAKE256. Like in the case of the Reed-Solomon
codec, any concrete instantiation can be exchanged for any other instantiation that
adheres to the same interface.

5

638 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

2.3. Description

2.3.1. Serialization of Integers

All big integers represent elements in {0, . . . , p − 1} and are therefore fully defined
by π bits. Denote by serialize(a) the array if dπ

8 e bytes satisfying

d π
8 e−1X

a = serialize(a)[i] × 256i . (2)
i=0

This serialization puts the least significant byte first and pads the array with zeros to
meet the given length if the integer is not large enough. It is essentially Little-Endian
padded to length dπ

8 e, and corresponds with the GMP function mpz export(·, NULL,
-1, 1, 1, 0, a) regardless of whether the integer a is large enough.

2.3.2. Data Structures

Ramstake uses five data structures: a random seed, a secret key, a public key, a
ciphertext, and a symmetric key. Random seeds are bitstrings of length λ, whereas
symmetric keys are bitstrings of length χ. The other three data structures are more
involved.

Secret key. A secret key consists of the following items:

• seed — a random seed which fully determines the rest of the secret key in
addition to the public key;

• a, b — sparse integers, represented by π bits each.

Public key. A public key consists of the following items:

• g seed – a random seed which is used to generate the random integer G;

• C — integer between 0 and p which represents a noisy Diffie-Hellman contri-
bution. This value satisfies C = aG + b mod p.

Ciphertext. A ciphertext consists of the following items:

• D — integer between 0 and p which represents a noisy Diffie-Hellman contri-
bution; this value satisfies D = a0G + b0 mod p where a0, b0 are secret sparse
integers sampled by the encapsulator;

• seedenc — string of 8nν bits; this value is the bitwise xor of the binary
expansion of the first nν bytes of serialize(S) and the sequence of ν times
encode(s), where s is the random seed that is the argument to the encap-
sulation algorithm, and where S is the encapsulator’s view of the SNOTP:
S = a0(aG + b) mod p.

• h — hash of the seed s; the purpose of this value is twofold: 1) to speed up
decapsulation by enabling the decoder to recognize correct decodings, and 2)
to anticipate a proof technique in which the simulator answers decapsulation
queries by finding this value’s inverse.

6

— Internet: Portfolio 639

These objects are serialized by appending the serializations of their member items
in the order presented above. No length information is necessary as the size of
each object is a function of the parameters. We overload serialize to denote that
operation.
In this notation, the symmetric key k ∈ {0, 1}χ satisfies k = H(serialize(pk)kcoins),

where pk is the public key and where coins is the byte string of random coins used by
the encapsulator. Ramstake instantiates H with SHA3-256 with output truncated
to χ bits, but any other secure hash function suffices.

2.3.3. Algorithms

A KEM consists of three algorithms, KeyGen, Encaps, and Decaps. Pseudocode
for Ramstake’s three algorithms is presented in Algorithms 3, 4, and 5. All three
functionalities obtain a pseudorandom integer G from a short seed; this subprocedure
is called generate g and is shown in Algorithm 1. Algorithms KeyGen and Encaps
rely on a common subroutine called sample sparse integer which deterministically
samples a sparse integer given enough random bytes and a target Hamming weight,
and which is described in Algorithm 2.

algorithm generate g
input: seed ∈ {0, 1}λ — random seed
output: g ∈ {0, . . . , p − 1} — pseudorandom integer

1: r ← xof(seed, bπ
8 c + 2)

2: g ← 0
3: for i from 0 to bπ c + 1} do:

8
4: g ← 256 × g + r[i]
5: end
6: return g mod p

Algorithm 1: Procedure to sample a random integer from {0, . . . , p − 1}.

7

640 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

algorithm sample sparse integer
input: r ∈ {0, . . . , 255}4×weight — enough random bytes

weight ∈ {0, . . . , π} — number of one bits
output: a ∈ {0, . . . , p − 1} — a sparse integer

1: a ← 0
2: for i from 0 to weight − 1 do:
3: u ← (r[4i] × 2563 + r[4i + 1] × 2562 + r[4i + 2] × 256 + r[4i + 1]) mod π
4: a ← a + 2u

5: end
6: return a

Algorithm 2: Procedure to sample a sparse integer from a CSPRNG.

algorithm KeyGen
input: seed ∈ {0, 1}λ — random seed
output: sk — secret key

pk – public key

. expand randomness
1: r ← xof(seed, 4 × w + 4 × w + λ/8)

. grab seed for G and generate G
2: seed g ← r[0 : (λ/8)]
3: G ← generate g(seed g)

. get sparse integers a and b
4: a ← sample sparse integer(r[(λ/8) : (λ/8 + 4 × w)], w)
5: b ← sample sparse integer(r[(λ/8 + 4 × w) : (λ/8 + 4 × w + 4 × w)], w)

. compute Diffie-Hellman contribution
6: C ← aG + b mod p

7: return sk = (s, a, b), pk = (g seed, C)

Algorithm 3: Generate a secret and public key pair.

8

— Internet: Portfolio 641

algorithm Encaps
input: seed ∈ {0, 1}λ — random seed

pk — public key
output: ctxt — ciphertext

k ∈ {0, 1}χ – symmetric key

. extract randomness and generate G from seed
1: r ← xof(seed, 4 × w + 4 × w)
2: G ← generate g(pk .seed g)

. sample sparse integers
3: a0 ← sample sparse integer(r[0 : (4 × w)], w)
4: b0 ← sample sparse integer(r[(4 × w) : (4 × w + 4 × w)], w)

. compute Diffie-Hellman contribution and SNOTP
5: D ← a0G + b0 mod p
6: S ← a0 pk .C mod p

. encode random seed and apply SNOTP
7: seedenc ← serialize(S)[0 : (nν)]
8: for i from 0 to ν − 1 do:
9: seedenc[(in) : ((i + 1)n)] ← seedenc[(in) : ((i + 1)n)] ⊕ encode(seed)

10: end

. compute symmetric key
11: k ← H(serialize(pk)kr)

. complete ciphertext; and return ciphertext and symmetric key
12: h ← H(seed)
13: return ctxt = (D, seedenc, h), k

Algorithm 4: Encapsulate: generate a ciphertext and a symmetric key.

9

642 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

algorithm Decaps
input: ctxt = (D, seedenc, h) — ciphertext

sk = (seed, a, b) — secret key
output: k — symmetric key on success; otherwise ⊥

. recreate public key from secret key seed
1: seed g ← xof(sk .seed, λ/8)
2: G ← generate g(seed g)

3: C ← sk.a G + sk.b mod p

. obtain SNOTP and decode seedenc
4: S 0 ← sk.a ctxt.D mod p
5: str ← serialize(S0)[0 : (nν)] ⊕ ctxt .seedenc
6: for i from 0 to ν − 1 do:
7: s ← decode(str[(in) : ((i + 1)n)])
8: if 6s =⊥ and H(s) = ctxt .h then:
9: break

10: end
11: end
12: if s =⊥ then:
13: return ⊥
14: end

. recreate and test ciphertext
ctxt 0, k ← Enc(s, pk = (g seed, C))

15: if ctxt =6 ctxt 0 do:
16: return ⊥
17: end

18: return k

Algorithm 5: Decapsulate: generate symmetric key and test validity of the given
ciphertext.

10

— Internet: Portfolio 643

2.4. Parameter Sets

This document proposes two sets of parameters, called “Ramstake RS 216091”,
“Ramstake RS 756839”. These parameter sets target security levels 128 and 256 in
terms of log2 of required number of operations to mount a successful attack on a
classical computer. Both attacks considered in Section 4.3 are fully Groverizable,
thus enabling the quantum adversary to divide these target security levels by two.
All parameter sets use SHA3-256, SHAKE256, and Reed-Solomon error correction
over F28 with code length n = 255 and design distance δ = 224.

Table 1: Ramstake parameter sets, resulting public key and ciphertext size in kilo-
bytes, and targeted security notion and NIST security level.

π 216091 756839

w
ν
λ
χ

64
4
256
256

128
6
256
256

|pk |
|ctxt |

26.41 kB
27.41 kB

92.42 kB
93.91 kB

security
NIST level

IND-CCA
1

IND-CCA
5

3. Performance

3.1. Failure Probability

There is a nonzero probability of decapsulation failure even without malicious activ-
ity. This event occurs when the two views of the SNOTP are too different, requiring
the correction of too many errors. It is possible to find an exact expression for this
probability. However, the following argument opts for a more pragmatic approach.
The Reed-Solomon code used has design distance δ = 224, meaning that it can

correct up to t = b δ−
2
1 c = 111 byte errors. Decapsulation fails when all ν codewords

contain more than 111 errors. By treating the number of errors e in each codeword
as independent normally distributed variables, one can obtain a reasonable estimate
of the failure probability.
The Sage script Scripts/parameters.sage, which is included in the submis-

sion package, computes the mean (µ) and standard deviation (σ) of these dis-
tributions empirically. For many different random G and appropriately sparse
a, b, a0, b0, the number of different bytes between serialize(aa0G + ba0 mod p)[0 : 255]
and serialize(aa0G + b0a mod p)[0 : 255] is computed. From many such trials it com-
putes µ and σ and a recommended number of codewords ν such that the failure
probability drops below 2−64 . (Indeed, this script is where the values for ν in the
parameter sets of Table 2.4 come from.) The statistics are shown in Table 2.
It is possible to push the failure probability even lower by increasing ν. However,

this increase results in a larger ciphertext.

11

644 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Table 2: Mean µ and standard deviation σ of number of errors in a codeword, along
with recommended number of codewords ν for a failure probability less
than 2−64 .

216091 756839
µ
σ

72.56
7.89

81.38
7.93

ν 4 6
�
1 − Φ(e−µ

σ)
�ν ≤ 2−64 ≤ 2−64

3.2. Complexity

3.2.1. Asymptotic

The loops in the pseudocode of Algorithms 1—5 run through a number of iterations
determined by the parameters ν, w, π. Of these parameters, ν is independent of the
security parameter κ. The relations between w, π and the security parameter κ are
more complex. First π must be large enough to spread out roughly 2w2 burst-errors
so as to guarantee a low enough byte-error-rate and hence non-failure. Second,
the slice-and-dice attack of Section 4.3 must be taken into account as well. These
parameters are constrained for non-failure by

2w2

π
≤ c , (3)

for some constant c roughly around 0.04. For security, the constraint is

2w ≥ κ . (4)

These equations thus require π ∼ κ2 . The size of the public key and ciphertext
grows linearly with this number.
While KeyGen, Encaps and Decaps contain only a small fixed number of big field

operations, the modulus of this field is p and the field elements involved therefore
have an expansion of up to π bits. Nevertheless, there are two available optimizations
to ameliorate this cost. (However, none of the provided implementations employ
them.)

• Mersenne form. Reduction modulo p does not require costly division as it
does for generic moduli. Instead, shifting and adding does the trick. Let
a = ao × p + ar with ar < p. Then ar + ao = a mod p.

• Sparsity. In every big field operation, at least one term or factor is sparse. As
a result, the sums can be computed through w localized bitflips with carry.
The products can be computed through w shifts and as many full additions.

Consequently, the cost of integer arithmetic is linear π and in w. Therefore, the
complexity of all three algorithms is O(κ3).

12

— Internet: Portfolio 645

3.2.2. Pratice

The file perform.c, which is included in the submission package, runs a number
of trials and collects timing and cycle count information. Table 3 presents the
information collected from the optimized implementations during 10 000 trials on a
Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz machine with 6144 kB of cache on each
of its four cores, with 7741 MB of RAM, and running CentOS linux.

Table 3: Implementation statistics — time and cycle count.
time (ms) cycles

Ramstake RS 216091
KeyGen
Encaps
Decaps
Total

2.8
5.4
11.1
19.3

9445009
17700978
36706919
63852906

Ramstake RS 756839
KeyGen
Encaps
Decaps
Total

13.0
24.1
46.9
84.1

43148424
79342014
154721609
277212047

It is not surprising that Decaps takes the longest, because it runs Encaps as a
subprocedure. The striking difference between Encaps and KeyGen is due to the
encoding procedure of the error correcting code. Dealing with this error-correcting
code is even more costly in Decaps where the errors are corrected.

3.2.3. Memory and Pseudorandomness

It is difficult to estimate the memory requirements of the error-correcting code alge-
bra as well of the big integer arithmetic for two reasons. 1) The current implemen-
tation outsources this operation to another library. 2) because this content is highly
dynamic: how much memory is needed depends on the value of the mathematical
object being represented. By contrast, the memory requirements of the three main
functionalities’ outputs is easily determined.
The secret key consists of one λ/8 byte seed and two integers of (after serialization)

dπ/8e bytes each, although the integers can be generated anew from the seed. The
public key contains one seed of λ/8 bytes and one integer of dπ/8e bytes. The
ciphertext consists of one integer of dπ/8e bytes, a stream of nν bytes representing
the one-time-padded repetition code, and a hash of χ/8 bytes. Table 4 summarizes
these sizes and presents concrete values for the given parameter sets.
All pseudorandomness is generated (i.e. extracted from a short seed) in the first

line of those functions that need it. So this is 8w + λ/8 for KeyGen, and 8w for
Encaps. The Decaps function does not require pseudorandomness but it must get
the λ/8-byte seed for G from the secret key seed via the same CSPRNG. Since Decaps
invokes Encaps as a subprocedure, it inherits those requirements for extracting and
storing pseudorandomness also.

13

646 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Table 4: Size (in bytes) of output objects.
secret key public key ciphertext

formula
Ramstake 216019
Ramstake 756839

λ/8 + 2dπ/8e
54056
189242

λ/8 + dπ/8e
27044
94637

dπ/8e + nν + χ/8
28064
96111

4. Security

4.1. Hard Problems

Ramstake relies on the hardness of at least two problems related to finding sparse so-
lutions to affine equations modulo a pseudo-Mersenne prime p. The formal problem
statement of the first is as follows.

Low Hamming Combination (LHC) Problem.
Given: Two coefficients A, B ∈ Fp in a large Mersenne prime field Fp.
Task: Find two elements x1, x2 ∈ Fp with binary expansions of Hamming weight at
most w1 and w2 respectively, such that B = Ax1 + x2 mod p.

The problem was implicitly introduced by Aggarwal et al. [1] in the form of an
assumption, which states that the distribution (A, Ax1 + x2) is indistinguishable
from (A, C) when C is drawn uniformly at random and x1, x2 uniformly at random
subject to having the required Hamming weight. The same paper also introduces
the Low Hamming Ratio Search (LHRS) Problem, which asks to find a pair of
low Hamming weight integers x1, x2 satisfying x2/x1 = H. The LHRS Problem
is equivalent to the subset of the LHC Problem where B = 0. (To see this, set
H = −A. �)
The LHC problem is only the analogue of the discrete logarithm problem in

Diffie-Hellman key agreement. The adversary does not need to compute discrete
logarithms; he merely needs to break the Diffie-Hellman problem, which comes in
search and decisional variants. The analogues of these problems for sparse integers
is formally stated below.

Low Hamming Diffie-Hellman Search (LHDHS) Problem.
Given: Three integers (G, H, F) where H = x1G + x2 mod p and F = y1G + y2 mod p
for some integers x1, y1 of Hamming weight w1 and x2, y2 of Hamming weight w2.
Task: Find an integer S whose Hamming distance with x1F mod p is at most t, and
whose Hamming distance with y1H mod p is also at most t.

Low Hamming Diffie-Hellman Decision (LHDHD) Problem.
Given: Four integers (G, H, F, S) where H = x1G+x2 mod p and F = y1G+y2 mod p
for some integers x1, y1 of Hamming weight w1 and x2, y2 of Hamming weight w2.
Task: Decide whether or not the Hamming distances between S and x1F mod p, and
between S and y1H mod p, are at most t.

Security requires these problems to be hard, meaning that all polynomial-time
quantum adversaries decide the LHDHD Problem with a success probability negli-
gibly far from that of a random guess. The assumed hardness of LHDHD implies

14

— Internet: Portfolio 647

that LHDHS is hard as well, which in turn implies that LHC is hard also. It is
unclear how to solve LHDHD in a way that avoids implicitly solving LHC.
It is clear that breaking LHDHS is enough to break the scheme, as that allows the

attacker to unpad the seed encoding and recover the seed from there. It is not clear
whether security also relies on the LHDHD problem but we include that problem
for the sake of completeness, because many Diffie-Hellman type cryptosystems rely
on the proper analogue of the Decisional Diffie-Hellman problem.

4.2. SNOTP-to-KEM Construction

There is a gap between the Low Hamming Diffie-Hellman Decision Problem and the
IND-CCA (or even IND-CPA) security of Ramstake, originating from the SNOTP-
to-KEM construction. I am working on a proof of security but it is unavailable at
this point. The following obstacles make such a proof highly non-trivial.

• Failure events in the noisy Diffie-Hellman protocol affect security, especially
in the chosen ciphertext model.

• The search problems may be solved in more than one way.

• Circular encryption: the one-time pad is not independent of the message it
hides.

• The hash functions should be modeled as quantum-accessible random oracles.
However, many classical proof techniques fail in the quantum random oracle
model.

It is conceivable that a security proof can only be made to work conditioned on
some changes being made to the construction, for instance by changing the inputs
to the hash functions. Nevertheless, I do not expect the proof to recommend big
changes, thus leaving the construction’s big picture intact:

• generate noisy Diffie-Hellman protocol contributions from a short random seed;

• use the noisy Diffie-Hellman key to one-time-pad the error-correcting encoding
of the seed;

• undo the noisy one-time pad and decode the codeword;

• invoke the encapsulation algorithm with identical arguments and test if the
generated ciphertext matches the received one exactly.

4.3. Attacks

4.3.1. Slice and Dice

Beunardeau et al. present an attack exploiting the sparsity of the solutions to the
LHRS Problem [5], but it applies equally to the LHC Problem. The attack proceeds
as follows.
For each trial, partition the range R = {0, . . . , π − 1} into a number of subranges.

This number should not be too large, at most a couple hundred. Do this once for
x1 and once for x2. This yields

(0) (k−1) (0) (`−1)
R t · · · t R = R2 t · · · t R2 = R .1 1 (5)

15

648 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Set each such subrange to active or inactive at random. Ensure that the total
cardinality of all inactive subranges is at least π.

(j)
Each subrange corresponds to a variable ri whose binary expansion matches that

of xi but restricted to that subrange. Formulaically, this means

k−1X (j) (j)

2min(R) (j) (j)
iixi = ri and 0 ≤ ri < 2#R . (6)

j=0

At this point, trim the sums in the left side of Eqn. 6 by dropping the terms
that correspond to inactive subranges and replace x1 and x2 by their corresponding
trimmed sums in the equation B = Ax1 +x2 mod p. Use LLL to find a short solution
vector.
A single trial is successful if LLL succeeds in finding the solution that corresponds

to the sparse solution. This happens if the guess at inactive subranges is correct,
namely if their respective variables are indeed zero (because then their omission does
not change the value of the sum).
For the sake of generality, assume x1 has Hamming weight w1 and x2 has Hamming

weight w2. The optimal attacker activates a proportion w1 of the range associated
w1+w2

to x1, and a proportion w2 of the range associated to x2. Then the probability
w1+w2

of all 1-bits being located inside the active subranges is given by
� �w2

� �w1 w1 w2
P = × . (7)

w1 + w2 w1 + w2

The formula is a lot simpler when w1 = w2 = w, and in this case security mandates
that

2w ≥ κ . (8)

This algorithm is fully Groverizable. Therefore, the security level halves when con-
sidering quantum adversaries with unlimited circuit depth.

4.3.2. Spray and Pray

Spray and pray is essentially a smart brute force search. Choose a random assign-
ment for x1 with Hamming weight w1, compute x2 from the given information and
test if its Hamming weight is at most w2. Assuming the solution is unique, the
success probability of a single trial is one over the size of the search space, or 1/

�
w
π
�
.

So κ bits of security requires � �
π

log2 ≥ κ . (9)
w

For the parameter sets 216091 and 756839, the left-hand-side of Eqn. 9 is over
838 and 1783, respectively. While the algorithm is fully Groverizable, dividing these
numbers by two in order to account for quantum adversaries still results in wildly
infeasible complexity.

16

— Internet: Portfolio 649

4.3.3. Stupid Brute Force

Instead of guessing one variable and computing the other from that guess, stupid
brute force guesses both at once. A single such guess succeeds with probability � �2
1/

w
π , i.e., much less likely than the intelligent brute force of the spray-and-pray

strategy described above.
Another stupid brute force attack attempts to guess the input of the CSPRNG.

By design, these seeds are all 256 bits in length, making for a classical complexity
of 2256 and 2128 quantumly (again assuming unlimited depth).

4.3.4. Lattice Reduction

Aggarwal et al. already consider lattice attacks on their cryptosystem and in par-
ticular on the LHRS Problem. They observe that it is possible to generate basis
vectors for a lattice in which the sought after solution is a short vector. However,
that same lattice will contain even shorter vectors that do not correspond to a sparse
solution to the original problem. It might be possible to eliminate these parasitical
solutions by running lattice reduction with respect to the infinity norm instead of
the Euclidean norm, but it is not clear how to do this.

4.3.5. Algebraic System Solving

It is possible in theory to formulate the sparsity constraint algebraically, by con-
structing polynomials over Fp that evaluate to zero in all points that satisfy the
constraint. At this point a Gröbner basis algorithm can be used to compute a solu-
tion. However, the degree of this constraint polynomial is infeasibly large, roughly� �
w
π . Constructing it requires more work than exhaustively enumerating all potential

solutions and testing to see if the linear equations are satisfied.
Another option is to treat the coefficients of the binary expansion of the solutions,

as variables in and of themselves. This strategy requires adding polynomials to
require that each coefficient lie in {0, 1}, and that at most w of them are different � �
from zero. The result is a nonlinear system of roughly 4π + 2 π equations in 2π� � w+1

variables with some polynomials having degree
w
π
+1 . For any practical parameter

set, it is infeasible to fully represent this system of equations, let alone to solve it.

4.3.6. Error Triggering

An attacker who can query the decapsulation oracle can obtain feedback on whether
the decapsulator was able to decode the transmitted codeword. With enough fail-
ures, the attacker can infer the decapsulator’s view of the SNOTP. Once the attacker
is in possession of this value, he can proceed to decapsulate any ciphertext.
However, in order to exploit this channel of information, the attacker must gen-

erate ciphertexts that fail during decapsulation. If his query ciphertext is not the
exact output of the encapsulation algorithm upon invocation with the transmitted
seed, then the manipulation will trigger a decapsulation failure regardless of whether
decoding was successful. In other words, in order to obtain meaningful information
about failure events, the attacker must restrict himself to querying only legitimate

17

650 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

264

outputs of Encaps. Worse still, he has no way of knowing beforehand whether or not
a ciphertext is more or less likely to cause failure before the first failure response.
Since the failure probability is less than 2−64, the attacker has to make on the order

honest queries to get this first failure response.

5. Advantages and Limitations

Advantage: Simplicity. Simplicity is the key selling point of Ramstake. Simple
schemes are easier to implement, easier to debug, and easier to analyze. While
simpler schemes are sometimes also easier to break, a scheme’s resilience to attacks
should not rely on its complexity.

Advantage: Problem Diversity. Ramstake relies on different hard problems com-
pared other branches of post-quantum cryptography. Consequently, breakthroughs
in cryptanalysis or hard problem solving that break or severely harm other schemes
may leave Ramstake intact.

Limitation: New Hard Problem. The hard problem on which Ramstake relies
is new and understudied. As a result, it does not offer much assurance of security
compared to schemes that have existed (and remained unbroken) for much longer.

Limitation: No Proof. Ramstake claims to offer IND-CCA security even though
there is no security reduction to the underlying hard problem. It is therefore conceiv-
able that an attack might break the scheme even without solving the hard problem.
Nevertheless, simply because something has not been proven secure yet does not
mean it is insecure.

Limitation: Bandwidth and Speed. Lattice-based KEMs are likely to be faster
and to require less bandwidth. Nevertheless, Ramstake is competitive in comparison
to the very first lattice-based and code-based cryptosystems, and it is conceivable
that sparse integer cryptosystems will undergo a similar evolution. However, po-
tential future improvements should not be considered for standardization at this
point.

Acknowledgments

The author is thankful to Fré Vercauteren, Reza Reyhanitabar and Ward Beul-
lens for useful discussions and insights. Also, the feedback from NIST after the
September deadline was highly useful and highly appreciated. The author is being
supported by a Ph.D. Fellowship from the Institute for the Promotion of Innovation
through Science and Technology in Flanders (VLAIO, formerly IWT).

18

— Internet: Portfolio 651

References
[1] Aggarwal, D., Joux, A., Prakash, A., Santha, M.: A new public-key cryptosystem via mersenne

numbers. IACR Cryptology ePrint Archive 2017, 481 (2017), http://eprint.iacr.org/2017/
481

[2] Aguilar, C., Gaborit, P., Lacharme, P., Schrek, J., Zémor, G.: Noisy diffie-hellman proto-
cols (2010), https://pqc2010.cased.de/rr/03.pdf, PQCrypto 2010 The Third International
Workshop on Post-Quantum Cryptography (recent results session)

[3] Aguilar, C., Gaborit, P., Lacharme, P., Schrek, J., Zémor, G.: Noisy diffie-hellman protocols
or code-based key exchanged and encryption without masking (2010), https://rump2010.cr.
yp.to/fae8cd8265978675893352329786cea2.pdf, CRYPTO 2010 (rump session)

[4] Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Newhope without reconciliation. IACR
Cryptology ePrint Archive 2016, 1157 (2016), http://eprint.iacr.org/2016/1157

[5] Beunardeau, M., Connolly, A., Géraud, R., Naccache, D.: On the hardness of the mersenne
low hamming ratio assumption. IACR Cryptology ePrint Archive 2017, 522 (2017), http:
//eprint.iacr.org/2017/522

[6] Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure
against adaptive chosen ciphertext attack. IACR Cryptology ePrint Archive 2001, 108 (2001),
http://eprint.iacr.org/2001/108

A. IP Statement

A.1. Statement by Submitter

I, Alan Szepieniec, of Kasteelpark Arenberg 10 / 3001 Heverlee / Belgium , do
hereby declare that the cryptosystem, reference implementation, or optimized im-
plementations that I have submitted, known as Ramstake, is my own original work,
or if submitted jointly with others, is the original work of the joint submitters.
I further declare that (check one):

X I do not hold and do not intend to hold any patent or patent application
with a claim which may cover the cryptosystem, reference implementation, or
optimized implementations that I have submitted, known as Ramstake; OR
(check one or both of the following):

� to the best of my knowledge, the practice of the cryptosystem, reference im-
plementation, or optimized implementations that I have submitted, known
as Ramstake, may be covered by the following U.S. and/or foreign patents:
“none”;

� I do hereby declare that, to the best of my knowledge, the following pending
U.S. and/or foreign patent applications may cover the practice of my sub-
mitted cryptosystem, reference implementation or optimized implementations:
“none”.

I do hereby acknowledge and agree that my submitted cryptosystem will be pro-
vided to the public for review and will be evaluated by NIST, and that it might not
be selected for standardization by NIST. I further acknowledge that I will not receive

19

652 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

financial or other compensation from the U.S. Government for my submission. I cer-
tify that, to the best of my knowledge, I have fully disclosed all patents and patent
applications which may cover my cryptosystem, reference implementation or opti-
mized implementations. I also acknowledge and agree that the U.S. Government
may, during the public review and the evaluation process, and, if my submitted
cryptosystem is selected for standardization, during the lifetime of the standard,
modify my submitted cryptosystem’s specifications (e.g., to protect against a newly
discovered vulnerability).
I acknowledge that NIST will announce any selected cryptosystem(s) and proceed

to publish the draft standards for public comment.
I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3

in the Call For Proposals for any patent or patent application identified to cover
the practice of my cryptosystem, reference implementation or optimized implemen-
tations and the right to use such implementations for the purposes of the public
review and evaluation process.
I acknowledge that, during the post-quantum algorithm evaluation process, NIST

may remove my cryptosystem from consideration for standardization. If my cryp-
tosystem (or the derived cryptosystem) is removed from consideration for stan-
dardization or withdrawn from consideration by all submitter(s) and owner(s), I
understand that rights granted and assurances made under Sections 2.D.1, 2.D.2
and 2.D.3 of the Call For Proposals, including use rights of the reference and op-
timized implementations, may be withdrawn by the submitter(s) and owner(s), as
appropriate.

Signed: Alan Szepieniec
Title: ir.
Date:
Place:

A.2. Statement By Implementation Owner

I, Alan Szepieniec, Kasteelpark Arenberg 10 / 3001 Heverlee / Belgium, am the
owner or authorized representative of the owner (print full name, if different than
the signer) of the submitted reference implementation and optimized implementa-
tions and hereby grant the U.S. Government and any interested party the right to
reproduce, prepare derivative works based upon, distribute copies of, and display
such implementations for the purposes of the post-quantum algorithm public review
and evaluation process, and implementation if the corresponding cryptosystem is
selected for standardization and as a standard, notwithstanding that the implemen-
tations may be copyrighted or copyrightable.

Signed: Alan Szepieniec
Title: ir.
Date:
Place:

20

— Internet: Portfolio 653

SABER: Mod-LWR based KEM

Principal submitter

This submission is from the following team, listed in alphabetical order:

• Jan-Pieter D’Anvers, KU Leuven, imec-COSIC
• Angshuman Karmakar, KU Leuven, imec-COSIC
• Sujoy Sinha Roy, KU Leuven, imec-COSIC
• Frederik Vercauteren, KU Leuven, imec-COSIC

E-mail address: frederik.vercauteren@gmail.com

Telephone: +32-16-37-6080

Postal address:
Prof. Dr. Ir. Frederik Vercauteren
COSIC - Electrical Engineering
Katholieke Universiteit Leuven
Kasteelpark Arenberg 10
B-3001 Heverlee
Belgium

Auxiliary submitters: There are no auxiliary submitters. The principal submitter is the
team listed above.

Inventors/developers: The inventors/developers of this submission are the same as the
principal submitter. Relevant prior work is credited below where appropriate.

Owner: Same as submitter.

Signature: ×. See also printed version of “Statement by Each Submitter”.

Document based on pqskeleton version 20170923 by Daniel Bernstein.

1

654 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Contents

1 Introduction 5

2 General algorithm specification (part of 2.B.1) 5

2.1 Notation . 5

2.2 Parameter space . 6

2.3 Constants . 6

2.4 Saber Public Key Encryption . 6

2.4.1 Saber.PKE Key Generation . 7

2.4.2 Saber.PKE Encryption . 7

2.4.3 Saber.PKE Decryption . 7

2.5 Saber Key-Encapsulation Mechanism . 7

2.5.1 Saber.KEM Key Generation . 8

2.5.2 Saber.KEM Key Encapsulation . 8

2.5.3 Saber.KEM Key Decapsulation . 8

3 List of parameter sets (part of 2.B.1) 9

3.1 Saber.PKE parameter sets . 9

3.2 Saber.KEM parameter sets . 9

4 Design rationale (part of 2.B.1) 10

5 Detailed performance analysis (2.B.2) 10

6 Expected strength (2.B.4) in general 11

6.1 Security . 11

6.1.1 Security in the Random Oracle Model 12

6.1.2 Security in the Quantum Random Oracle Model 12

6.2 Multi target protection . 12

7 Expected strength (2.B.4) for each parameter set 13

2

— Internet: Portfolio 655

8 Analysis of known attacks (2.B.5) 13

8.1 Weighted Primal Attack . 14

8.2 Weighted Dual Attack . 14

9 Advantages and limitations (2.B.6) 15

10 Technical Specifications (2.B.1) 15

10.1 Data Types and Conversions . 16

10.1.1 Bit Strings and Byte Strings . 16

10.1.2 Concatenation of Bit Strings . 16

10.1.3 Concatenation of Byte Strings . 16

10.1.4 Polynomials . 16

10.1.5 Vectors . 17

10.1.6 Matrices . 17

10.1.7 Data conversion algorithms . 17

10.2 Supporting Functions . 20

10.2.1 SHAKE-128 . 20

10.2.2 SHA3-256 . 20

10.2.3 SHA3-512 . 20

10.2.4 HammingWeight . 21

10.2.5 Randombytes . 21

10.2.6 PolyMul . 21

10.2.7 MatrixVectorMul . 21

10.2.8 VectorMul . 21

10.2.9 Verify . 22

10.2.10 Round . 22

10.2.11 Floor . 23

10.2.12 ReconDataGen . 23

10.2.13 Recon . 23

10.2.14 GenMatrix . 24

3

656 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

10.2.15 GenSecret . 24

10.3 IND-CPA encryption . 25

10.3.1 Saber.PKE.KeyGen . 26

10.3.2 Saber.PKE.Enc . 26

10.3.3 Saber.PKE.Dec . 26

10.4 IND-CCA KEM . 26

10.4.1 Saber.KEM.KeyGen . 28

10.4.2 Saber.KEM.Encaps . 28

10.4.3 Saber.KEM.Decaps . 29

10.5 Implementation constants . 29

References 30

4

— Internet: Portfolio 657

1 Introduction

Lattice based cryptography is one of the most promising cryptographic families that is be-
lieved to offer resistance to quantum computers. We introduce Saber, a family of crypto-
graphic primitives that rely on the hardness of the Module Learning With Rounding prob-
lem (Mod-LWR). We first describe Saber.PKE, an IND-CPA secure encryption scheme, and
transform it into Saber.KEM, an IND-CCA secure key encapsulation mechanism, using a
version of the Fujisaki-Okamoto transform. The design goals of Saber were simplicity, ef-
ficiency and flexibility resulting in the following choices: all integer moduli are powers of
2 avoiding modular reduction and rejection sampling entirely; the use of LWR halves the
amount of randomness required compared to LWE-based schemes and reduces bandwidth;
the module structure provides flexibility by reusing one core component for multiple security
levels.

2 General algorithm specification (part of 2.B.1)

2.1 Notation

We denote with Zq the ring of integers modulo an integer q with representants in [0, q) and
for an integer z, we denote with z mod q the reduction of z in [0, q). Rq is the quotient
ring Zq[X]/(X

n + 1) with n a fixed power of 2 (we only need n = 256). For any ring R,
Rl×k denotes the ring of l × k-matrices over R. For p|q, the mod p operator is extended to
(matrices over) Rq by applying it coefficient-wise. Single polynomials are written without
markup, vectors are bold lower case and matrices are denoted with bold upper case. U
denotes the uniform distribution and βµ is a centered binomial distribution with parameterp
µ and corresponding standard deviation σ = µ/2. If χ is a probability distribution over a
set S, then x ← χ denotes sampling x ∈ S according to χ. If χ is defined on Zq, XXX ← χ(Rq

l×k)
denotes sampling the matrix XXX ∈ Rq

l×k , where all coefficients of the entries in XXX are sampled
from χ. The randomness that is used to generate the distribution can be specified as follows:
XXX ← χ(Rq

l×k; r), which means that the coefficients of the entries in matrix XXX ∈ Rq
l×k are

sampled deterministically from the distribution χ using seed r.

The bitwise shift operations � and � have the usual meaning when applied to an integer
and are extended to polynomials and matrices by applying them coefficient-wise. We use the
part selection function bits(x, i, j) with x ∈ Z2k and k ≤ j ≤ i to access j consecutive bits
of a positive integer x ending at the i-th index, producing an integer in Z2j ; i.e., written in
C code the function returns (x � (i − j))&(2j − 1). The part selection function is extended
to polynomials and matrices by applying it coefficient-wise, where input polynomials are in
R2k and output polynomials in R2j . Finally let be denote rounding to the nearest integer,
which is extended to polynomials and matrices coefficient-wise.

5

658 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

2.2 Parameter space

The parameters for Saber are:

• q,p,t: The moduli involved in the scheme are chosen to be powers of 2, in particular
2�q 2�p 2�tq = , p = and t = with �q > �p > (�t + 1), so we have 2t | p | q. A higher

choice for parameters p and t, will result in lower security, but higher correctness. A
python script that calculates optimal values for p and t is part of the submission.

• µ: The coefficients of the secret vectors sss and sss0 are sampled according to a centered
binomial distribution βµ(Rq

l×1) with parameter µ, where µ < p. A higher value for µ
will result in a higher security, but a lower correctness of the scheme.

• n, l: The degree n and the number l of polynomials in the secret vectors sss and sss0

determine the dimension of the underlying lattice problem as l · n. Increasing the
dimension of the lattice problem increases the security, but reduces the correctness.

• F , G, H: The hash functions that are used in the protocol. Functions F and H are
implemented using SHA3-256, while G is implemented using SHA3-512.

• gen: The extendable output function that is used in the protocol, which is implemented
using SHAKE-128.

2.3 Constants

The algorithm uses two constants: a constant polynomial h ∈ Rq with all coefficients set
equal to (2�p−2 − 2�p−�t−2) and a constant vector hhh ∈ Rq

l×1 consisting of polynomials all
coefficients of which are set to the constant 2�q −�p−1 . These constants are used to replace
rounding operations by a simple bit select.

2.4 Saber Public Key Encryption

Saber.PKE is the public key encryption scheme consisting of the triplet of algorithms
(Saber.PKE.KeyGen, Saber.PKE.Enc, Saber.PKE.Dec) as described in Algorithms 1, 2 and
3 respectively. The more detailed technical specifications are given in Section 10.

6

— Internet: Portfolio 659

2.4.1 Saber.PKE Key Generation

The Saber.PKE key generation is specified by the following algorithm.

Algorithm 1: Saber.PKE.KeyGen()

1 seedAAA ← U({0, 1}256)
2 AAA = gen(seedAAA) ∈ Rl×l

q

3 r = U({0, 1}256)
4 sss = βµ(R

l×1
q ; r)

5 bbb = bits(AAAsss + hhh, �q, �p) ∈ Rl×1
p

6 return (pk := (seedAAA, bbb), sk := (sss))

2.4.2 Saber.PKE Encryption

The Saber.PKE Encryption is specified by the following algorithm, with optional argument r.

Algorithm 2: Saber.PKE.Enc(pk = (seedAAA, bbb), m ∈ R2; r)

1 AAA = gen(seedAAA) ∈ Rl×l
q

2 if r is not specified then
3 r = U({0, 1}256)
4 sss000 = βµ(R

l×1
q ; r)

5 bbb0 = bits(AAAT sss0 + hhh, �q, �p) ∈ Rl×1
p

6 v0 = bbbT bits(sss0, �p, �p) ∈ Rp

7 cm = bits(v0 + 2�p−1m, �p, �t + 1) ∈ R2t

8 return c := (cm, bbb000)

2.4.3 Saber.PKE Decryption

The Saber.PKE Decryption is specified by the following algorithm.

Algorithm 3: Saber.PKE.Dec(sk = sss, c = (cm, bbb000))

1 v = bbb0T bits(sss, �p, �p) ∈ Rp

2 m0 = bits(v − 2�p−�t−1cm + h, �p, 1) ∈ R2

3 return m0

2.5 Saber Key-Encapsulation Mechanism

Saber.KEM is the key-encapsulation mechanism consisting of the triplet of algorithms
(Saber.KEM.KeyGen, Saber.KEM.Enc, Saber.KEM.Dec) as described in Algorithms 4, 5
and 6 respectively. The more detailed technical specifications are given in Section 10.

7

660 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

2.5.1 Saber.KEM Key Generation

The Saber key generation is specified by the following algorithm.

Algorithm 4: Saber.KEM.KeyGen()

1 seedAAA ← U({0, 1}256)
2 AAA = gen(seedAAA) ∈ Rl×l

q

3 r = U({0, 1}256)
4 sss = βµ(R

l×1
q ; r)

5 bbb = bits(AAAsss + hhh, �q, �p) ∈ Rl×1
p

6 pkh = F(seedAAA, bbb)
7 z = U({0, 1}256)
8 return (pk := (seedAAA, bbb), sk := (sss, z, pkh))

2.5.2 Saber.KEM Key Encapsulation

The Saber key encapsulation is specified by the following algorithm and makes use of
Saber.PKE.Enc as specified in Algorithm 2.

Algorithm 5: Saber.KEM.Encaps(pk = (seedAAA, bbb))

1 m ← U({0, 1}256)
2 (K̂, r) = G(F(pk), m)
3 c = Saber.PKE.Enc(pk, m; r)
4 K = H(K̂, c)
5 return (c, K)

2.5.3 Saber.KEM Key Decapsulation

The Saber key decapsulation is specified by the following algorithm and makes use of
Saber.PKE.Dec as specified in Algorithm 3.

Algorithm 6: Saber.KEM.Decaps(sk = (sss, z, pkh), pk = (seedAAA, bbb), c)

1 m0 = Saber.PKE.Dec(sss, c)
2 (K̂ 0, r0) = G(pkh, m0)
3 c0 = Saber.PKE.Enc(pk, m0; r0)
4 if c = c0 then
5 return K = H(K̂ 0, c)
6 else
7 return K = H(z, c)

8

— Internet: Portfolio 661

3 List of parameter sets (part of 2.B.1)

3.1 Saber.PKE parameter sets

For Saber.PKE, we define the following parameters sets with corresponding security levels in
Table 1. The secret key can be compressed by only storing the log2(µ) LSB for each coefficient
in the entries of sss. The values for a compressed secret key can be found in brackets.

Sec Cat fail prob attack Classical Quantum pk (B) sk (B) ciphertext (B)

LightSaber-PKE: k = 2, n = 256, q = 213 , p = 210 , t = 22 , µ = 10

1 2−120 primal
dual

126
126

115
115

672 832(256) 736

Saber-PKE: k = 3, n = 256, q = 213 , p = 210 , t = 23 , µ = 8

3 2−136 primal
dual

199
198

181
180

992 1248(288) 1088

FireSaber-PKE: k = 4, n = 256, q = 213 , p = 210 , t = 25 , µ = 6

5 2−165 primal
dual

270
270

246
245

1312 1664(384) 1472

Table 1: Security and correctness of Saber.PKE.

3.2 Saber.KEM parameter sets

For Saber.KEM, we define the following parameters sets with corresponding security levels
in Table 2. The secret key can be compressed by only storing the log2(µ) LSB for each
coefficient in the entries of sss. The values for a compressed secret key can be found in
brackets. Note that only the secret key size (sk) differs from the Saber.PKE table.

Sec Cat fail prob attack Classical Quantum pk (B) sk (B) ciphertext (B)

LightSaber-KEM: k = 2, n = 256, q = 213 , p = 210 , t = 22 , µ = 10

1 2−120 primal
dual

126
126

115
115

672 1568(992) 736

Saber-KEM: k = 3, n = 256, q = 213 , p = 210 , t = 23 , µ = 8

3 2−136 primal
dual

199
198

181
180

992 2304(1344) 1088

FireSaber-KEM: k = 4, n = 256, q = 213 , p = 210 , t = 25 , µ = 6

5 2−165 primal
dual

270
270

246
245

1312 3040(1760) 1472

Table 2: Security and correctness of Saber.KEM.

9

662 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

4 Design rationale (part of 2.B.1)

Our design combines several existing techniques resulting in a very simple implementation,
that reduces both the amount of randomness and the bandwidth required.

• Learning with Rounding (LWR) [6]: schemes based on (variants of) LWE require
sampling from noise distributions which needs randomness. Furthermore, the noise is
included in public keys and ciphertexts resulting in higher bandwidth (which can be
mitigated by the use of compression techniques akin to LWR). In LWR based schemes,
the noise is deterministically obtained by scaling down from a modulus q to modulus
p, which does not need randomness and naturally reduces bandwidth for keys and
ciphertexts.

• Modules [15, 8]: the module versions of the problems allow to interpolate between
the original pure LWE/LWR problems and their ring versions, lowering computational
complexity and bandwidth in the process. As in ‘Kyber’ [8], we use modules to protect
against attacks on the ring structure of Ring-LWE/LWR and to provide flexibility. By
increasing the rank of the module, it is easy to move to higher security levels without
any need to change the underlying arithmetic.

• Reconciliation: we use a simple reconciliation scheme [2] to reduce the failure rate
significantly and therefore also the parameters.

• Choice of moduli: all integer moduli in the scheme are powers of 2. This has sev-
eral advantages: there is no need for explicit modular reduction; sampling uniformly
modulo a power of 2 is trivial and thus avoids rejection sampling or other complicated
sampling routines, which is important for constant time implementations; we immedi-
ately have that the moduli p | q in LWR, which implies that the scaling operation maps
the uniform distribution modulo q to the uniform distribution modulo p. The main
disadvantage of using such moduli is that it excludes the use of the number theoretic
transform (NTT) to speed up polynomial multiplication. We remark however that us-
ing a compression technique as in ‘Kyber’ requires one to move back to the polynomial
representation (the ‘time domain’), so if low bandwidth is a design goal, a scheme that
works purely in the NTT-domain (‘frequency domain’) is simply not possible.

5 Detailed performance analysis (2.B.2)

We evaluated the performance of the software implementation on a Dell laptop with an
Intel(R) Core(TM) i7-6600U CPU 2.60GHz processor, Ubuntu operating system, and gcc
compiler 7.0. We disabled hyperthreading and TurboBoost. The performance results for the
various parameter sets of Saber.KEM can be found in Table 3

Our key encapsulation mechanism uses three hash functions F , G and H. For hash functions
F and H, SHA3-256 is used, while G is implemented using SHA3-512.

10

— Internet: Portfolio 663

Table 3: Performance of Saber.KEM. Cycles for key generation, encapsulation, and decap-
sulation are represented by K, E, and D respectively in the 4th column. Sizes of secret key
(sk), public key (pk) and ciphertext (c) are reported in the last column.

Scheme Problem Security Cycles Bytes
LightSaber-KEM Module-LWR 115 K: 105,881 sk: 1,568

E: 155,131 pk: 672
D: 179,415 c: 736

Saber-KEM Module-LWR 180 K: 216,597 sk: 2,304
E: 267,841 pk: 992
D: 318,785 c: 1,088

FireSaber-KEM Module-LWR 245 K: 360,539 sk: 3,040
E: 400,817 pk: 1,312
D: 472,366 c: 1,472

6 Expected strength (2.B.4) in general

6.1 Security

The IND-CPA security of Saber.PKE can then be reduced to the decisional Mod-LWR
problem as shown by the following theorem:

Theorem 6.1. For any adversary A, there exist three adversaries B0, B1 and B2 such that
Advind-cpa (A) 6 Advprf (B0) + Advmod-lwr(B1) + Advmod-lwr p(B2), where ζ = min (q ,).Saber.PKE gen() l,l,ν,q,p l+1,l,ν,q,q/ζ p 2t

The correctness of Saber.PKE can be calculated using the python scripts included in the
submission, following theorem 6.2:

Theorem 6.2. Let AAA be a matrix in Rq
l×l and sss, sss0 two vectors in Rq

l×1 sampled as in
Saber.PKE. Define eee and eee0 as the rounding errors introduced by scaling and rounding AAAsss

AAAT 0 + hh AAAT 0 + eee000and AAAT sss0, i.e. bits(AAAT sss + hhh, �q, �p) = p
q sss + eee and bits(AAAT sss h, �q, �p) = p

q sss . Let
er ∈ Rq be a polynomial with uniformly distributed coefficients with range [−p/4t, p/4t]. If
we set

0T 0Tδ = Pr[||(sss eee − eee sss + er) mod p||∞ > p/4]

then after executing the Saber.PKE protocol, both communicating parties agree on a n-bit
key with probability 1 − δ.

This IND-CPA secure encryption scheme is the basis for the IND-CCA secure KEM
Saber.KEM=(Encaps, Decaps), which is obtained by using an appropriate transformation.
Recently, several post-quantum versions [11, 18, 16, 12] of the Fujisaki-Okamoto transform
with corresponding security reductions have been developed. At this point, the FO6⊥ transfor-
mation in [11] with post-quantum reduction from Jiang et al. [12] gives the tightest reduction
for schemes with non-perfect correctness. However, other transformation could be used to
turn Saber.PKE into a CCA secure KEM.

11

664 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

6.1.1 Security in the Random Oracle Model

By modeling the hash functions G and H as random oracles, a lower bound on the CCA
security can be proven. We use the security bound of Hofheinz et al. [11], which considers
a KEM variant of the Fujisaki-Okamoto transform that can also handle a small failure
probability δ of the encryption scheme. This failure probability should be cryptographically
negligibly small for the security to hold. Using Theorem 3.2 and Theorem 3.4 from [11], we
get the following theorems for the security and correctness of our KEM in the random oracle
model:

Theorem 6.3. For a IND-CCA adversary B, making at most qH and qG queries to respec-
tively the random oracle G and H, and qD queries to the decryption oracle, there exists an
IND-CPA adversary A such that:

Advind-cca (B) 6 3Advind-cpa 2qG + qH + 1
(A) + qG δ + .Saber.KEM Saber.PKE 2256

6.1.2 Security in the Quantum Random Oracle Model

Jiang et al. [12] provide a security reduction against a quantum adversary in the quan-
tum random oracle model from IND-CCA security to OW-CPA security. IND-CPA with a
sufficiently large message space M implies OW-CPA [11, 7], as is given by following lemma:

Theorem 6.4. For an OW-CPA adversary B, there exists an IND-CPA adversary A such
that:

Advow-cpa ind-cpa (B) 6 Adv (A) + 1/|M |Saber.PKE Saber.PKE

Therefore, we can reduce the IND-CCA security of Saber.KEM to the IND.CPA security of
the underlying public key encryption:

Theorem 6.5. For any IND-CCA quantum adversary B, making at most qH and qG queries
to respectively the random quantum oracle G and H, and qD many (classical) queries to the
decryption oracle, there exists an adversary A such that:

q√1
Advind-cca ind-cpa

Saber.KEM(B) 6 2qH √
2256

+ 4qG δ + 2(qG + qH) AdvSaber.PKE(A) + 1/|M |

In all attack scenarios we assume that the depth of quantum computation is limited to 264

quantum gates.

6.2 Multi target protection

ˆAs described in [8], hashing the public key into K has two beneficial effects: it makes sure
that K depends on the input of both parties, and it offers multi-target protection. In this
scenario, the adversary uses Grover’s algorithm to precompute an m that has a relatively

ˆhigh failure probability. Hashing pk into K ensures that an attacker is not able to use
precomputed ‘weak’ values of m.

12

— Internet: Portfolio 665

7 Expected strength (2.B.4) for each parameter set

The expected strengths of Saber.PKE and Saber.KEM for each parameter set are included
in Table 1 and Table 2.

8 Analysis of known attacks (2.B.5)

The vectors bbb, bbb0 and ccc are constructed using the secret sss or sss000, and are publicly known. The
security of the secrets needs to be guaranteed through the underlying Mod-LWR problem
by choosing appropriate parameters, both for the main Mod-LWR construction with bbb and
bbb0, as for the reconciliation construction which generates ccc.

Our security analysis is similar to the one in ‘a New Hope’ [3]. The hardness of Mod-LWR is
analyzed as an LWE problem, since there are no known attacks that make use of the Module
or LWR structure. A set of l LWR samples given by with AAA ← U(Rl

q
×l) and sss ← βµ(Rq

l×1),
can be rewritten as an LWE problem in the following way:

� j m � p
AAA, (AAAsss mod q) mod p

q� � . p
= AAA, (AAAsss mod q) + eee mod p

q

We can lift this to a problem modulo q by multiplying by
p
q :

q q
bbb = AAAsss + eee mod q ,

p p

where q/p eee is the random variable containing the error introduced by the rounding operation,
of which the coefficients are discrete and nearly uniformly distributed in (−q/2p, q/2p].
BKW type of attacks [13] and linearization attacks [4] are not feasible, since the number of
samples is at most double the dimension of the lattice. Moreover, the secret vectors sss and sss0

are dense enough to avoid the sparse secret attack described by Albrecht [1]. These attacks
only remain infeasible if the generated secret vectors are timely refreshed. As a result, we
end up with two main type of attacks: the primal and the dual attack, that make use of
BKZ lattice reduction [9, 17].

BKZ uses an SVP oracle in lower dimension b to perform the lattice reduction. The running
time of this oracle is exponential in the dimension of the lattice, and the oracle is executed
a polynomial number of times. In this report, the security of Saber is based on only one
execution of the SVP-oracle, which is a very conservative underestimation of the real secu-
rity. Laarhoven [14] estimated the complexity for the state-of-the-art SVP solver in high
dimensions as 20.292b, which can be lowered to 20.265b using Grover’s search algorithm.

13

666 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

8.1 Weighted Primal Attack

The primal attack constructs a lattice that has a unique shortest vector that contains the
noise eee and the secret sss. BKZ, with a certain block dimension b, can be used to find this
unique solution. An LWE sample (AAA, bbb = AAAsss + eee) ∈ Zm

q
×n × Zm

q can be transformed to the
following lattice: Λ = {vvv ∈ Zm+n+1 : (AAA|IIIm|−bbb)vvv = 0 mod q}, with dimension d = m+n+1
and volume qm . The unique shortest vector in this lattice is vvv = (sss, eee, 1), and it has a normp
of λ ≈ nσs

2 + mσe
2 . Using heuristic models, the primal attack succeeds if [3]:

p
dnσs

2 + mσe
2 <δ2b−d−1Vol(Λ)

1

b 1
d 2(b−1)
1

where: δ = ((πb))
2πe

However, the vector vvv = (sss, eee, 1) is unbalanced since ||sssi|| is not necessarily equal to ||eeei||. In
our case, ||sssi|| < ||eeei||, which can be exploited by the lattice rescaling method described by
Bai et al. [5], and further analysed in [10]. The expected norm of each entry of sss is σs, whilep
the approximate expected norm of components of ei is σe = q2/12p2 . We can therefore
construct the weighted lattice:

Λ0 ={(xxx, yyy 0 , z) ∈ Zn × (α−1Z)m × Z : (xxx, αyyy0 , z) ∈ Λ}
σe

where: α =
σs

with dimension (n + m + 1) and volume (q/α)m . Analogous to [3], the primal attack is
successful if the projected norm of the unique shortest vector on the last b Gram-Schmidt
vectors is shorter than the (d − b)th Gram-Schmidt vector, or:

� �m√
dq

b 6 δ2b−d−1σs .
α

8.2 Weighted Dual Attack

The dual attack tries to distinguish between an LWE sample (AAA, bbb = AAAsss + eee) ∈ Zm
q
×n × Zm

q

and a uniformly random sample by finding a short vector (vvv, www) in the lattice Λ = {(xxx, yyy) ∈
Zm × Zn : AAAT xxx = yyy mod q}. This short vector is used to compute a distinguisher z = vvvbbb.
If bbb = AAAsss + eee, we can write z = vvvAAAsss + vvveee = wwwsss + vvveee, which is small and approximately
Gaussian distributed. If bbb is generated uniformly, z will also be uniform in q.

Since in our case, ||sssi|| < ||eeei||, we observe that the wwwsss term will be smaller than the vvveee
term. The weighted attack optimizes the shortest vector so that these terms have a similar
variance, by considering the weighted lattice Λ0 = {(xxx, yyy0) ∈ Zm × (α−1Z)n : (xxx, αyyy0) ∈ Λ
mod q}. This lattice has a dimension of n+m and a volume of (q/α)n, so the BKZ algorithm
will output a shortest vector uuu = (vvv, www0) = (vvv, αwww) of size ||uuu|| ≈ δm+n(q/α)

n

Calculatingm+n .
z with the shortest vector in the LWE case gives z = www0(αsss) + vvveee, of which the Gaussianp
distribution standard deviation will thus be equal to σz = ||uuu||σe = ||uuu|| q2/12p2 .

14

— Internet: Portfolio 667

Following the strategy of [3], we can now calculate the cost of the dual attack. The statistical
distance between a uniformly distributed z and a Gaussian distributed z is bounded by
� = 4exp(−2π2τ 2), where τ = σz/q . Since the key is hashed, an advantage of � is not
sufficient and must be repeated at least R = max(1, 1/(20.2075b�2)) times. The cost of the
dual attack is thus equal to:

Costdual = CostBKZR = b2cbR, .

9 Advantages and limitations (2.B.6)

Advantages:

• No modular reduction: since all moduli are powers of 2 we do not require explicit
modular reduction. Furthermore, sampling a uniform number modulo a power of 2 is
trivial in that it does not require any rejection sampling or more complicated sampling
routines. This is especially important when considering constant time implementations.

• Modular structure and flexibility: the core component consists of arithmetic in the
fixed polynomial ring Z213 [X]/(X256 +1) for all security levels. To change security, one
simply uses a module of higher rank.

• Less randomness required: due to the use of Mod-LWR, our algorithm requires less
randomness since no error sampling is required as in (Mod-)LWE.

• Low bandwidth: again due to the use of Mod-LWR, the bandwidth required is lower
than similar systems based on (Mod-)LWE.

Limitations:

• The use of two-power moduli precludes NTT-like multiplication algorithms, so we have
to resort to Toom-Cook and Karatsuba.

• The functionality is limited to an encryption scheme and a KEM. No signature scheme
is provided.

10 Technical Specifications (2.B.1)

This section provides technical specifications for implementing Saber. For more details, the
reader may read the C source code present in the reference implementation package.

15

668 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

10.1 Data Types and Conversions

10.1.1 Bit Strings and Byte Strings

A bit is an element of the set {0, 1} and a bit string is an ordered sequence of bits. In a bit
string the rightmost or the first bit is the least significant bit and the leftmost or the last bit
is the most significant bit. A byte is a bit string of length 8 and a byte string is an ordered
array of bytes. Following the same convention, the rightmost or the first byte is the least
significant byte and the leftmost or the last byte is the most significant byte.

For example, consider the byte string of length three: 3d 2c 1b. The most significant byte is
3d and the least significant byte is 1b. This byte string corresponds to the bit string 0011
1101 0010 1100 0001 1011. The least significant bit of the byte string is 1 and the most
significant bit is 0.

10.1.2 Concatenation of Bit Strings

Concatenation of two bit strings b0 to b1 is denoted by b1 k b0 where b0 is present in the least
significant part and b1 is present in the most significant part. The length of the concatenated
bit string is the sum of the lengths of b0 and b1.

Similarly concatenation of n bit strings b0 to bn−1 is denoted by bn−1 k bn−2 k . . . k b1 k b0

where b0 is present in the least significant part and bn−1 is present in the most significant
part. Naturally the length of the concatenated bit string is the sum of the lengths of b0 to
bn−1.

10.1.3 Concatenation of Byte Strings

Concatenation of two byte strings B0 to B1 is denoted by B1 k B0 where B0 is present in
the least significant part and B1 is present in the most significant part. The length of the
concatenated byte string is the sum of the lengths of B0 and B1.

Similarly concatenation of n byte strings B0 to Bn−1 is denoted by Bn−1 k Bn−2 k . . . k B1 k
B0 where B0 is present in the least significant part and Bn−1 is present in the most significant
part. Naturally the length of the concatenated byte string is the sum of the lengths of B0

to Bn−1.

10.1.4 Polynomials

All polynomials in Rq = Zq[x]/(x
n +1) have 256 coefficients and the coefficients are of size 13

bits since n = 256 and q = 213 . All polynomials in Rp = Zp[x]/(x
n + 1) have 256 coefficients

210and the coefficients are of size 10 bits since n = 256 and p = . The i-th coefficient of a

16

— Internet: Portfolio 669

polynomial object, say pol, is accessed by pol[i]. In the following example

pol = c255x 255 + . . . + c1x + c0 (1)

the constant coefficient c0 is accessed by pol[0] and the highest-degree (i.e. x255) coefficient
c255 is accessed by pol[255].

10.1.5 Vectors

A vector in Rl
q
×1 is an ordered collection of l polynomials from Rq. The i-th element of a

vector object, say vvv ∈ Rq
l×1 , is accessed by vvv[i], where (0 ≤ i ≤ l − 1).

10.1.6 Matrices

A matrix in Rq
l×m is a collection of l × m polynomials in row-major order. The polynomial

present in the i-th row and j-th column a matrix object, say MMM , is accessed by MMM [i, j]. Here
(0 ≤ i ≤ l − 1) and (0 ≤ j ≤ m − 1).

10.1.7 Data conversion algorithms

The data conversion algorithms are defined as follows.

• BS2POLq: This function takes a byte string of length 13 × 256/8 and transforms it into
a polynomial in Rq. The algorithm is shown in Alg. 7.

Algorithm 7: Algorithm BS2POLq

Input: BS : byte string of length 13 × 256/8
Output: pol q: polynomial in Rq

1 Interpret BS as a bit string of length 13 × 256.
2 Split it into bit strings each of length 13 and obtain (bs255 k . . . k bs0) = BS.
3 for (i = 0, i < 256, i = i + 1) do
4 pol q[i] ← bs i

5 return pol

• POLq2BS: This function takes a polynomial from Rq and transforms it into a byte
string of length 13 × 256/8. The algorithm is shown in Alg. 8.

• BS2POLVECq: This function takes a byte string of length l ×13×256/8 and transforms
it into a vector in Rq

l×1 . The algorithm is shown in Alg. 9.

• POLVECq2BS: This function takes a vector from Rq
l×1 and transforms it into a byte

string of length l × 13 × 256/8. The algorithm is shown in Alg. 10.

17

670 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Algorithm 8: Algorithm POLq2BS

Input: pol q: polynomial in Rq

Output: BS : byte string of length 13 × 256/8
1 Interpret the coefficients of pol q as bit strings, each of length 13.
2 Concatenate the coefficients and obtain the bit string bs = (polq[255] k . . . k polq
length 13 × 256.

3 Interpret the bit string bs as the byte string BS of length 13 × 256/8.
4 return BS

[0]) of

Algorithm 9: Algorithm BS2POLVECq

Input: BS : byte string of length l × 13 × 256/8
Output: vvv: vector into Rl×1

q

1 Split BS into l byte strings of length 13 × 256/8 and obtain (BSl−1 k . . . k BS0) = BS
2 for (i = 0, i < l, i = i + 1) do
3 vvv[i] = BS2POLq(BSi)

4 return vvv

Algorithm 10: Algorithm POLVECq2BS

Input: vvv: vector in Rl×1
q

Output: BS : byte string of length l × 13 × 256/8
1 Instantiate the byte strings BS0 to BSl−1 each of length 13 × 256/8.
2 for (i = 0, i < l, i = i + 1) do
3 BSi = POLVECq2BS(vvv[i])

4 Concatenate these byte strings and get the byte string BS = (BSl−1 k . . . k BS0).
5 return BS

• BS2POLp: This function takes a byte string of length 10 × 256/8 and transforms it into
a polynomial in Rp. The algorithm is shown in Alg. 11.

Algorithm 11: Algorithm BS2POLp

Input: BS : byte string of length 10 × 256/8
Output: polp: polynomial in Rp

1 Interpret BS as a bit string of length 10 × 256.
2 Split it into bit strings each of length 10 and obtain (bs255 k . . . k bs0) = BS.
3 for (i = 0, i < 256, i = i + 1) do
4 polp[i] ← bs i

5 return pol

• POLp2BS: This function takes a polynomial from Rp and transforms it into a byte
string of length 10 × 256/8. The algorithm is shown in Alg. 12.

18

— Internet: Portfolio 671

Algorithm 12: Algorithm POLpBS

Input: polp: polynomial in Rp

Output: BS : byte string of length 10 × 256/8
1 Interpret the coefficients of polp as bit strings, each of length 10.
2 Concatenate the coefficients and obtain the bit string bs = (polp[255] k . . . k polp
length 10 × 256.

3 Interpret the bit string bs as the byte string BS of length 10 × 256/8.
4 return BS

[0]) of

• BS2POLVECp: This function takes a byte string of length l ×10×256/8 and transforms
it into a vector vvv ∈ Rp

l×1 . The algorithm is shown in Alg. 13.

Algorithm 13: Algorithm BS2POLVECp

Input: BS : byte string of length l × 10 × 256/8
Output: vvv: vector into Rl×1

p

1 Split BS into byte strings of size 10 × 256/8 and obtain (BSl−1 k . . . k BS0) = BS
2 for (i = 0, i < l, i = i + 1) do
3 vvv[i] = BS2POLp(BSi)

4 return vvv

• POLVECp2BS: This function takes a vector from Rp
l×1 and transforms it into a byte

string of length l × 10 × 256/8. The algorithm is shown in Alg. 14.

Algorithm 14: Algorithm POLVECp2BS

Input: vvv: vector in Rl×1
p

Output: BS : byte string of length l × 10 × 256/8
1 Instantiate the byte strings BS0 to BSl−1 each of length 10 × 256/8.
2 for (i = 0, i < l, i = i + 1) do
3 BSi = POLVECp2BS(vvv[i])

4 Concatenate these byte strings and get the byte string BS = (BSl−1 k . . . k BS0).
5 return BS

• MSG2POLp: This function takes a 32 byte message and transforms it into a polynomial
in Rp. The algorithm is shown in Alg. 15

19

672 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Algorithm 15: Algorithm MSG2POLp

Input: m: 32-byte message.
Output: polp: polynomial in Rp.

1 Constant const = log2(p) − 1
2 Split m into bit strings each of length 1 and obtain (m255 k . . . k m0) = m.
3 for (i = 0, i < 256, i = i + 1) do
4 polp[i] = (mi � const)

5 return polp

10.2 Supporting Functions

10.2.1 SHAKE-128

SHAKE-128, standardized in FIPS-202, is used as the extendable-output function. It receives
the input byte string from the byte array input byte string of length ‘input length’ and
generates the output byte string of length ‘output length’ in the byte array output byte string
as described below.

SHAKE-128(output byte string, output length, input byte string, input length) (2)

10.2.2 SHA3-256

SHA3-256, standardized in FIPS-202, is used as a hash function. It receives the input byte
string from the byte array input byte string of length ‘input length’ and generates the output
byte string of length 32 in the byte array output byte string as described below.

SHA3-256(output byte string, input byte string, input length) (3)

10.2.3 SHA3-512

SHA3-512, standardized in FIPS-202, is used as a hash function. It receives the input byte
string from the byte array input byte string of length ‘input length’ and generates the output
byte string of length 64 in the byte array output byte string as described below.

SHA3-512(output byte string, input byte string, input length) (4)

20

— Internet: Portfolio 673

10.2.4 HammingWeight

This function returns the Hamming weight of the input bit string. For example,

w = HammingWeight(a) (5)

returns the Hamming weight of the input bit string a to the integer w. Naturally, Hamming-
Weight always returns non-negative integers.

10.2.5 Randombytes

This function outputs a random byte string of a specified length. The following ex-
ample shows how to use randombytes to generate a random byte string seed of length
SABER SEEDBYTES.

randombytes(seed, SABER SEEDBYTES)

10.2.6 PolyMul

This function performs polynomial multiplications in Rp and Rq. For two polynomials a and
b in Rp, their product c ∈ Rp is computed using PolyMul as follows.

c = PolyMul(a, b, p)

Similarly, for two polynomials a0 and b0 in Rq, their product c0 ∈ Rq is computed using
PolyMul as follows.

c 0 = PolyMul(a 0, b0 , q)

10.2.7 MatrixVectorMul

This function performs multiplication of a matrix, say MMM ∈ Rq
l×l , and a vector vvv ∈ Rq

l×1 and
returns the product vector mvmvmv = MMM ∗ vvv ∈ Rq

l×1 . The algorithm is described in Alg. 16. The
function is used in the following way.

mvmvmv = MatrixVectorMul(MMM, vvv, q)

10.2.8 VectorMul

∈ Rl×1 ∈ Rl×1This function takes a vector vvva p and a vector vvvb p and computes the product
of vvvTa and vvvb, which is a polynomial c ∈ Rp. Here vvvTa stands for the transpose of vvva. The
algorithm is described in Alg. 17. The function is used in the following way.

21

674 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Algorithm 16: Algorithm MatrixVectorMul

Input: MMM : matrix in Rl×l
q ,

vvv: vector in Rl×1
q ,

q: coefficient modulus
Output: mvmvmv: vector in Rl×1

q

1 Instantiate polynomial object c
2 for (i = 0, i < l, i = i + 1) do
3 c = 0
4 for (j = 0, j < l, j = j + 1) do
5 c = c + PolyMul(MMM [i, j], vvv[j], q)

6 mvmvmv[i] = c

7 return mvmvmv

c = VectorMul(vvva, vvvb, p)

Algorithm 17: Algorithm VectorMul

Input: vvva: vector in Rl×1
p ,

vvvb: vector in Rl×1
p ,

p: coefficient modulus
Output: c: polynomial in Rp

1 c ← 0
2 for (i = 0, i < l, i = i + 1) do
3 c = c + PolyMul(vvva[i], vvvb[i], p)

4 return c

10.2.9 Verify

This function compares two byte strings of the same length and outputs a binary bit. The
output bit is ’1’ if the byte strings are equal; otherwise it is ’0’. The following example shows
how to use Verify to compare the byte strings BS0 and BS1 of length ’input length’.

c = Verify(BS0, BS1, input length) (6)

If BS0 = BS1 then c = 0; otherwise c = 1.

10.2.10 Round

This function takes a polynomial in Rq and rounds it into a polynomial in Rp. The steps are
shown in Alg. 18. The following example shows the use of Round to transform a polynomial

22

— Internet: Portfolio 675

polq ∈ Rq into a polynomial polp ∈ Rp.

polp = Round(polq)

Algorithm 18: Algorithm Round for rounding a polynomial ∈ Rq

Input: polq: polynomial ∈ Rq

Output: polp: polynomial ∈ Rp

1 const = �q − �p

2 for (i = 0, i < 256, i = i + 1) do
3 polp[i] = (polq[i] � const) (mod p)

4 return polp

10.2.11 Floor

This function takes an input a and returns the largest integer less than or equal to a. The
following example shows how the use of this function.

c = floor(a)

For e.g., c = 1 when a =
2
3 and c = −2 when a = −

2
3 .

10.2.12 ReconDataGen

This function takes a polynomial from Rp and generates the reconciliation vector. The steps
performed in ReconDataGen are shown in Alg. 19. The following example shows how to
use ReconDataGen to compute the reconciliation byte string rec from the input polynomial
polp ∈ Rp.

rec = ReconDataGen(polp)

10.2.13 Recon

This function takes a polynomial in Rp and associated reconciliation byte string as inputs
and generates a bit string of length 256. The internal steps are shown in Alg. 20. The
following example shows the use of Recon to generate the 256-bit bit string K from the
reconciliation byte string rec and the polynomial polp ∈ Rp.

K = Recon(rec, polp)

23

676 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Algorithm 19: Algorithm ReconDataGen for generation of reconciliation data from a
polynomial ∈ Rp

Input: polp: polynomial ∈ Rp

Output: rec: byte string of length (RECON SIZE+1) × 256/8 bytes.
1 const = �p − RECON SIZE − 1
2 Instantiate a vector object vvv
3 for (i = 0, i < 256, i = i + 1) do
4 vvv[i] = polp[i] � const

5 Interpret the elements of vvv as bit strings, each of length RECON SIZE+1 bits.
6 Concatenate the elements and obtain the bit string bs = (vvv[255] k . . . k vvv[0]) of length

(RECON SIZE + 1) × 256.
7 Interpret the bit string bs as the byte string rec of length (RECON SIZE + 1) × 256/8.
8 return rec

Algorithm 20: Algorithm Recon
Input: rec: vector of 256 elements where each element is of RECON SIZE+1 bits

polp: polynomial ∈ Rp

Output: K: bit string of length 256
1 const0 = �p − RECON SIZE − 1
2 const1 = 2�p−2 − 2�p−2−RECON SIZE

3 for (i = 0, i < 256, i = i + 1) do
4 temp = rec[i] � const0

5 temp = polp[i] − temp + const1

6 Ki = floor(temp
2log2(p)−1) // outputs a bit

7 return K = (K255 k . . . k K0)

10.2.14 GenMatrix

This function generates a matrix in Rq
l×l from a random byte string (called seed) of length

SABER SEEDBYTES. The steps are described in the algorithm GenMatrix in Alg. 21. The use
of GenMatrix to generate the matrix AAA ∈ Rl

q
×l from the seed seedAAA is as follows.

AAA = GenMatrix(seedAAA)

10.2.15 GenSecret

This function takes a random byte string (called seed) of length SABER SEEDBYTES as input
and outputs a secret which is a vector in Rq

l×1 with coefficients sampled from a centered
binomial distribution βµ. The steps are described in the algorithm GenSecret in Alg. 22
The use of GenSecret to generate a secret sss ∈ Rq

l×1 from a random seed seedsss is shown as
follows.

24

— Internet: Portfolio 677

Algorithm 21: Algorithm GenMatrix for generation of matrix AAA ∈ Rl×l
q

Input: seedAAA: random seed of length SABER SEEDBYTES
Output: AAA: matrix in Rl×l

q

1 Instantiate byte string object buf of length l2 × n × �q/8
2 SHAKE-128(buf, l2 × n × �q/8, seedAAA, SABER SEEDBYTES)
3 Split buf into l2 × n equal byte strings of bit length �q and obtain
(bufl2n−1 k . . . k buf0) = buf

4 k = 0
5 for (i1 = 0, i1 < l, i1 = i1 + 1) do
6 for (i2 = 0, i2 < l, i2 = i2 + 1) do
7 for (j = 0, j < n, j=j+1) do
8 AAA[i1, i2][j] = bufk

9 k = k + 1

10 return AAA ∈ Rl×l
q

sss = GenSecret(seedsss)

Algorithm 22: Algorithm GenSecret for generation of secret sss ∈ Rl×1
q

Input: seedsss: random seed of length SABER SEEDBYTES
Output: sss: vector in R2

q

1 Instantiate a byte string object buf of length l × n × µ/8
2 SHAKE-128(buf, l × n × µ/8, seedsss, SABER SEEDBYTES)
3 Split buf into 2 × l × n bit strings of length µ/2 bits and obtain
(buf2ln−1 k . . . k buf0) = buf

4 k = 0
5 for (i = 0, i < l, i = i + 1) do
6 for (j = 0, j < n, j = j + 1) do
7 sss[i][j] = HammingWeight(bufk) − HammingWeight(bufk+1)
8 k = k + 2

9 return sss ∈ R2
q

10.3 IND-CPA encryption

The IND-CPA encryption consists of 3 components,

• Saber.PKE.KeyGen, returns public key and the secret key to be used in the encryption.

• Saber.PKE.Enc, returns the ciphertext obtained by encrypting the message.

25

678 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

• Saber.PKE.Dec, returns a message obtained by decrypting the ciphrtext.

10.3.1 Saber.PKE.KeyGen

This function generates IND-CPA public and secret key pair as byte strings of length
SABER INDCPA PUBKEYBYTES and SABER INDCPA SECRETKEYBYTES respectively. The details
of Saber.PKE.KeyGen are provided in Alg. 23.

Algorithm 23: Algorithm Saber.PKE.KeyGen for IND-CPA public and secret key pair
generation
Output: PublicKeycpa: byte string of public key,

SecretKeycpa: byte string of secret key
1 randombytes(seedAAA, SABER SEEDBYTES)
2 SHAKE-128(seedAAA, SABER SEEDBYTES, seedAAA, SABER SEEDBYTES)
3 randombytes(seedsss, SABER NOISE SEEDBYTES)
4 AAA = GenMatrix(seedAAA)
5 sss = GenSecret(seedsss)
6 vvv = MatrixVectorMul(AAAT , sss) // Here AAAT is transpose of AAA
7 for (i = 0, i < l, i = i + 1) do
8 vvvp[i] = Round(vvv[i])

9 SecretKeycpa = POLVECq2BS(sss)
10 pk = POLVECp2BS(vvvp)
11 PublicKeycpa = seedAAA k pk
12 return (PublicKeycpa, SecretKeycpa)

10.3.2 Saber.PKE.Enc

This function receives a 256-bit message m, a random seed seedenc of length SABER SEEDBYTES
and the public key PublicKeycpa as the inputs and computes the corresponding ciphertext
CipherTextcpa. The steps are described in Alg. 24.

10.3.3 Saber.PKE.Dec

This function receives Saber.PKE.Enc generated CipherTextcpa and Saber.PKE.KeyGen gen-
erated SecretKeycpa as inputs and computes the decrypted message m. The steps are shown
in Alg. 25.

10.4 IND-CCA KEM

The IND-CCA KEM consists of 3 algorithms.

26

— Internet: Portfolio 679

Algorithm 24: Algorithm Saber.PKE.Enc for INC-CPA encryption
Input: m: message bit string of length 256,

seedsss000 : random byte string of length SABER SEEDBYTES,
PublicKeycpa: public key generated using Saber.PKE.KeyGen

Output: CipherTextcpa: byte string of ciphertext
1 Extract pk and seedAAA from PublicKeycpa = (pk k seedAAA)
2 AAA = GenMatrix(seedAAA)
3 sss000 = GenSecret(seedsss0)
4 vvv = MatrixVectorMul(AAA, sss000)
5 Instantiate vector object vvvp ∈ Rl×1

p

6 for (i = 0, i < l, i = i + 1) do
7 vvvp[i] = Round(vvv[i])

8 ct = POLVECp2BS(vvvp)
9 vvv000 = BS2POLVECp(pk)

10 polp = VectorMul(vvv000, sss000, p)
11 mp = MSG2POL(m)
12 mp = mp + polp mod p
13 rec = ReconDataGen(mp)
14 CipherTextcpa = (rec k ct)
15 return CipherTextcpa

Algorithm 25: Algorithm Saber.PKE.Dec for IND-CPA decryption
Input: CipherTextcpa: byte string of ciphertext generated using Saber.PKE.Enc,

SecretKeycpa: byte string of secret key generated using Saber.PKE.KeyGen
1 Output: m: decrypted message bit string of length 256
2 sss = BS2POLVECq(SecretKeycpa)
3 Extract (rec k ct) = CipherText
4 bbb = BS2POLVECp(ct)
5 v0 = VectorMul(bbb, sss, p)
6 m0 = Recon(rec, v0)
7 m = POL2MSG(m0)
8 return (m)

• Saber.KEM.KeyGen, returns public key and the secret key to be used in the key encap-
sulation.

• Saber.KEM.Encaps, this function takes the public key and generates a session key and
the ciphertext of the seed of the session key.

• Saber.KEM.Decaps, this function receives the ciphertext and the secret key and returns
the session key corresponding to the ciphertext.

27

680 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

10.4.1 Saber.KEM.KeyGen

This function returns the public key and the secret key in two separate byte arrays of size
SABER PUBLICKEYBYTES and SABER SECRETKEYBYTES respectively. The function is
described in Alg. 26.

Algorithm 26: Algorithm Saber.KEM.KeyGen for generating public and private key
pair.
Output: PublicKeycca: public key for encapsulation,

SecretKeycca: secret key for decapsulation
1 (PublicKeycpa, SecretKeycpa) = Saber.PKE.KeyGen()
2 SHA3-256(hash pk, PublicKeycpa, SABER INDCPA PUBKEYBYTES)
3 randombytes(z, SABER KEYBYTES)
4 SecretKeycca = (z k hash pk k PublicKeycpa k SecretKeycpa)
5 PublicKeycca = PublicKeycpa

6 return (PublicKeycca, SecretKeycca)

10.4.2 Saber.KEM.Encaps

This function generates a session key and the ciphertext corresponding the key. The algo-
rithm is described in Alg 27.

Algorithm 27: Algorithm Saber.KEM.Encaps for generating session key and ciphertext.
Input: PublicKeycca: public key generated by Saber.KEM.KeyGen
Output: SessionKeycca: session key,

CipherTextcca: cipher text corresponding to the session key
1 randombytes(m, SABER KEYBYTES)
2 SHA3-256(m, m, SABER KEYBYTES)
3 SHA3-256(hash pk, PublicKeycca, SABER INDCPA PUBKEYBYTES)
4 buf = (hash pk k m)
5 SHA3-512(kr, buf , 2×SABER KEYBYTES)
6 Split kr in two equal chunks of length SABER KEYBYTES and obtain (r k k) = kr
7 CipherTextcca = Saber.PKE.Enc(m, r, PublicKeycca)
8 SHA3-256(r0 , CipherTextcca, SABER BYTES CCA DEC)
9 kr0 = (r0 k k)

10 SHA3-256(SessionKeycca, kr
0, 2×SABER KEYBYTES)

11 return (SessionKeycca, CipherTextcca)

28

— Internet: Portfolio 681

10.4.3 Saber.KEM.Decaps

This function returns a secret key by decapsulating the received ciphertext. The algorithm
is described in Alg 28.

Algorithm 28: Algorithm Saber.KEM.Decaps for recovering session key from ciphertext
Input: CipherTextcca: cipher text generated by Saber.KEM.Encaps,

SecretKeycca: public key generated by Saber.KEM.KeyGen
Output: SessionKeycca: session key

1 Extract (z k hash pk k PublicKeycpa k SecretKeycpa) = SecretKeycca

2 m = Saber.PKE.Dec(CipherTextcca, SecretKeycpa)
3 buf ← hash pk k m
4 SHA3-512(kr, buf , 2×SABER KEYBYTES)
5 Split kr in two equal chunks of length SABER KEYBYTES and obtain (r k k)
6 CipherText’cca = Saber.PKE.Enc(m, r, PublicKeycpa)
7 c = Verify(CipherText’cca, CipherTextcca, SABER BYTES CCA DEC)
8 SHA3-256(r0 , CipherText’cca, SABER BYTES CCA DEC)
9 if c = 0 then

10 temp = (r0 k k)
11 else
12 temp = (z k k)
13 SHA3-256(SessionKeycca, temp, 2×SABER KEYBYTES)
14 return SessionKeycca

10.5 Implementation constants

The values of the implementation constants used in the algorithms are provided in Table 4.

Table 4: Implementation constants

Constants LightSaber Saber FireSaber
SABER SEEDBYTES 32 32 32
RECON SIZE 2 3 5
SABER INDCPA PUBKEYBYTES 672 992 1312
SABER INDCPA SECRETKEYBYTES 832 1248 1664
SABER NOISE SEEDBYTES 32 32 32
SABER PUBLICKEYBYTES 672 992 1312
SABER SECRETKEYBYTES 1568 2304 3040
SABER KEYBYTES 32 32 32
SABER HASHBYTES 32 32 32
SABER BYTES CCA DEC 736 1088 1472

29

682 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

References

[1] Martin R. Albrecht. On Dual Lattice Attacks Against Small-Secret LWE and Parameter
Choices in HElib and SEAL, pages 103–129. Springer International Publishing, Cham,
2017.

[2] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. NewHope with-
out reconciliation, 2016. http://cryptojedi.org/papers/#newhopesimple.

[3] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum
key exchange – a new hope. In Proceedings of the 25th USENIX Security Symposium.
USENIX Association, 2016. Document ID: 0462d84a3d34b12b75e8f5e4ca032869, http:
//cryptojedi.org/papers/#newhope.

[4] Sanjeev Arora and Rong Ge. New Algorithms for Learning in Presence of Errors, pages
403–415. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[5] Shi Bai and Steven D. Galbraith. Lattice Decoding Attacks on Binary LWE, pages
322–337. Springer International Publishing, Cham, 2014.

[6] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom Functions and Lat-
tices, pages 719–737. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[7] James Birkett and Alexander W. Dent. Relations among notions of plaintext awareness.
In Public Key Cryptography - PKC 2008, 11th International Workshop on Practice and
Theory in Public-Key Cryptography, Barcelona, Spain, March 9-12, 2008. Proceedings,
pages 47–64, 2008.

[8] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M.
Schanck, Peter Schwabe, and Damien Stehlé. Crystals – kyber: a cca-secure module-
lattice-based kem. Cryptology ePrint Archive, Report 2017/634, 2017. http://eprint.
iacr.org/2017/634.

[9] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better Lattice Security Estimates, pages
1–20. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[10] Jung Hee Cheon, Duhyeong Kim, Joohee Lee, and Yongsoo Song. Lizard: Cut off the
tail! practical post-quantum public-key encryption from lwe and lwr. Cryptology ePrint
Archive, Report 2016/1126, 2016. http://eprint.iacr.org/2016/1126.

[11] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the
fujisaki-okamoto transformation. Cryptology ePrint Archive, Report 2017/604, 2017.
http://eprint.iacr.org/2017/604.

[12] Haodong Jiang, Zhenfeng Zhang, Long Chen, Hong Wang, and Zhi Ma. Post-
quantum ind-cca-secure kem without additional hash. Cryptology ePrint Archive, Re-
port 2017/1096, 2017. https://eprint.iacr.org/2017/1096.

30

— Internet: Portfolio 683

[13] Paul Kirchner and Pierre-Alain Fouque. An improved BKW algorithm for LWE with
applications to cryptography and lattices. In Advances in Cryptology - CRYPTO 2015
- 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015,
Proceedings, Part I, pages 43–62, 2015.

[14] Thijs Laarhoven. Search problems in cryptography. PhD thesis, Eindhoven University
of Technology, 2015. http://www.thijs.com/docs/phd-final.pdf.

[15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module
lattices. Designs, Codes and Cryptography, 75(3):565–599, Jun 2015.

[16] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure key-
encapsulation mechanism in the quantum random oracle model. Cryptology ePrint
Archive, Report 2017/1005, 2017. https://eprint.iacr.org/2017/1005.

[17] C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Mathematical Programming, 66(1):181–199, Aug 1994.

[18] Ehsan Ebrahimi Targhi and Dominique Unruh. Post-Quantum Security of the Fujisaki-
Okamoto and OAEP Transforms, pages 192–216. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2016.

31

684 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

SPHINCS+

Submission to the NIST post-quantum project

Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder, Scott Fluhrer,
Stefan-Lukas Gazdag, Andreas Hülsing, Panos Kampanakis, Stefan Kölbl,
Tanja Lange, Martin M. Lauridsen, Florian Mendel, Ruben Niederhagen,

Christian Rechberger, Joost Rijneveld, Peter Schwabe

November 30, 2017

1

— Internet: Portfolio 685

Contents

1. Introduction 4
1.1. SPHINCS+ vs SPHINCS . 5
1.2. Organization . 5

2. Notation 6
2.1. Data Types . 6
2.2. Functions . 6
2.3. Operators . 6
2.4. Integer to Byte Conversion (Function toByte) 7
2.5. Strings of Base-w Numbers (Function base_w) 7
2.6. Member Functions (Functions set, get) . 8
2.7. Cryptographic (Hash) Function Families . 9

2.7.1. Tweakable Hash Functions (Functions T_l, F, H) 9
2.7.2. PRF and Message Digest (Functions PRF, PRF_msg, H_msg) 9
2.7.3. Hash Function Address Scheme (Structure of ADRS) 10

3. WOTS+ One-Time Signatures 12
3.1. WOTS+ Parameters . 12
3.2. WOTS+ Chaining Function (Function chain) 13
3.3. WOTS+ Private Key (Function wots_SKgen) 13
3.4. WOTS+ Public Key Generation (Function wots_PKgen) 14
3.5. WOTS+ Signature Generation (Function wots_sign) 14
3.6. WOTS+ Compute Public Key from Signature (Function wots_pkFromSig) . . . 15

4. The SPHINCS+ Hypertree 16
4.1. (Fixed Input-Length) XMSS . 17

4.1.1. XMSS Parameters . 17
4.1.2. XMSS Private Key . 17
4.1.3. TreeHash (Function treehash) . 17
4.1.4. XMSS Public Key Generation (Function xmss_PKgen) 18
4.1.5. XMSS Signature . 18
4.1.6. XMSS Signature Generation (Function xmss_sign) 19
4.1.7. XMSS Compute Public Key from Signature (Function xmss_pkFromSig) 20

4.2. HT: The Hypertee . 21
4.2.1. HT Parameters . 21
4.2.2. HT Key Generation (Function ht_PKgen) 21
4.2.3. HT Signature . 21
4.2.4. HT Signature Generation (Function ht_sign) 21
4.2.5. HT Signature Verification (Function ht_verify) 23

5. FORS: Forest Of Random Subsets 23
5.1. FORS Parameters . 24
5.2. FORS Private Key (Function fors_SKgen) . 24
5.3. FORS TreeHash (Function fors_treehash) . 25
5.4. FORS Public Key (Function fors_PKgen) . 26

2

686 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

5.5. FORS Signature Generation (Function fors_sign) 26
5.6. FORS Compute Public Key from Signature (Function fors_pkFromSig) 27

6. SPHINCS+ 28
6.1. SPHINCS+ Parameters . 29
6.2. SPHINCS+ Key Generation (Function spx_keygen) 29
6.3. SPHINCS+ Signature . 30
6.4. SPHINCS+ Signature Generation (Function spx_sign) 30
6.5. SPHINCS+ Signature Verification (Function spx_verify) 32

7. Instantiations 32
7.1. SPHINCS+ Parameter Sets . 33

7.1.1. Influence of Parameters on Security and Performance 34
7.1.2. Proposed Parameter Sets and Security Levels 35

7.2. Instantiations of Hash Functions . 36
7.2.1. SPHINCS+-SHAKE256 . 37
7.2.2. SPHINCS+-SHA-256 . 37
7.2.3. SPHINCS+-Haraka . 37

8. Design rationale 39
8.1. Changes Made . 39

8.1.1. Multi-Target Attack Protection . 39
8.1.2. Tree-less WOTS+ Public Key Compression 40
8.1.3. FORS . 40
8.1.4. Verifiable Index Selection . 41
8.1.5. Making Deterministic Signing Optional 41

8.2. Discarded Changes . 41

9. Security Evaluation (including estimated security strength and known attacks) 42
9.1. Preliminaries . 43
9.2. Security Reduction . 44
9.3. Security Level / Security Against Generic Attacks 45

9.3.1. Distinct-Function Multi-Target Second-Preimage Resistance 45
9.3.2. Pseudorandomness of Function Families 46
9.3.3. Interleaved Target Subset Resilience . 46
9.3.4. Security Level of a Given Parameter Set 47

9.4. Implementation Security and Side-Channel Protection 48
9.5. Security of SPHINCS+-SHAKE256 . 48
9.6. Security of SPHINCS+-SHA-256 . 49
9.7. Security of SPHINCS+-Haraka . 49

10.Performance 50
10.1. Runtime . 50
10.2. Space . 50

11.Advantages and Limitations 50

A. Parameter-evaluation Sage script 55

3

— Internet: Portfolio 687

1. Introduction

Hash-based signature schemes were developed as one-time signature schemes in the late 1970s
by Lamport [12] and extended to more signatures by Merkle [13]. The security of these
schemes is easy to analyze and relies solely on the properties of the used hash function. How-
ever, Merkle’s tree-based signature scheme required fixing at key-generation time the number
of signatures to be made, keeping this number small for performance. Most importantly,
the system required users to remember a state: some information to remember how many
signatures were already made with the key.
In the 40 years since Lamport’s scheme, many ideas improved the performance, practicality,

and theoretical foundations of hash-based signatures, culminating in XMSS [6], which is in the
last phase of being standardized by the CFRG as the first post-quantum signature scheme.
A strong point of these systems is that they need very few security assumptions – the hash
function even need not be collision resistant. The only downside of XMSS is that it is stateful,
which makes it not fit the standard definition of signature schemes as, e.g., stated in the NIST
call for submissions.
SPHINCS [4] was designed by Bernstein, Hopwood, Hülsing, Lange, Niederhagen, Pa-

pachristodoulou, Schneider, Schwabe, and Wilcox-O’Hearn as a stateless hash-based signature
scheme and was the first signature scheme to propose parameters to resist quantum cryptanal-
ysis. SPHINCS uses many components from XMSS but works with larger keys and signatures
to eliminate the state.
This document is about the SPHINCS+ construction. At a high level, SPHINCS+ works

like SPHINCS. The basic idea is to authenticate a huge number of few-time signature (FTS)
key pairs using a so-called hypertree. FTS schemes are signature schemes that allow a key
pair to produce a small number of signatures, e.g., in the order of ten for our parameter sets.
For each new message, a (pseudo)random FTS key pair is chosen to sign the message. The

signature consists then of the FTS signature and the authentication information for that FTS
key pair. The authentication information is roughly a hypertree signature, i.e. a signature
using a certification tree of Merkle tree signatures.
More specifically, a hypertree is a tree of hash-based many-time signatures (MTS). These

many-time signatures allow a key pair to sign a fixed number N of messages – for SPHINCS+

N is a power of 2, for example 256. The MTS key pairs themselves are organized in an N -ary
tree with d layers. On the top layer d− 1 there is a single MTS key pair which is used to sign
the public keys of N MTS key pairs that form layer d− 2. Each of these N MTS key pairs is
used to sign another N MTS public keys forming layer d− 3. This goes on down to the Nd−1

key pairs on the bottom layer which are used to sign N FTS public keys, each, leading to a
total number of Nd authenticated FTS key pairs. The authentication information for an FTS
key pair consists of the d MTS signatures that build a path from the FTS key pair to the top
MTS tree.
An MTS signature is just a classical Merkle-tree signature in the case of SPHINCS+. It

consists of a one-time signature (OTS) on the given message plus the authentication path in
the binary hash-tree, authenticating the N OTS key pairs of one MTS key pair.
The public key of SPHINCS+ is essentially the public key of the top level MTS which is

just the root node of its binary hash tree and hence, a single hash value. However, actual
SPHINCS+ public keys additionally contain a public seed value of the same length as the root
node. This is due to technical reasons explained in the detailed specification below.
The SPHINCS+ secret key is just a single secret seed value. From this, all the OTS and

4

688 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

FTS secret keys are generated in a pseudorandom manner. The OTS and FTS secret keys
together fully determine the whole virtual structure of an SPHINCS+ key pair.

1.1. SPHINCS+ vs SPHINCS

SPHINCS+ builds on SPHINCS by introducing several improvements:

• Multi-target attack protection: We apply the mitigation techniques from [9] using keyed
hash functions. Each hash function call is keyed with a different key and applies different
bitmasks. Keys and bitmasks are pseudorandomly generated from an address specifying
the context of the call, and a public seed. For this we introduce the notion of tweakable
hash functions which in addition to the input value take a public seed and an address.

• Tree-less WOTS+ public key compression: The last nodes of the WOTS+ chains are not
compressed using an L-tree but using a single tweakable hash function call. This call
again receives an address and a public seed to key this call and to generate a bitmask
as long as the input.

• FORS: A HORST key pair does not consist anymore of a single monolithic tree. Instead
it consists of k trees of height a The leaves of these trees are the hashes of the 2a secret
key elements. The public key is the tweakable hash of the concatenation of all the root
nodes as for the WOTS+ public key.

A FORS key pair can be used to sign k2abit message digests. The digest is first split
into k strings mi of length 2a bits each. Next, every mi is interpreted as an integer
in [0, 2a − 1]. Here mi selects the mi-th secret key element of the i-th tree for the
signature. The signature also contains the authentication paths for all the selected
secret key elements, which means one path of length a per tree. Verification uses the
signature to reconstruct the root nodes and compresses them using the tweakable hash.

• Verifiable index selection: The message digest is now computed as follows. First, we
deterministically generate randomness

R = PRF(SK.prf, OptRand,M).

Where OptRand is a 256 bit value, per default 0 but can be filled with random bits e.g.
taken from a TRNG to avoid deterministic signing (this might be desirable to counter
side channel attacks). Then we compute message digest and index as

(md||idx) = Hmsg(R,PK,M)

where PK = (PK.seed,PK.root) contains the top root node and the public seed.
Hence, we can omit the index in the SPHINCS signature as it would be redundant. This
allows to tighten HORST security.

1.2. Organization

In this document we give a formal specification of the SPHINCS+ construction. We follow
a bottom-up approach to specify SPHINCS+. We start with basic notation. Afterwards we
define WOTS+, the OTS used in SPHINCS+. Next, we specify XMSS, the MTS used in

5

— Internet: Portfolio 689

SPHINCS+, and how it is used to do HT signatures. Then, we define FORS, the FTS used,
to finally specify SPHINCS+. Afterwards we discuss different instantiations and explain the
design rationale. Then we present a security analysis, give performance values and conclude
with a discussion of advantages and limitations.

2. Notation

In the following we start defining basic mathematical operations on integers and bit strings.
From that we work our way to more specific basic methods used later in the specification.

2.1. Data Types

Bytes and byte strings are the fundamental data types. A byte is a sequence of eight bits.
The set of bytes is denoted as B. A single byte is denoted as a pair of hexadecimal digits with
a leading "0x". A byte string is an ordered sequence of zero or more bytes and is denoted as
an ordered sequence of hexadecimal characters with a leading "0x". For example, 0xe534f0
is a byte string of length 3. An array of byte strings is an ordered, indexed set starting with
index 0 in which all byte strings have identical length. We assume big-endian representation
for any data types or structures.

2.2. Functions

We define the following functions:

dxe(or ceil(x)) : for x a real number returns the smallest integer greater than or equal to x.

bxc(or floor(x)) : for x a real number returns the largest integer less than or equal to x.

log(x) : for x a non-negative real number returns the logarithm to base 2 of x. In pseudocode
this function is written as lg.

Trunc`(x) : truncates the bit-string x to the first ` bits.

2.3. Operators

When a and b are integers, mathematical operators are defined as follows:

ˆ : ab denotes the result of a raised to the power of b.

· : a · b denotes the product of a and b. This operator is sometimes omitted in the absence
of ambiguity, as in usual mathematical notation.

/ : a/b denotes the quotient of a by non-zero b.

% : a % b denotes the non-negative remainder of the integer division of a by b.

+ : a+ b denotes the sum of a and b.

− : a− b denotes the difference of a and b.

++ : a++ denotes incrementing a by 1, i.e., a = a+ 1.

6

690 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

<< : a << b denotes a logical left shift of a by b positions, for b being non-negative, i.e.,
a · 2b.

>> : a >> b denotes a logical right shift of a by b positions, for b being non-negative, i.e.
floor(a/2b).

The standard order of operations is used when evaluating arithmetic expressions.

Arrays are used in the common way, where the i-th element of an array A is denoted A[i].
Byte strings are treated as arrays of bytes where necessary: If X is a byte string, then X[i]
denotes its i-th byte, where X[0] is the leftmost, highest order byte.
If A and B are byte strings of equal length, then:

A AND B denotes the bitwise logical conjunction operation.

A XOR B (or A⊕B) denotes the bitwise logical exclusive disjunction operation.

When B is a byte and i is an integer, then B >> i denotes the logical right-shift by i
positions.
If X is an x-byte string and Y a y-byte string, then X||Y denotes the concatenation of X

and Y , with X||Y = X[0] . . . X[x− 1]Y [0] . . . Y [y − 1].

2.4. Integer to Byte Conversion (Function toByte)

For x and y non-negative integers, we define Z = toByte(x, y) to be the y-byte string con-
taining the binary representation of x in big-endian byte-order.

2.5. Strings of Base-w Numbers (Function base_w)

A byte string can be considered as a string of base w numbers, i.e. integers in the set {0, . . . , w−
1}. The correspondence is defined by the function base_w(X,w, out_len) as follows. Let X be
a len_X- byte string, and w is an element of the set {4, 16, 256}, then base_w(X,w, out_len)
outputs an array of out_len integers between 0 and w− 1 (Figure 1). The length out_len is
REQUIRED to be less than or equal to 8 ∗ len_X/ log(w).

Input: len_X-byte string X, int w, output length out_len
Output: out_len int array basew

base_w(X, w, out_len) {
int in = 0;
int out = 0;
unsigned int total = 0;
int bits = 0;
int consumed;

for (consumed = 0; consumed < out_len; consumed++) {
if (bits == 0) {

total = X[in];
in++;
bits += 8;

}
bits -= lg(w);

7

— Internet: Portfolio 691

basew[out] = (total >> bits) AND (w - 1);
out++;

}
return basew;

}

Algorithm 1: base_w – Computing the base-w representation

Figure 1: For example, if X is the (big-endian) byte string 0x1234, then base_w(X, 16, 4)
returns the array a = {1, 2, 3, 4}.

X (represented as bits)
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 0| 0| 0| 1| 0| 0| 1| 0| 0| 0| 1| 1| 0| 1| 0| 0|
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

X[0] | X[1]

X (represented as base 16 numbers)
+-----------+-----------+-----------+-----------+
| 1 | 2 | 3 | 4 |
+-----------+-----------+-----------+-----------+

base_w(X, 16, 4)
+-----------+-----------+-----------+-----------+
| 1 | 2 | 3 | 4 |
+-----------+-----------+-----------+-----------+

a[0] a[1] a[2] a[3]

base_w(X, 16, 3)
+-----------+-----------+-----------+
| 1 | 2 | 3 |
+-----------+-----------+-----------+

a[0] a[1] a[2]

base_w(X, 16, 2)
+-----------+-----------+
| 1 | 2 |
+-----------+-----------+

a[0] a[1]

2.6. Member Functions (Functions set, get)

To simplify algorithm descriptions, we assume the existence of member functions. If a complex
data structure like a public key PK contains a variable X then PK.getX() returns the value
of X for this public key. Accordingly, PK.setX(Y) sets variable X in PK to the value held by
Y . Since camelCase is used for member function names, a value z may be referred to as Z in

8

692 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

the function name, e.g. getZ.

2.7. Cryptographic (Hash) Function Families

SPHINCS+ makes use of several different function families with cryptographic properties.
Every SPHINCS+ instantiation MUST describe how to implement each of the following func-
tions. For the main instantiations given in this document, this will be done using a single
(hash) function, i.e., SHA2-256 or SHAKE-128. Specific instantiations are given in Section 7.
SPHINCS+ applies the multi-target mitigation technique from [9], independently keying

and randomizing each hash function call in the original SPHINCS. The implementation of this
randomization and keying differs for different instantiations as different function families (e.g.,
SHA2 or SHAKE) have different properties. Hence, we introduce tweakable hash functions
as a layer of abstraction. All algorithms in this specification use tweakable hash functions in
place of traditional hash functions. Later, in Section 7, we describe how to implement the
tweakable hash functions.
In addition to several tweakable hash functions, SPHINCS+ makes use of two PRFs and a

keyed hash function. Input and output length are given in terms of the security parameter n
and the message digest length m, both to be defined more precisely in the coming sections.

2.7.1. Tweakable Hash Functions (Functions T_l, F, H)

A tweakable hash function takes a public seed PK.seed and context information in form of
an address ADRS in addition to the message input. This allows to make the hash function
calls for each key pair and position in the virtual tree structure of SPHINCS+ independent
from each other. The addressing scheme will be described in Section 2.7.3.
The schemes described in this specification build upon several instantiations of tweakable

hash functions of the form

T` : Bn × B32 × B`n → Bn,
md← T`(PK.seed,ADRS,M)

mapping and `n-byte message M to an n-byte hash value md using an n-byte seed PK.seed
and a 32-byte address ADRS. The function T` is denoted by T_l in pseudocode.
There are two special cases which we rename for consistency with previous descriptions of

hash-based signature schemes:

F : Bn × B32 × Bn → Bn,

F
def
= T1

H : Bn × B32 × B2n → Bn

H
def
= T2

2.7.2. PRF and Message Digest (Functions PRF, PRF_msg, H_msg)

SPHINCS+ makes use of a pseudorandom function PRF for pseudorandom key generation:

PRF : Bn × B32 → Bn.

9

— Internet: Portfolio 693

In addition, SPHINCS+ uses a pseudorandom function PRFmsg to generate randomness for
the message compression:

PRFmsg : Bn × Bn × B∗ → Bn.

To compress the message to be signed, SPHINCS+ uses an additional keyed hash function
Hmsg that can process arbitrary length messages:

Hmsg : Bn × Bn × Bn × B∗ → Bm.

2.7.3. Hash Function Address Scheme (Structure of ADRS)

An address ADRS is a 32-byte value that follows a defined structure. In addition, it comes
with set methods to manipulate the address. We explain the generation of addresses in the
following sections where they are used. Essentially, all functions have to keep track of the
current context, updating the addresses after each hash call.
There are five different types of addresses for the different use cases. One type is used for the

hashes in WOTS+ schemes, one is used for compression of the WOTS+ public key, the third
is used for hashes within the main Merkle tree construction, another is used for the hashes in
the Merkle tree in FORS, and the last is used for the compression of the tree roots of FORS.
These types largely share a common format. We describe them in more detail, below.
The structure of an address complies with word borders, with a word being 32 bits long in

this context. Only the tree address (i.e. the index of a specific subtree in the main tree) is too
long to fit a single word: for this, we reserve three words. An address is structured as follows.
It always starts with a layer address of one word in the most significant bits, followed by a tree
address of three words. These addresses describe the position of a tree within the hypertree.
The layer address describes the height of a tree within the hypertree starting from height zero
for trees on the bottom layer. The tree address describes the position of a tree within a layer
of a multi-tree starting with index zero for the leftmost tree. The next word defines the type
of the address. It is set to 0 for a WOTS+ hash address, to 1 for the compression of the
WOTS+ public key, to 2 for a hash tree address, to 3 for a FORS address, and to 4 for the
compression of FORS tree roots.
We first describe the WOTS+ address (Figure 2). In this case, the type word is followed

by the key pair address that encodes the index of the WOTS+ key pair within the specified
tree. The next word encodes the chain address (i.e. the index of the chain within WOTS+),
followed by a word that encodes the address of the hash function call within the chain. Note
that the address of the bottom of the chain is also used to generate the secret keys based on
SK.seed.

layer address tree address

type = 0 key pair address chain address hash address

Figure 2: WOTS+ hash address.

The second type (Figure 3) is used to compress the WOTS+ public keys. The type word
is set to 1. Similar to the address used within WOTS+, the next word encodes the key pair

10

694 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

address. The remaining two words are not needed, and thus remain zero. We zero pad the
address to the constant length of 32 bytes.

layer address tree address

type = 1 key pair address padding = 0

Figure 3: WOTS+ public key compression address.

The third type (Figure 4) addresses the hash functions in the main tree. In this case the
type word is set to 2, followed by a zero padding of one word. The next word encodes the
height of the tree node that is being computed, followed by a word that encodes the index of
this node at that height.

layer address tree address

type = 2 padding = 0 tree height tree index

Figure 4: hash tree address.

The next type (Figure 5) is of a similar format, and is used to describe the hash functions
in the FORS tree. The type word is set to 3. The key pair address is used to signify which
FORS key pair is used, identical to the key pair address in the WOTS+ hash addresses. Its
value is the same as that of the WOTS+ key pair that is used to authenticate it, i.e. its index
as a leaf in the specified tree. The tree height and tree index fields are used to address the
hashes within the FORS tree. This is done like for the above-mentioned hashes in the main
tree, with the additional consideration that the tree indices are counted continuously across
the different FORS trees. The addresses at tree height 0 are used to generate the leaf nodes
from SK.seed.

layer address tree address

type = 3 key pair address tree height tree index

Figure 5: FORS tree address.

The final type (Figure 6) is used to compress the tree roots of the FORS trees. The type
word is set to 4. Like the WOTS+ public key compression address, it contains only the address
of the FORS key pair, but is padded to the full length.
All fields within these addresses encode unsigned integers. When describing the generation

of addresses we use set methods that take positive integers and set the bits of a field to the
binary representation of that integer, in big-endian notation. Throughout this document, we

11

— Internet: Portfolio 695

layer address tree address

type = 4 key pair address padding = 0

Figure 6: FORS tree roots compression address.

adhere to the convention of assuming that changing the type word of an address (indicated
by the use of the setType() method) initializes the subsequent three words to zero.
In order to make keeping track of the types easier throughout the pseudo-code in the rest of

this document, we refer to them respectively using the constants WOTS_HASH, WOTS_PK, TREE,
FORS_TREE and FORS_ROOTS.

3. WOTS+ One-Time Signatures

This section describes the WOTS+ scheme, in a version similar to [7]. WOTS+ is a OTS
scheme; while a private key can be used to sign any message, each private key MUST NOT
be used to sign more than a single message. In particular, if a private key is used to sign two
different messages, the scheme becomes insecure.
The description given here is tailored to the use inside of SPHINCS+. It assumes that

the scheme is used as a subroutine inside a higher order scheme and is not sufficient for a
standalone implementation of WOTS+. The section starts with an explanation of parame-
ters. Afterwards, the so-called chaining function, which forms the main building block of the
WOTS+ scheme, is explained. A description of the algorithms for key generation and sign-
ing follows. Finally, we give an algorithm to compute a WOTS+ public key from a WOTS+

signature. This will be used as a subroutine in SPHINCS+ signature verification.

3.1. WOTS+ Parameters

WOTS+ uses the parameters n and w; they both take positive integer values. These parame-
ters are summarized as follows:

• n: the security parameter; it is the message length as well as the length of a private key,
public key, or signature element in bytes.

• w: the Winternitz parameter; it is an element of the set {4, 16, 256}.

These parameters are used to compute values len, len1 and len2:

• len: the number of n-byte-string elements in a WOTS+ private key, public key, and
signature. It is computed as len = len1 + len2, with

len1 =

⌈
n

log(w)

⌉
, len2 =

⌊
log (len1(w − 1))

log(w)

⌋
+ 1

The security parameter n is the same as the security parameter n for SPHINCS+. The value
of n determines the in- and output length of the tweakable hash function used for WOTS+.

12

696 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

The value of n also determines the length of messages that can be processed by the WOTS+

signing algorithm. The parameter w can be chosen from the set {4, 16, 256}. A larger value of
w results in shorter signatures but slower operations; it has no effect on security. Choices of
w are limited to the values 4, 16, and 256 since these values yield optimal trade-offs and easy
implementation. WOTS+ parameters are implicitly included in algorithm inputs as needed.

3.2. WOTS+ Chaining Function (Function chain)

The chaining function (Algorithm 2) computes an iteration of F on an n-byte input using
a WOTS+ hash address ADRS and a public seed PK.seed. The address ADRS MUST
have the first seven 32-bit words set to encode the address of this chain. In each iteration,
the address is updated to encode the current position in the chain before ADRS is used to
process the input by F.
In the following, ADRS is a 32-byte WOTS+ hash address as specified in Section 2.7.3 and

PK.seed is a n-byte string. The chaining function takes as input an n-byte string X;, a start
index i, a number of steps s, as well as ADRS and PK.seed. The chaining function returns
as output the value obtained by iterating F for s times on input X.

#Input: Input string X, start index i, number of steps s, public seed PK.seed,
address ADRS

#Output: value of F iterated s times on X

chain(X, i, s, PK.seed, ADRS) {
if (s == 0) {

return X;
}
if ((i + s) > (w - 1)) {

return NULL;
}
byte[n] tmp = chain(X, i, s - 1, PK.seed, ADRS);

ADRS.setHashAddress(i + s - 1);
tmp = F(PK.seed, ADRS, tmp);
return tmp;

}

Algorithm 2: chain – Chaining function used in WOTS+.

3.3. WOTS+ Private Key (Function wots_SKgen)

The WOTS+ private key, denoted by sk (s for secret), is a length len array of n-byte strings.
This private key MUST NOT be used to sign more than one message. This private key is
only implicitly used. Therefore, the following is just to support a better understanding of the
following algorithms. Each n-byte string in the WOTS+ private key is derived from a secret
seed SK.seed which is part of the SPHINCS+ secret key and a WOTS+ address ADRS using
PRF. The same secret seed is used to generate all secret key values within SPHINCS+. The
address used to generate the i-th n-byte string of sk MUST encode the position of the i-th
hash chain of this WOTS+ instance within the SPHINCS+ structure.
The following pseudocode (Algorithm 3) describes an algorithm to generate a WOTS+

private key.
#Input: secret seed SK.seed, address ADRS

13

— Internet: Portfolio 697

#Output: WOTS+ private key sk

wots_SKgen(SK.seed, ADRS) {
for (i = 0; i < len; i++) {

ADRS.setChainAddress(i);
sk[i] = PRF(SK.seed, ADRS);

}
return sk;

}

Algorithm 3: wots_SKgen – Generating a WOTS+ private key.

3.4. WOTS+ Public Key Generation (Function wots_PKgen)

A WOTS+ key pair defines a virtual structure that consists of len hash chains of length w.
Each of the len stings of n-bytes in the private key defines the start node for one hash chain.
The public key is the tweakable hash of the end nodes of these hash chains. To compute the
hash chains, the chaining function (Algorithm 2) is used. A WOTS+ hash address ADRS
and a seed PK.seed have to be provided by the calling algorithm as well as a secret seed
SK.seed. The address ADRS MUST encode the address of the WOTS+ key pair within
the SPHINCS+ structure. Hence, a WOTS+ algorithm MUST NOT manipulate any parts of
ADRS other than the last three 32-bit words. Note that the PK.seed used here is public
information also available to a verifier. The following pseudocode (Algorithm 4) describes an
algorithm for generating the public key pk.

#Input: secret seed SK.seed, address ADRS, public seed PK.seed
#Output: WOTS+ public key pk

wots_PKgen(SK.seed, PK.seed, ADRS) {
wotspkADRS = ADRS; // copy address to create OTS public key address
for (i = 0; i < len; i++) {

ADRS.setChainAddress(i);
sk = PRF(SK.seed, ADRS);
tmp[i] = chain(sk[i], 0, w - 1, PK.seed, ADRS);

}
wotspkADRS.setType(WOTS_PK);
wotspkADRS.setKeyPairAddress(ADRS.getKeyPairAddress());
pk = T_len(PK.seed, wotspkADRS, tmp);
return pk;

}

Algorithm 4: wots_PKgen – Generating a WOTS+ public key.

3.5. WOTS+ Signature Generation (Function wots_sign)

A WOTS+ signature is a length len array of n-byte strings. The WOTS+ signature is gener-
ated by mapping a message M to len integers between 0 and w− 1. To this end, the message
is transformed into len1 base-w numbers using the base_w function defined in Section 2.5.
Next, a checksum over M is computed and appended to the transformed message as len2
base-w numbers using the base_w function. Note that the checksum may reach a maximum
integer value of len1 · (w − 1) · 28 and therefore depends on the parameters n and w. For the
parameter sets given in Section 7, a 32-bit unsigned integer is sufficient to hold the check-
sum. If other parameter sets are used, the size of the variable holding the integer value of the

14

698 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

checksum MUST be sufficiently large. Each of the base-w integers is used to select a node
from a different hash chain. The signature is formed by concatenating the selected nodes. A
WOTS+ hash address ADRS, a public seed PK.seed, and a secret seed SK.seed have to be
provided by the calling algorithm. The address will encode the address of the WOTS+ key pair
within a greater structure. Hence, a WOTS+ algorithm MUST NOT manipulate any parts
of ADRS other than the last three 32-bit words. Note that the PK.seed used here is public
information also available to a verifier while the secret seed SK.seed is private information.
The pseudocode for generating a WOTS+ signature sig is shown below (Algorithm 5).

#Input: Message M, secret seed SK.seed, public seed PK.seed, address ADRS
#Output: WOTS+ signature sig

wots_sign(M, SK.seed, PK.seed, ADRS) {
csum = 0;

// convert message to base w
msg = base_w(M, w, len_1);

// compute checksum
for (i = 0; i < len_1; i++) {

csum = csum + w - 1 - msg[i];
}

// convert csum to base w
csum = csum << (8 - ((len_2 * lg(w)) % 8));
len_2_bytes = ceil((len_2 * lg(w)) / 8);
msg = msg || base_w(toByte(csum, len_2_bytes), w, len_2);
for (i = 0; i < len; i++) {

ADRS.setChainAddress(i);
sk = PRF(SK.seed, ADRS);
sig[i] = chain(sk, 0, msg[i], PK.seed, ADRS);

}
return sig;

}

Algorithm 5: wots_sign – Generating a WOTS+ signature on a message M .

The data format for a signature is given in Figure 7.

sigots[0]

. . .

sigots[len− 1]

n bytes

n bytes

Figure 7: WOTS+ Signature data format.

3.6. WOTS+ Compute Public Key from Signature (Function wots_pkFromSig)

SPHINCS+ uses implicit signature verification for WOTS+. In order to verify a WOTS+

signature sig on a message M, the verifier computes a WOTS+ public key value from the

15

— Internet: Portfolio 699

signature. This can be done by “completing” the chain computations starting from the signa-
ture values, using the base-w values of the message hash and its checksum. This step, called
wots_pkFromSig, is described below in Algorithm 6. The result of wots_pkFromSig then has
to be verified. In a standalone version, this would be done by simple comparison. When used
in SPHINCS+ the output value is verified by using it to compute a SPHINCS+ public key.
A WOTS+ hash address ADRS and a public seed PK.seed have to be provided by the

calling algorithm. The address will encode the address of the WOTS+ key pair within the
SPHINCS+ structure. Hence, a WOTS+ algorithm MUST NOT manipulate any parts of
ADRS other than the last three 32-bit words. Note that the PK.seed used here is public
information also available to a verifier.

#Input: Message M, WOTS+ signature sig, address ADRS, public seed PK.seed
#Output: WOTS+ public key pk_sig derived from sig

wots_pkFromSig(sig, M, PK.seed, ADRS) {
csum = 0;
wotspkADRS = ADRS;

// convert message to base w
msg = base_w(M, w, len_1);

// compute checksum
for (i = 0; i < len_1; i++) {

csum = csum + w - 1 - msg[i];
}

// convert csum to base w
csum = csum << (8 - ((len_2 * lg(w)) % 8));
len_2_bytes = ceil((len_2 * lg(w)) / 8);
msg = msg || base_w(toByte(csum, len_2_bytes), w, len_2);
for (i = 0; i < len; i++) {

ADRS.setChainAddress(i);
tmp[i] = chain(sig[i], msg[i], w - 1 - msg[i], PK.seed, ADRS);

}

wotspkADRS.setType(WOTS_PK);
wotspkADRS.setKeyPairAddress(ADRS.getKeyPairAddress());
pk_sig = T_len(PK.seed, wotspkADRS, tmp);
return pk_sig;

}

Algorithm 6: wots_pkFromSig – Computing a WOTS+ public key from a message and its
signature.

4. The SPHINCS+ Hypertree

In this section, we explain how the SPHINCS+ hypertree is built. We first explain how
WOTS+ gets combined with a binary hash tree, leading to a fixed input-length version of the
eXtended Merkle Signature Scheme (XMSS). Afterwards, we explain how to go to a hypertree
from there. The hypertree might be viewed as a fixed input-length version of multi-tree XMSS
(XMSSMT).

16

700 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

4.1. (Fixed Input-Length) XMSS

XMSS is a method for signing a potentially large but fixed number of messages. It is based
on the Merkle signature scheme. It authenticates 2h

′ WOTS+ public keys using a binary
tree of height h′. Hence, an XMSS key pair for height h′ can be used to sign 2h

′ different
messages. Each node in the binary tree is an n-byte value which is the tweakable hash of the
concatenation of its two child nodes. The leaves are the WOTS+ public keys. The XMSS
public key is the root node of the tree. In SPHINCS+, the XMSS secret key is the single secret
seed that is used to generate all WOTS+ secret keys.
An XMSS signature in the context of SPHINCS+ consists of the WOTS+ signature on the

message and the so-called authentication path. The latter is a vector of tree nodes that allow
a verifier to compute a value for the root of the tree starting from a WOTS+ signature. A
verifier computes the root value and verifies its correctness. A standalone XMSS signature
also contains the index of the used WOTS+ key pair. In the context of SPHINCS+ this is not
necessary as the SPHINCS+ signature allows to compute the index for each XMSS signature
contained.

4.1.1. XMSS Parameters

XMSS has the following parameters:

h′ : the height (number of levels - 1) of the tree.

n : the length in bytes of messages as well as of each node.

w : the Winternitz parameter as defined for WOTS+ in the previous Section.

There are 2h
′ leaves in the tree. XMSS signatures are denoted by SIGXMSS (SIG_XMSS in

pseudocode). WOTS+ signatures are denoted by sig.
XMSS parameters are implicitly included in algorithm inputs as needed.

4.1.2. XMSS Private Key

In the context of SPHINCS+, an XMSS private key is the single secret seed SK.seed contained
in the SPHINCS+ secret key. It is used to generate the WOTS+ secret keys within the
structure of an XMSS key pair as described in Section 3.

4.1.3. TreeHash (Function treehash)

For the computation of the internal n-byte nodes of a Merkle tree, the subroutine treehash
(Algorithm 7) accepts a secret seed SK.seed, a public seed PK.seed, an unsigned integer s
(the start index), an unsigned integer z (the target node height), and an address ADRS that
encodes the address of the containing tree. For the height of a node within a tree, counting
starts with the leaves at height zero. The treehash algorithm returns the root node of a tree
of height z with the leftmost leaf being the WOTS+ pk at index s. It is REQUIRED that
s % 2z = 0, i.e. that the leaf at index s is a leftmost leaf of a sub-tree of height z. Otherwise
the algorithm fails as it would compute non-existent nodes. The treehash algorithm described
here uses a stack holding up to (z−1) nodes, with the usual stack functions push() and pop().
We furthermore assume that the height of a node (an unsigned integer) is stored alongside a
node’s value (an n-byte string) on the stack.

17

— Internet: Portfolio 701

Input: Secret seed SK.seed, start index s, target node height z, public seed
PK.seed, address ADRS

Output: n-byte root node - top node on Stack

treehash(SK.seed, s, z, PK.seed, ADRS) {
if(s % (1 << z) != 0) return -1;
for (i = 0; i < 2^z; i++) {

ADRS.setType(WOTS_HASH);
ADRS.setKeyPairAddress(s + i);
node = wots_PKgen(SK.seed, PK.seed, ADRS);
ADRS.setType(TREE);
ADRS.setTreeHeight(1);
ADRS.setTreeIndex(s + i);
while (Top node on Stack has same height as node) {

ADRS.setTreeIndex((ADRS.getTreeIndex() - 1) / 2);
node = H(PK.seed, ADRS, (Stack.pop() || node));
ADRS.setTreeHeight(ADRS.getTreeHeight() + 1);

}
Stack.push(node);

}
return Stack.pop();

}

Algorithm 7: treehash – The TreeHash algorithm.

4.1.4. XMSS Public Key Generation (Function xmss_PKgen)

The XMSS public key is computed as described in xmss_PKgen (Algorithm 10). In the context
of SPHINCS+ the XMSS public key PK is the root of the binary hash tree. The root is
computed using treehash. The public key generation takes a secret seed SK.seed, a public
seed PK.seed, and an address ADRS. The latter encodes the position of this XMSS instance
within the SPHINCS+ structure.

Input: Secret seed SK.seed, public seed PK.seed, address ADRS
Output: XMSS public key PK

xmss_PKgen(SK.seed, PK.seed, ADRS) {
pk = treehash(SK.seed, 0, h’, PK.seed, ADRS)
return pk;

}

Algorithm 8: xmss_PKgen – Generating an XMSS public key.

4.1.5. XMSS Signature

An XMSS signature is a ((len + h′) ∗ n)-byte string consisting of

• a WOTS+ signature sig taking len · n bytes,

• the authentication path AUTH for the leaf associated with the used WOTS+ key pair
taking h′ · n bytes.

The authentication path is an array of h′ n-byte strings. It contains the siblings of the
nodes in on the path from the used leaf to the root. It does not contain the nodes on the path

18

702 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

itself. These nodes in AUTH are needed by a verifier to compute a root node for the tree
from a WOTS+ public key. A node N is addressed by its position in the tree. N(x, y) denotes
the yth node on level x with y = 0 being the leftmost node on a level. The leaves are on level
0, the root is on level h′. An authentication path contains exactly one node on every layer
0 ≤ x ≤ (h′ − 1). For the ith WOTS+ key pair, counting from zero, the jth authentication
path node is

AUTH[j] = N

(
j, b i

2j
c ⊕ 1

)

The computation of the authentication path is discussed in Section 4.1.6.
The data format for a signature is given in Figure 8.

sig (len · n bytes)

AUTH [0] (n bytes)

...

AUTH [h-1] (n bytes)

Figure 8: XMSS Signature

4.1.6. XMSS Signature Generation (Function xmss_sign)

To compute the XMSS signature of a messageM in the context of SPHINCS+, the secret seed
SK.seed, the public seed PK.seed, the index idx of the WOTS+ key pair to be used, and the
address ADRS of the XMSS instance are needed. First, a WOTS+ signature of the message
digest is computed using the WOTS+ instance at index idx. Next, the authentication path is
computed.
The node values of the authentication path MAY be computed in any way. The least

memory-intensive method is to compute all nodes using the treehash algorithm (Algorithm 7).
This is described here. Note that the details of how this step is implemented are not relevant
to interoperability; it is not necessary to know any of these details in order to perform the
signature verification operation.

Input: n-byte message M, secret seed SK.seed, index idx, public seed PK.seed,
address ADRS

Output: XMSS signature SIG_XMSS = (sig || AUTH)

xmss_sign(M, SK.seed, idx, PK.seed, ADRS)
// build authentication path
for (j = 0; j < h’; j++) {

k = floor(idx / (2^j)) XOR 1;
AUTH[j] = treehash(SK.seed, k * 2^j, j, PK.seed, ADRS);

}

19

— Internet: Portfolio 703

ADRS.setType(WOTS_HASH);
ADRS.setKeyPairAddress(idx);
sig = wots_sign(M, SK.seed, PK.seed, ADRS);
SIG_XMSS = sig || AUTH;
return SIG_XMSS;

}

Algorithm 9: xmss_sign – Generating an XMSS signature.

4.1.7. XMSS Compute Public Key from Signature (Function xmss_pkFromSig)

SPHINCS+ makes use of implicit signature verification of XMSS signatures. An XMSS signa-
ture is used to compute a candidate XMSS public key, i.e., the root of the tree. This is used
in further computations (signature of the tree above) and implicitly verified by the outcome
of that computation. Hence, this specification does not contain an xmss_verify method but
the method xmss_pkFromSig.
The method xmss_pkFromSig takes an n-byte message M , an XMSS signature SIGXMSS,

a signature index idx, a public seed PK.seed, and an address ADRS. The latter encodes
the position of the current XMSS instance within the virtual structure of the SPHINCS+ key
pair. First, wots_pkFromSig is used to compute a candidate WOTS+ public key. This in turn
is used together with the authentication path to compute a root node which is then returned.
The algorithm xmss_pkFromSig is given as Algorithm 10.

Input: index idx, XMSS signature SIG_XMSS = (sig || AUTH), n-byte message M,
public seed PK.seed, address ADRS

Output: n-byte root value node[0]

xmss_pkFromSig(idx, SIG_XMSS, M, PK.seed, ADRS){

// compute WOTS+ pk from WOTS+ sig
ADRS.setType(WOTS_HASH);
ADRS.setKeyPairAddress(idx);
sig = SIG_XMSS.getWOTSSig();
AUTH = SIG_XMSS.getXMSSAUTH();
node[0] = wots_pkFromSig(sig, M, PK.seed, ADRS);

// compute root from WOTS+ pk and AUTH
ADRS.setType(TREE);
ADRS.setTreeIndex(idx);
for (k = 0; k < h’; k++) {

ADRS.setTreeHeight(k+1);
if ((floor(idx / (2^k)) % 2) == 0) {

ADRS.setTreeIndex(ADRS.getTreeIndex() / 2);
node[1] = H(PK.seed, ADRS, (node[0] || AUTH[k]));

} else {
ADRS.setTreeIndex((ADRS.getTreeIndex() - 1) / 2);
node[1] = H(PK.seed, ADRS, (AUTH[k] || node[0]));

}
node[0] = node[1];

}
return node[0];

}

Algorithm 10: xmss_pkFromSig – Computing an XMSS public key from an XMSS signature.

20

704 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

4.2. HT: The Hypertee

The SPHINCS+ hypertree HT is a variant of XMSSMT . It is essentially a certification tree
of XMSS instances. A HT is a tree of several layers of XMSS trees. The trees on top and
intermediate layers are used to sign the public keys, i.e., the root nodes, of the XMSS trees on
the respective next layer below. Trees on the lowest layer are used to sign the actual messages,
which are FORS public keys in SPHINCS+. All XMSS trees in HT have equal height.
Consider a HT of total height h that has d layers of XMSS trees of height h′ = h/d. Then

layer d− 1 contains one XMSS tree, layer d− 2 contains 2h
′ XMSS trees, and so on. Finally,

layer 0 contains 2h−h
′ XMSS trees.

4.2.1. HT Parameters

In addition to all XMSS parameters, a HT requires the hypertree height h and the number of
tree layers d, specified as an integer value that divides h without remainder. The same tree
height h′ = h/d and the same Winternitz parameter w are used for all tree layers.

4.2.2. HT Key Generation (Function ht_PKgen)

The HT private key is the secret seed SK.seed which is used to generate all the WOTS+

private keys within the virtual structure spanned by the HT.
The HT public key is the public key (root node) of the single XMSS tree on the top layer.

Its computation is explained below. The public key generation takes as input a private and a
public seed.

Input: Private seed SK.seed, public seed PK.seed
Output: HT public key PK_HT

ht_PKgen(SK.seed, PK.seed){
ADRS = toByte(0, 32);
ADRS.setLayerAddress(d-1);
ADRS.setTreeAddress(0);
root = xmss_PKgen(SK.seed, PK.seed, ADRS);
return root;

}

Algorithm 11: ht_PKgen – Generating an HT public key.

4.2.3. HT Signature

A HT signature SIGHT is a byte string of length (h + d ∗ len) ∗ n. It consists of d XMSS
signatures (of (h/d+ len) ∗ n bytes each).
The data format for a signature is given in Figure 9

4.2.4. HT Signature Generation (Function ht_sign)

To compute a HT signature SIGHT of a message M using, ht_sign (Algorithm 12) described
below uses xmss_sign as defined in Section 4.1.6. The algorithm ht_sign takes as input a
message M , a private seed SK.seed, a public seed PK.seed, and an index idx. The index
identifies the leaf of the hypertree to be used to sign the message. The HT signature then

21

— Internet: Portfolio 705

XMSS signature SIGXMSS (layer 0) ((h/d+ len) · n bytes)

XMSS signature SIGXMSS (layer 1) ((h/d+ len) · n bytes)

...

XMSS signature SIGXMSS (layer d− 1) ((h/d+ len) · n bytes)

Figure 9: HT signature

consists of a stack of XMSS signatures using the XMSS trees on the path from the leaf with
index idx to the top tree. Note that idx is passed as two separate arguments, split into an index
to address the specific tree and the leaf index within that tree. This allows for a somewhat
higher hypertree, as one can use a 64-bit integer for tree_idx to support parameters that
conform to h < 64+h/d. This matches the parameters in this specification If other parameter
sets are used that allow greater h, the data type of tree_idx MUST be adapted accordingly.
Algorithm ht_sign uses xmss_pkFromSig to compute the root node of an XMSS instance

after that instance was used for signing. An alternative is to use xmss_PKgen. However,
xmss_PKgen rebuilds the whole tree while xmss_pkFromSig only does one call to wots_pkFromSig
and (h′−1) calls to H. The algorithm ht_sign as described below is just one way to generate
a HT signature. Other methods MAY be used as long as they generate the same output.

Input: Message M, private seed SK.seed, public seed PK.seed, tree index
idx_tree, leaf index idx_leaf

Output: HT signature SIG_HT

ht_sign(M, SK.seed, PK.seed, idx_tree, idx_leaf) {
// init
ADRS = toByte(0, 32);

// sign
ADRS.setLayerAddress(0);
ADRS.setTreeAddress(idx_tree);
SIG_tmp = xmss_sign(M, SK.seed, idx_leaf, PK.seed, ADRS);
SIG_HT = SIG_HT || SIG_tmp;
root = xmss_pkFromSig(idx_leaf, SIG_tmp, M, PK.seed, ADRS);
for (j = 1; j < d; j++) {

idx_leaf = (h / d) least significant bits of idx_tree;
idx_tree = (h - j * (h / d)) most significant bits of idx_tree;
ADRS.setLayerAddress(j);
ADRS.setTreeAddress(idx_tree);
SIG_tmp = xmss_sign(root, SK.seed, idx_leaf, PK.seed, ADRS);
SIG_HT = SIG_HT || SIG_tmp;
if (j < d - 1) {

root = xmss_pkFromSig(idx_leaf, SIG_tmp, root, PK.seed, ADRS);
}

}
return SIG_HT;

22

706 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

}

Algorithm 12: ht_sign – Generating an HT signature

4.2.5. HT Signature Verification (Function ht_verify)

HT signature verification (Algorithm 13) can be summarized as d calls to xmss_pkFromSig and
one comparison with a given value. HT signature verification takes a message M , a signature
SIGHT, a public seed PK.seed, an index idx (split into a tree index and a leaf index, as
above), and a HT public key PKHT.

Input: Message M, signature SIG_HT, public seed PK.seed, tree index idx_tree,
leaf index idx_leaf, HT public key PK_HT.

Output: Boolean

ht_verify(M, SIG_HT, PK.seed, idx_tree, idx_leaf, PK_HT){
// init
ADRS = toByte(0, 32);

// verify
SIG_tmp = SIG_HT.getXMSSSignature(0);
ADRS.setLayerAddress(0);
ADRS.setTreeAddress(idx_tree);
node = xmss_pkFromSig(idx_leaf, SIG_tmp, M, PK.seed, ADRS);
for (j = 1; j < d; j++) {

idx_leaf = (h / d) least significant bits of idx;
idx_tree = (h - j * h / d) most significant bits of idx;
SIG_tmp = SIG_HT.getXMSSSignature(j);
ADRS.setLayerAddress(j);
ADRS.setTreeAddress(idx_tree);
node = xmss_pkFromSig(idx_leaf, SIG_tmp, node, PK.seed, ADRS);

}
if (node == PK_HT) {

return true;
} else {

return false;
}

}

Algorithm 13: ht_verify – Verifying a HT signature SIGHT on a message M using a HT
public key PKHT

5. FORS: Forest Of Random Subsets

The SPHINCS+ hypertree HT is not used to sign the actual messages but the public keys of
FORS instances which in turn are used to sign message digests. FORS (pronounced [fO:rs]),
short for forest of random subsets, is a few-time signature scheme (FTS). FORS is an im-
provement of HORST [4] which in turn is a variant of HORS [17]. For security it is essential
that the input to FORS is the output of a hash function. In the following we describe FORS
as acting on bit strings.
FORS uses parameters k and t = 2a (example parameters are t = 215, k = 10). FORS

signs strings of length ka bits. Here, we deviate from defining sizes in bytes as the message

23

— Internet: Portfolio 707

length in bits might not be a multiple of eight. The private key consists of kt random n-
byte strings grouped into k sets, each containing t n-byte strings. The private key values are
pseudorandomly generated from the main private seed SK.seed in the SPHINCS+ private key.
In SPHINCS+, the FORS private key values are only temporarily generated as an intermediate
result when computing the public key or a signature.
The FORS public key is a single n-byte hash value. It is computed as the tweakable hash

of the root nodes of k binary hash trees. Each of these binary hash trees has height a and is
used to authenticate the t private key values of one of the k sets. Accordingly, the leaves of a
tree are the (tweakable) hashes of the values in its private key set.
A signature on a string M consists of k private key values – one per set of private key

elements – and the associated authentication paths. To compute the signature, md is split
into k a-bit strings. Next, each of these bit strings is interpreted as an integer between 0 and
t− 1. Each of these integers is used to select one private key value from a set. I.e., if the first
integer is i, the ith private key element of the first set gets selected and so on. The signature
consists of the selected private key elements and the associated authentication paths.
SPHINCS+ uses implicit verification for FORS, only using a method to compute a candidate

public key from a signature. This is done by computing root nodes of the k trees using the
indices computed from the input string as well as the private key values and authentication
paths form the signature. The tweakable hash of these roots is then returned as candidate
public key.
We now describe the parameters and algorithms for FORS.

5.1. FORS Parameters

FORS uses the parameters n, k, and t; they all take positive integer values. These parameters
are summarized as follows:

• n: the security parameter; it is the length of a private key, public key, or signature
element in bytes.

• k: the number of private key sets, trees and indices computed from the input string.

• t: the number of elements per private key set, number of leaves per hash tree and upper
bound on the index values. The parameter t MUST be a power of 2. If t = 2a, then the
trees have height a and the input string is split into bit strings of length a.

Inputs to FORS are bit strings of length k log t.

5.2. FORS Private Key (Function fors_SKgen)

In the context of SPHINCS+, a FORS private key is the single private seed SK.seed contained
in the SPHINCS+ private key. It is used to generate the kt n-byte private key values using
PRF with an address. While these values are logically grouped into a two-dimensional array,
for implementations it makes sense to assume they are in a one-dimensional array of length
kt. The jth element of the ith set is then stored at sk[ik + j]. To generate one of these
elements, a FORS address ADRS is used, that encodes the position of the FORS key pair
within SPHINCS+ and has tree height set to 0 and leaf index set to ik + j:

24

708 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

...

...

...

Figure 10: FORS trees and PK

#Input: secret seed SK.seed, address ADRS, secret key index idx = ik+j
#Output: FORS private key sk

fors_SKgen(SK.seed, ADRS, idx) {
ADRS.setTreeHeight(0);
ADRS.setTreeIndex(idx);
sk = PRF(SK.seed, ADRS);

return sk;
}

Algorithm 14: fors_SKgen – Computing a FORS private key value.

5.3. FORS TreeHash (Function fors_treehash)

Before coming to the FORS public key, we have to discuss computation of the trees. For the
computation of the n-byte nodes in the FORS hash trees, the subroutine fors_treehash is
used. It is essentially the same algorithm as treehash (Algorithm 7) in Section 4.1. The two
differences are how the leaf nodes are computed and how addresses are handled. However,
as the addresses are similar, an implementation can implement both algorithms in the same
routine easily.
Algorithm fors_treehash accepts a secret seed SK.seed, a public seed PK.seed, an un-

signed integer s (the start index), an unsigned integer z (the target node height), and an
address ADRS that encodes the address of the FORS key pair. As for treehash, the
fors_treehash algorithm returns the root node of a tree of height z with the leftmost leaf
being the hash of the private key element at index s. Here, s is ranging over the whole kt
private key elements. It is REQUIRED that s % 2z = 0, i.e. that the leaf at index s is a
leftmost leaf of a sub-tree of height z. Otherwise the algorithm fails as it would compute
non-existent nodes.

Input: Secret seed SK.seed, start index s, target node height z, public seed
PK.seed, address ADRS

Output: n-byte root node - top node on Stack

25

— Internet: Portfolio 709

fors_treehash(SK.seed, s, z, PK.seed, ADRS) {
if(s % (1 << z) != 0) return -1;
for (i = 0; i < 2^z; i++) {

ADRS.setTreeHeight(0);
ADRS.setTreeIndex(s + i);
sk = PRF(SK.seed, ADRS);
node = F(PK.seed, ADRS, sk);
ADRS.setTreeHeight(1);
ADRS.setTreeIndex(s + i);
while (Top node on Stack has same height as node) {

ADRS.setTreeIndex((ADRS.getTreeIndex() - 1) / 2);
node = H(PK.seed, ADRS, (Stack.pop() || node));
ADRS.setTreeHeight(ADRS.getTreeHeight() + 1);

}
Stack.push(node);

}
return Stack.pop();

}

Algorithm 15: The fors_treehash algorithm.

5.4. FORS Public Key (Function fors_PKgen)

In the context of SPHINCS+, the FORS public key is never generated alone. It is only
generated together with a signature. We include fors_PKgen for completeness, a better un-
derstanding, and testing. Algorithm fors_PKgen takes a private seed SK.seed, a public seed
PK.seed, and a FORS address ADRS. The latter encodes the position of the FORS instance
within SPHINCS+. It outputs a FORS public key.

Input: Secret seed SK.seed, public seed PK.seed, address ADRS
Output: FORS public key PK

fors_PKgen(SK.seed, PK.seed, ADRS) {
forspkADRS = ADRS; // copy address to create FTS public key address

for(i = 0; i < k; i++){
root[i] = fors_treehash(SK.seed, i*k, a, PK.seed, ADRS);

}
forspkADRS.setType(FORS_ROOTS);
forspkADRS.setKeyPairAddress(ADRS.getKeyPairAddress());
pk = T_k(PK.seed, forspkADRS, root);
return pk;

}

Algorithm 16: fors_PKgen – Generate a FORS public key.

5.5. FORS Signature Generation (Function fors_sign)

A FORS signature is a length k(log t + 1) array of n-byte strings. It contains k private key
values, n-bytes each, and their associated authentication paths, log t n-byte values each.
The algorithm fors_sign takes a (k log t)-bit string M , a private seed SK.seed, a public

seed PK.seed, and an address ADRS. The latter encodes the position of the FORS instance
within SPHINCS+. It outputs a FORS signature SIGFORS.

26

710 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

#Input: Bit string M, secret seed SK.seed, address ADRS, public seed PK.seed
#Output: FORS signature SIG_FORS

fors_sign(M, SK.seed, PK.seed, ADRS) {
// compute signature elements
for(i = 0; i < k; i++){

// get next index
unsigned int idx = bits i*t to (i+1)*t - 1 of M;

// pick private key element
ADRS.setTreeHeight(0);
ADRS.setTreeIndex(i*t + idx);
SIG_FORS = SIG_FORS || PRF(SK.seed, ADRS);

// compute auth path
for (j = 0; j < a; j++) {

s = floor(idx / (2^j)) XOR 1;
AUTH[j] = fors_treehash(SK.seed, i * k + s * 2^j, j, PK.seed, ADRS);

}
SIG_FORS = SIG_FORS || AUTH;

}
return SIG_FORS;

}

Algorithm 17: fors_sign – Generating a FORS signature on string M .

The data format for a signature is given in Figure 11.

Private key value (tree 0) (n bytes)

AUTH (tree 0) (log t · n bytes)

...

Private key value (tree k − 1) (n bytes)

AUTH (tree k − 1) (log t · n bytes)

Figure 11: HT signature

5.6. FORS Compute Public Key from Signature (Function fors_pkFromSig)

SPHINCS+ makes use of implicit signature verification of FORS signatures. A FORS sig-
nature is used to compute a candidate FORS public key. This public key is used in further
computations (message for the signature of the XMSS tree above) and implicitly verified by
the outcome of that computation. Hence, this specification does not contain a fors_verify
method but the method fors_pkFromSig.
The method fors_pkFromSig takes a k log t-bit string M , a FORS signature SIGFORS, a

public seed PK.seed, and an address ADRS. The latter encodes the position of the FORS

27

— Internet: Portfolio 711

instance within the virtual structure of the SPHINCS+ key pair. First, the roots of the
k binary hash trees are computed using fors_treehash. Afterwards the roots are hashed
using the tweakable hash function Tk. The algorithm fors_pkFromSig is given as Algo-
rithm 18. The method fors_pkFromSig makes use of functions SIGFORS.getSK(i) and
SIGFORS.getAUTH(i). The former returns the ith secret key element stored in the signature,
the latter returns the ith authentication path stored in the signature.

Input: FORS signature SIG_FORS, (k lg t)-bit string M, public seed PK.seed,
address ADRS

Output: FORS public key

fors_pkFromSig(SIG_FORS, M, PK.seed, ADRS){

// compute roots
for(i = 0; i < k; i++){

// get next index
unsigned int idx = bits i*t to (i+1)*t - 1 of M;

// compute leaf
sk = SIG_FORS.getSK(i);
ADRS.setTreeHeight(0);
ADRS.setTreeIndex(i*t + idx);
node[0] = F(PK.seed, ADRS, sk);

// compute root from leaf and AUTH
auth = SIG_FORS.getAUTH(i);
ADRS.setTreeIndex(idx);
for (j = 0; j < a; j++) {

ADRS.setTreeHeight(j+1);
if ((floor(idx / (2^j)) % 2) == 0) {

ADRS.setTreeIndex(ADRS.getTreeIndex() / 2);
node[1] = H(PK.seed, ADRS, (node[0] || auth[j]));

} else {
ADRS.setTreeIndex((ADRS.getTreeIndex() - 1) / 2);
node[1] = H(PK.seed, ADRS, (auth[j] || node[0]));

}
node[0] = node[1];

}
root[i] = node[0];

}

forspkADRS = ADRS; // copy address to create FTS public key address
forspkADRS.setType(FORS_ROOTS);
forspkADRS.setKeyPairAddress(ADRS.getKeyPairAddress());
pk = T_k(PK.seed, forspkADRS, root);
return pk;

}
Algorithm 18: fors_pkFromSig – Compute a FORS public key from a FORS signature.

6. SPHINCS+

We now have all ingredients to describe our main construction SPHINCS+. Essentially,
SPHINCS+ is an orchestration of the methods and schemes described before. It only adds
randomized message compression and verifiable index generation.

28

712 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

6.1. SPHINCS+ Parameters

SPHINCS+ has the following parameters:

n : the security parameter in bytes.

w : the Winternitz parameter as defined in Section 3.1.

h : the height of the hypertree as defined in Section 4.2.1.

d : the number of layers in the hypertree as defined in Section 4.2.1.

k : the number of trees in FORS as defined in Section 5.1.

t : the number of leaves of a FORS tree as defined in Section 5.1.

All the restrictions stated in the previous sections apply. Recall that we use a = log t.
Moreover, from these values the values m and len are computed as

• m: the message digest length in bytes. It is computed as

m = b(k log t+ 7)/8c+ b(h− h/d+ 7)/8c+ b(h/d+ 7)/8c.

While only h+k log t bits would be needed, using the longerm as defined above simplifies
implementations significantly.

• len: the number of n-byte string elements in a WOTS+ private key, public key, and
signature. It is computed as len = len1 + len2, with

len1 =

⌈
n

log(w)

⌉
, len2 =

⌊
log (len1(w − 1))

log(w)

⌋
+ 1

In the following, we assume that all algorithms have access to these parameters.

6.2. SPHINCS+ Key Generation (Function spx_keygen)

The SPHINCS+ private key contains two elements. First, the n-byte secret seed SK.seed
which is used to generate all the WOTS+ and FORS private key elements. Second, an n-byte
PRF key SK.prf which is used to deterministically generate a randomization value for the
randomized message hash.
The SPHINCS+ public key also contains two elements. First, the HT public key, i.e. the

root of the tree on the top layer. Second, an n-byte public seed value PK.seed which is
sampled uniformly at random.
As spx_sign does not get the public key, but needs access to PK.seed (and possibly to

PK.root for fault attack mitigation), the SPHINCS+ secret key contains a copy of the public
key.
The description of algorithm spx_keygen assumes the existence of a function sec_rand

which on input i returns i-bytes of cryptographically strong randomness.

29

— Internet: Portfolio 713

Input: (none)
Output: SPHINCS+ key pair (SK,PK)

spx_keygen(){
SK.seed = sec_rand(n);
SK.prf = sec_rand(n);
PK.seed = sec_rand(n);
PK.root = ht_PKgen(SK.seed, PK.seed);
return ((SK.seed, SK.prf, PK.seed, PK.root), (PK.seed, PK.root));

}

Algorithm 19: spx_keygen – Generate a SPHINCS+ key pair.

The format of a SPHINCS+ private and public key is given in Figure 12.

SK.seed (n bytes)

SK.prf (n bytes)

PK.seed (n bytes)

PK.root (n bytes)

PK.seed (n bytes)

PK.root (n bytes)

Figure 12: Left: SPHINCS+ secret key. Right: SPHINCS+ public key.

6.3. SPHINCS+ Signature

A SPHINCS+ signature SIGHT is a byte string of length (1+k(a+1)+h+dlen)n. It consists
of an n-byte randomization string R, a FORS signature SIGFORS consisting of k(a+1) n-byte
strings, and a HT signature SIGHT of (h+ dlen)n bytes.
The data format for a signature is given in Figure 9

Randomness R (n bytes)

FORS signature SIGFORS (k(a+ 1) · n bytes)

HT signature SIGHT ((h+ dlen)n bytes)

Figure 13: SPHINCS+ signature

6.4. SPHINCS+ Signature Generation (Function spx_sign)

Generating a SPHINCS+ signature consists of four steps. First, a random value R is pseu-
dorandomly generated. Next, this is used to compute a m byte message digest which is split

30

714 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

into a b(k log t + 7)/8c-byte partial message digest tmp_md, a b(h − h/d + 7)/8c-byte tree
index tmp_idx_tree, and a b(h/d + 7)/8c-byte leaf index tmp_idx_leaf. Next, the actual
values md, idx_tree, and idx_leaf are computed by extracting the necessary number of
bits. The partial message digest md is then signed with the idx_leaf-th FORS key pair of
the idx_tree-th XMSS tree on the lowest HT layer. The public key of the FORS key pair
is then signed using HT. As described in Section 4.2.3, the index is never actually used as a
whole, but immediately split into a tree index and a leaf index, for ease of implementation.
When computing R, the PRF takes a n-byte string opt which is initialized with zero but

can be overwritten with randomness if the global variable RANDOMIZE is set. This option
is given as otherwise SPHINCS+ signatures would be always deterministic. This might be
problematic in some settings. See Section 9 and Section 11 for more details.

Input: Message M, private key SK = (SK.seed, SK.prf, PK.seed, PK.root)
Output: SPHINCS+ signature SIG

spx_sign(M, SK){
// init
ADRS = toByte(0, 32);

// generate randomizer
opt = toByte(0, 32);
if(RANDOMIZE){

opt = rand(n);
}
R = PRF_msg(SK.prf, opt, M);
SIG = SIG || R;

// compute message digest and index
digest = H_msg(R, PK.seed, PK.root, M);
tmp_md = first floor((ka +7)/ 8) bytes of digest;
tmp_idx_tree = next floor((h - h/d +7)/ 8) bytes of digest;
tmp_idx_leaf = next floor((h/d +7)/ 8) bytes of digest;

md = first ka bits of tmp_md;
idx_tree = first h - h/d bits of tmp_idx_tree;
idx_leaf = first h/d bits of tmp_idx_leaf;

// FORS sign
ADRS.setLayerAddress(0);
ADRS.setTreeAddress(idx_tree);
ADRS.setType(FORS_TREE);
ADRS.setKeyPairAddress(idx_leaf);

SIG_FORS = fors_sign(md, SK.seed, PK.seed, ADRS);
SIG = SIG || SIG_FORS;

// get FORS public key
PK_FORS = fors_pkFromSig(SIG_FORS, M, PK.seed, ADRS);

// sign FORS public key with HT
ADRS.setType(TREE);
SIG_HT = ht_sign(PK_FORS, SK.seed, PK.seed, idx_tree, idx_leaf);
SIG = SIG || SIG_HT;

return SIG;

31

— Internet: Portfolio 715

}

Algorithm 20: spx_sign – Generating a SPHINCS+ signature

6.5. SPHINCS+ Signature Verification (Function spx_verify)

SPHINCS+ signature verification (Algorithm 21) can be summarized as recomputing message
digest and index, computing a candidate FORS public key, and verifying the HT signature on
that public key. Note that the HT signature verification will fail if the FORS public key is
not matching the real one (with overwhelming probability). SPHINCS+ signature verification
takes a message M , a signature SIG, and a SPHINCS+ public key PK.

Input: Message M, signature SIG, public key PK
Output: Boolean

spx_verify(M, SIG, PK){
// init
ADRS = toByte(0, 32);
R = SIG.getR();
SIG_FORS = SIG.getSIG_FORS();
SIG_HT = SIG.getSIG_HT();

// compute message digest and index
digest = H_msg(R, PK.seed, PK.root, M);
tmp_md = first floor((ka +7)/ 8) bytes of digest;
tmp_idx_tree = next floor((h - h/d +7)/ 8) bytes of digest;
tmp_idx_leaf = next floor((h/d +7)/ 8) bytes of digest;

md = first ka bits of tmp_md;
idx_tree = first h - h/d bits of tmp_idx_tree;
idx_leaf = first h/d bits of tmp_idx_leaf;

// compute FORS public key
ADRS.setLayerAddress(0);
ADRS.setTreeAddress(idx_tree);
ADRS.setType(FORS_TREE);
ADRS.setKeyPairAddress(idx_leaf);

PK_FORS = fors_pkFromSig(SIG_FORS, md, PK.seed, ADRS);

// verify HT signature
ADRS.setType(TREE);
return ht_verify(PK_FORS, SIG_HT, PK.seed, idx_tree, idx_leaf, PK.root);

}

Algorithm 21: spx_verify – Verify a SPHINCS+ signature SIG on a message M using a
SPHINCS+ public key PK

7. Instantiations

This section discusses instantiations for SPHINCS+. SPHINCS+ can be viewed as a signature
template. It is a way to build a signature scheme by instantiating the cryptographic function

32

716 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

families used. We consider different ways to implement the cryptographic function families
as different signature systems. Orthogonal to instantiating the cryptographic function fami-
lies are parameter sets. Parameter sets assign specific values to the SPHINCS+ parameters
described in Section 7.1 below.
In this section, we first define the requirements on parameters and discuss existing trade-offs

between security, sizes, and speed controlled by the different parameters. Then we propose 6
different parameter sets that match NIST security levels I, III, and V (2 parameter sets per
security level). Afterwards we propose three different instantiations for the cryptographic func-
tion families of SPHINCS+. These instantiation are indeed three different signature schemes.
We propose SPHINCS+-SHAKE256, SPHINCS+-SHA-256, and SPHINCS+-Haraka. The for-
mer two use the cryptographic hash functions defined in FIPS PUB 202, respectively FIPS
PUB 180, to instantiate the cryptographic function families. The latter uses a new crypto-
graphic (hash) function called Haraka, proposed in [11].

7.1. SPHINCS+ Parameter Sets

SPHINCS+ is described by the following parameters already described in the previous sections.
All parameters take positive integer values.

n : the security parameter in bytes.

w : the Winternitz parameter.

h : the height of the hypertree.

d : the number of layers in the hypertree.

k : the number of trees in FORS.

t : the number of leaves of a FORS tree.

Recall that we use a = log t. Moreover, from these values the valuesm and len are computed
as

• m: the message digest length in bytes. It is computed as m = b(k log t+ 7)/8c+ b(h−
h/d+ 7)/8c+ b(h/d+ 7)/8c.

• len: the number of n-byte string elements in a WOTS+ private key, public key, and
signature. It is computed as len = len1 + len2, with

len1 =

⌈
n

log(w)

⌉
, len2 =

⌊
log (len1(w − 1))

log(w)

⌋
+ 1

We now repeat the roles of, requirements on, and properties of these parameters. After-
wards, we give several formulas that show their exact influence on performance and security.
The security parameter n is also the output length of all cryptographic function families

besides Hmsg. Therefore, it largely determines which security level a parameter set reaches.
It is also the size of virtually any node within the SPHINCS+ structure and thereby also the
size of all elements in a signature, i.e., the signature size is a multiple of n.
The Winternitz parameter w determines the number and length of the hash chains per

WOTS+ instance. A greater value for w linearly increases the length of the hash chains

33

— Internet: Portfolio 717

but logarithmically reduces their number. The number of hash chains exactly corresponds
to the number of n-byte values in a WOTS+ signature. Thereby it largely influences the
size of a SPHINCS+ signature. The product of the number and the length of hash chains
directly correlates with signing speed as essentially all time in HT signature generation is
spent computing WOTS+ public keys. Therefore, greater w means shorter signatures but
slower signing. However, note the exponential gap. The bigger w gets, the more expensive
is the signature size reduction. The Winternitz parameter does not influence SPHINCS+

security.
The height of the hypertree h determines the number of FORS instances. Hence, it de-

termines the probability that a FORS key pair is used several times, given the number of
signatures made with a SPHINCS+ key pair. Hence, the height has a direct impact on secu-
rity: A taller hypertree gives more security. On the other hand, a taller tree leads to larger
signatures.
The number of layers d is a pure performance trade-off parameter and does not influence

security. It determines the number of layers of XMSS trees in the hypertree. Hence, d must
divide h without remainder. The parameter d thereby defines the height of the XMSS trees
used. The greater d, the smaller the subtrees, the faster signing. However, d also controls the
number of layers and thereby the number of WOTS+ signatures within a HT and thereby a
SPHINCS+ signature.
The parameters k and t determine the performance and security of FORS. The number of

leaves of a tree in FORS t must be a power of two while k can be chosen freely. A smaller t
generally leads to smaller and faster signatures. However, for a given security level a smaller
t requires a greater k which increases signature size and slows down signing. Hence, it is
important to balance these two parameters. This is best done using the formulas below.
The message digest length m is the output length of Hmsg in bytes. It is b(k log t+ 7)/8c+
b(h− h/d+ 7)/8c+ b(h/d+ 7)/8c bytes.
The number len of chains in a WOTS+ key pair determines the WOTS+ signature size.

7.1.1. Influence of Parameters on Security and Performance

In the following we provide formulas to compute speed, size and security for a given SPHINCS+

parameter set. This supports parameter selection. We also provide a SAGE script in Ap-
pendix A.

Key Generation. Generating the SPHINCS+ private key and PK.seed requires three calls
to a secure random number generator. Next we have to generate the top tree. For the leaves
we need to do 2h/d WOTS+ key generations (len calls to PRF for generating the sk and
wlen calls to F for the pk) and we have to compress the WOTS+ public key (one call to Tlen).
Computing the root of the top tree requires (2h/d − 1) calls to H.

Signing. For randomization and message compression we need one call to PRF, PRFmsg

and Hmsg. The FORS signature requires kt calls to PRF and F. Further, we have to compute
the root of k binary trees of height log t which adds k(t− 1) calls to H. Finally, we need one
call to Tk. Next, we compute one HT signature which consists of d trees similar to the key
generation. Hence, we have to do d(2h/d) times len calls to PRF and wlen calls to F as well
as d(2h/d) calls to Tlen. For computing the root of each tree we get additionally d(2h/d − 1)
calls to H.

34

718 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

Table 1: Overview of the number of function calls we require for each operation. We omit the
single calls to Hmsg,PRFmsg, and Tk for signing and single calls to Hmsg and Tk

for verification as they are negligible when estimating speed.

F H PRF Tlen

Key Generation 2h/dwlen 2h/d − 1 2h/dlen 2h/d

Signing kt+ d(2h/d)wlen k(t− 1) + d(2h/d − 1) kt+ d(2h/d)len + 1 d2h/d

Verification kt+ dwlen k(t− 1) + h kt d

Table 2: Key and signature sizes

SK PK Sig

Size 4n 2n (h+ k(log t+ 1) + d · len+ 1)n

Verification. First we need to compute the message hash using Hmsg. We need to do one
FORS verification which requires kt calls to PRF and F, k(t− 1) calls to H and one call to
Tk for hashing the roots. Next, we have to verify d XMSS signatures which takes < wlen calls
to F and one call to Tlen each for WOTS+ signature verification. It also needs dh/d calls to
H for the d root computations.

The size of the SPHINCS+ private and public keys along with the signature can be deduced
from Section Section 6 as shown in Table 2.
The classical security level, or bit security of SPHINCS+ against generic attacks can be

computed as

b = − log

(
1

28n
+
∑

γ

(
1−

(
1− 1

t

)γ)k (q
γ

)(
1− 1

2h

)q−γ 1

2hγ

)
.

The quantum security level, or bit security of SPHINCS+ against generic attacks can be
computed as

b = −1

2
log

(
1

28n
+
∑

γ

(
1−

(
1− 1

t

)γ)k (q
γ

)(
1− 1

2h

)q−γ 1

2hγ

)
.

Here, we are neglecting the small constant factors inside the logarithm. For details see Sec-
tion 9.

7.1.2. Proposed Parameter Sets and Security Levels

As explained in the previous subsection, even for a fixed security level the design of SPHINCS+

supports many different tradeoffs between signature size and speed. In Table 3 we list 6
parameter sets that—together with the cycle counts given in Table 4— illustrates how these
tradeoffs can be used to obtain concrete parameter sets optimizing for signature size and
concrete parameter sets optimizing for speed. Specifically, we propose parameter sets achieving
security levels 1, 3, and 5; for each of these security levels propose one size-optimized (ending

35

— Internet: Portfolio 719

Table 3: Example parameter sets for SPHINCS+ targeting different security levels and dif-
ferent tradeoffs between size and speed. The column labeled “bitsec” gives the bit
security computed as described in Section 9; the column labeled “sec level” gives the
security level according to the levels specified in Section 4.A.5 of the Call for Propos-
als. As explained later, for Haraka the security level is limited to 2: i.e., it is
1 for n = 16, and 2 for n = 24 or n = 32.

n h d log(t) k w bitsec sec level sig bytes
SPHINCS+-128s 16 64 8 15 10 16 133 1 8 080

SPHINCS+-128f 16 60 20 9 30 16 128 1 16 976

SPHINCS+-192s 24 64 8 16 14 16 196 3 17 064

SPHINCS+-192f 24 66 22 8 33 16 194 3 35 664

SPHINCS+-256s 32 64 8 14 22 16 255 5 29 792

SPHINCS+-256f 32 68 17 10 30 16 254 5 49 216

on ‘s’ for “small”) and one speed-optimized (ending on ‘f’ for “fast”) parameter set. The
parameter sets were obtained with the help of a Sage script that we list in Appendix A. In
the first line of that script, set the “target bit security” to a desired value (in our case, close
to 128 for security level 1, close to 192 for security level 3, and close to 256 for security level
5). The output of the script will be a long list of possible parameters achieving this security
level together with the signature size and an estimate of the performance, using the formulas
from Section 7.1.1 above.
Note that we did not obtain our proposed parameter sets simply by searching this output

for the smallest or the fastest option. The reason is that, for example, optimizing for size
without caring about speed at all results in signatures of a size of ≈ 15KB for a bit security
of 256, but computing one signature takes more than 20 minutes on our benchmark platform.
Such a tradeoff might be interesting for very few select applications, but we cannot think of
many applications that would accept such a large time for signing. Instead, the proposed
parameter sets are what we consider “non-extreme”; i.e., with a signing time of at most a few
seconds in our non-optimized implementation.
The choice of these parameters is orthogonal to the choice of hash function. In Section 7.2

we describe 3 different instantiations of the underlying hash function. Together with the 6
parameter sets listed in Table 3 we obtain 18 different instantiations of SPHINCS+.

7.2. Instantiations of Hash Functions

In this section we define three different signature schemes which are obtained by instantiating
the cryptographic function families of SPHINCS+ with SHA-256, SHAKE256, and Haraka.
To instantiate the tweakable hash functions, all proposals first use PRF to generate pseudo-
random bitmasks which are then XORed with the input message. The masked messages are
denoted as M⊕.

36

720 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

7.2.1. SPHINCS+-SHAKE256

For SPHINCS+-SHAKE256 we define

F(PK.seed,ADRS,M1) = SHAKE256(PK.seed||ADRS||M⊕1 , 8n),

H(PK.seed,ADRS,M1,M2) = SHAKE256(PK.seed||ADRS||M⊕1 ||M⊕2 , 8n),

Hmsg(R,PK.seed,PK.root,M) = SHAKE256(R||PK.seed||PK.root||M, 8m),

PRF(SEED,ADRS) = SHAKE256(SEED||ADRS, 8n),

PRFmsg(SK.prf, OptRand,M) = SHAKE256(SK.prf||OptRand||M, 8n).

(1)

Generating the Masks. SHAKE256 can be used as an XOF which allows us to generate the
bitmasks for arbitrary length messages directly. For a message M with l bits we compute

M⊕ = M ⊕ SHAKE256(PK.seed||ADRS, l).

7.2.2. SPHINCS+-SHA-256

In a similar way we define the functions for SPHINCS+-SHA-256 as

F(PK.seed,ADRS,M1) = SHA-256(PK.seed||ADRS||M⊕1),

H(PK.seed,ADRS,M1,M2) = SHA-256(PK.seed||ADRS||M⊕1 ||M⊕2),

Hmsg(R,PK.seed,PK.root,M) = MGF1-SHA-256(SHA-256(R||PK.seed||PK.root||M),m),

PRF(SEED,ADRS) = SHA-256(SEED||ADRS),

PRFmsg(SK.seed, OptRand,M) = HMAC-SHA-256(SK.prf, OptRand||M).
(2)

which uses MGF1 as defined in RFC 2437 and HMAC as defined in FIPS-198-1. Note that
MGF1 takes the as last input the output length in bytes.

Generating the Masks. SHA-256 can be turned into a XOF using MGF1 which allows us to
generate the bitmasks for arbitrary length messages directly. For a message M with l bytes
we compute

M⊕ = M ⊕MGF1-SHA-256(PK.seed||ADRS, l).

Shorter Outputs. If a parameter set requires an output length n < 32-bytes for F, H, PRF,
and PRFmsg we take the first n bytes of the output and discard the remaining.

7.2.3. SPHINCS+-Haraka

Our third instantiation is based on the Haraka short-input hash function. Haraka is not
a NIST-approved hash function, and since it is new it needs further analysis. We specify
SPHINCS+-Haraka as third signature scheme to demonstrate the possible speed-up by using
a dedicated short-input hash function.
As the Haraka family only supports input sizes of 256 and 512 bits we extend it with a

sponge-based construction based on the 512-bit permutation π. The sponge has a rate of 256-
bit respectively a capacity of 256-bit and the number of rounds used in π is 5. The padding
scheme is the same as defined in FIPS PUB 202 for SHAKE256.

37

— Internet: Portfolio 721

We denote this sponge as HarakaS(M,d), where M is the padded message and d is the
length of the message digest in bits. A 256-bit message block Mi is absorbed into the state S
by

Absorb(M,S) : S = π(S ⊕ (M ||toByte(0, 32))). (3)

The d-bit hash output h is computed by squeezing blocks of r bits

Squeeze(S) : h = h||Trunc256(S)

S = π(S).
(4)

For a more efficient construction we tweak the round constants of Haraka using PK.seed.1

As PK.seed is the same for all hash function calls for a given key pair we expand PK.seed
using HarakaS and use the result for the round constants in all instantiations of Haraka used
in SPHINCS+. In total there are 40 128-bit round constants defined by

RC0, . . . , RC39 = HarakaS(PK.seed, 5120). (5)

This only has to be done once for each key pair for all subsequent calls to Haraka hence the
costs for this are amortized. We denote Haraka with the round constants tweaked by PK.seed
as HarakaPK.seed. We can now define all functions we need for SPHINCS+-Haraka as

F(PK.seed,ADRS,M1) = Haraka512PK.seed(ADRS||M⊕1),

H(PK.seed,ADRS,M1,M2) = HarakaSPK.seed(ADRS||M⊕1 ||M⊕2 , 8n),

Hmsg(R,PK.seed,PK.root,M) = HarakaSPK.seed(R||PK.root||M, 8m),

PRF(SEED,ADRS) = Haraka256SEED(ADRS),

PRFmsg(SK.prf, OptRand,M) = HarakaSPK.seed(SK.prf||OptRand||M, 8n).

(6)

For F we pad M⊕1 with zero if n < 32. Note that H and Hmsg will always have a different
ADRS and we therefore do not need any further domain separation.

Generating the Masks. The mask for the message used in F is generated by computing

M⊕1 = M1 ⊕Haraka256(ADRS) (7)

respectively for H

M⊕1 ||M⊕2 = (M1||M2)⊕Haraka512(ADRS||toByte(0, 32)). (8)

For all other purposes the masks are generated using HarakaS. For a message M with l
bytes we compute

M⊕ = M ⊕HarakaSPK.seed(ADRS, l).

Shorter Outputs. If a parameter set requires an output length n < 32-bytes for F and PRF,
we take the first n bytes of the output and discard the remaining.

Security Restrictions. Note that our instantiation using Haraka employs the sponge con-
struction with a capacity of 256-bits. Hence, in contrast to SPHINCS+-SHA-256 and SPHINCS+-
SHAKE256, SPHINCS+-Haraka reaches security level 2 for 32- and 24-byte outputs and se-
curity level 1 for 16-byte outputs.

1This is similar to the ideas used for the MDx-MAC construction [16].

38

722 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

8. Design rationale

The design rationale behind SPHINCS+ is to follow the original SPHINCS construction and
apply several results from more recent research. The idea behind SPHINCS was as follows.
One can build a stateless hash-based signature scheme using a massive binary certification
tree and selecting a leaf at random for each message to be signed. The problem with this
approach is that the tree has to be extremely high, i.e., a height of about twice the security
level would be necessary. This leads to totally unpractical signature sizes. Using a hypertree
instead of a binary certification tree allows to trade speed for signature size. However, this is
still not sufficient to get practical sizes and speed.
The main new idea in SPHINCS was to not use the leaves directly to sign messages but

to use the leaves to certify FTS key pairs. This allowed to massively reduce the total tree
height (by a factor about 4). This is due to the fact that the security of an FTS instance
degrades with every signature a key pair is used for. Hence, the height of the tree does not
have to be such that collisions do only occur with negligible probability anymore. Instead, it
has to be ensured that the product of the probability of a γ-times collision on a leaf and the
forging probability of an adversary after seeing γ FTS signatures (with the same key pair) is
negligible.
From this, it is mainly a question of balancing parameters to find a practical scheme. For

the full original reasoning see [4].
In the following we give a more detailed reasoning regarding the changes made to SPHINCS

in SPHINCS+, and changes that were discussed by the SPHINCS+ team but got discarded.

8.1. Changes Made

We changed several details of SPHINCS leading to SPHINCS+. The reasoning behind those
changes is discussed in the following.

8.1.1. Multi-Target Attack Protection

SPHINCS was designed to be collision-resilient i.e., to not be vulnerable to collision attacks
against the used hash function. This had two reasons. First, it allowed to choose a smaller
output length at the same security level which led to smaller signatures. Second, collision
resistance is a far stronger assumption than the used (second-)preimage resistance and pseu-
dorandomness assumptions.
However, the use of (second-)preimage resistance introduced a new issue as pointed out in [9]:

Multi-target attacks. Preimage resistance properties are targeted properties. An adversary
is asked to invert the function on a given target value, or to find a second-preimage for a
given target value. If it suffices to break the given property for one out of many targets, the
adversarial effort is reduced by a factor of the number of targets. To prevent this e apply the
mitigation techniques from [9] using keyed hash functions. Each hash function call is keyed
with a different key and applies different bitmasks. Keys are derived from, and bitmasks are
pseudorandomly generated from a public seed and an address specifying the context of the
call. For this we introduce the notion of tweakable hash functions which take in addition to
the input value a public seed and an address.
This pseudorandom generation of bitmasks comes at the cost of introducing a random

oracle assumption for the PRF used to generate the bitmasks. However, this only applies to

39

— Internet: Portfolio 723

the pseudorandom generation of the bitmasks. I.e., if all bitmasks would be stored in the
public key, the scheme would have a standard model security proof (even if these bitmasks
where generated using exactly the same way but without giving away the seed). Hence, the
security reduction in [9] is in the quantum-accessible random oracle model.
One difference to [9] is that in all instantiations of SPHINCS+, keys are not pseudorandomly

generated. Instead, the concatenation of public seed and address is used to practically key
the functions. Given how the tweakable hash functions are instantiated, this means that we
assume that there do not exist any (exponentially large) subsets of the domain on which
second-preimage finding is easy. This assumption holds for any hash function based on the
sponge or Merkle-Dåmgard construction, assuming the block or compression function behaves
like a random function.

8.1.2. Tree-less WOTS+ Public Key Compression

SPHINCS+ compresses the end nodes of the WOTS+ hash chains with a single call to a
tweakable hash function, while SPHINCS used a so called L-tree. The reason to use L-trees in
SPHINCS was that this required only two n-byte bitmasks per layer, i.e., 2dlog lene bitmasks.
A single call to a tweakable hash requires len n-byte bitmasks. As the bitmasks were stored
in the public key, this meant smaller public keys. Now, that bitmasks are pseudorandomly
generated anyway and hence are not stored in the public key anymore, this argument does
not apply. On the opposite, tree based compression is slower than using a single call to a
tweakable hash with longer input.

8.1.3. FORS

FORS was used to replace HORST. HORST, as its predecessor HORS, had the problem
that weak messages existed as recently independently pointed out in [1]. More specifically,
in HORST the message is also split into k indexes as for FORS. However, these indexes all
selected values from the same single set of secret key values. Hence, if the same index appeared
multiple times in a signature, still only a single secret value would be required. In extreme
cases this means that for the signature of a message only a single secret value has to be know.
FORS prevents this using separate secret value sets per index obtained from the message.
Even if a message maps k-times to the same index, the signature now contains k different
secret values.
For the same parameters k and t this would mean an increase in signature size and worse

speed as now k trees of height log t have to be computed instead of one and for each signature
value an authentication path of length (log t)−1 is needed. However, due to the strengthened
security, we can choose different values for k and t. This in the end leads to smaller signatures
than for HORST.
We also considered a method similar to Octopus [2]. The idea is that authentication paths in

HORST largely overlap. Hence, it becomes possible to reduce the signature size removing any
redundancy in the authentication paths. This comes at the cost of a rather involved method
to collect the right nodes as well as variable size signatures. In practice this means that one
still has to prepare for the worst case. This worst case indeed still has smaller signatures than
HORST. We decided against this option as the FORS signature size matches that of Octopus’
worst case signature size. At the same time, FORS gives more flexibility in the choice of k
and t, and comes with a far simpler signature and verification method that Octopus.

40

724 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

8.1.4. Verifiable Index Selection

In SPHINCS the index of the HORST instance to be used was pseudorandomly selected. This
had the drawback that the index appeared random to a verifier and it was impossible to verify
that the index was indeed generated that way. This allowed an adversary a multi-target attack
on HORST (similarly for FORS in SPHINCS+). An adversary could first map a message to
an index set and then check if the necessary secret values were already uncovered for some
HORST key pair. Then it would just select the index of that HORST key pair as index and
succeed in forging a signature.
To prevent this attack, we decided to make index generation verifiable. More specifically,

we generate the index together with the message digest:
We compute message digest and index as

(md||idx) = Hmsg(R,PK,M)

where PK = (PK.seed||PK.root) contains the top root node and the public seed.
This way, an adversary can no longer freely choose an index. Indeed, selecting a message

immediately also fixes the index. This method has another advantage in addition to avoiding
the multi-target attack against FORS/HORST. We can omit the index in the SPHINCS
signature as it would be redundant.

8.1.5. Making Deterministic Signing Optional

The pseudorandom generation of randomizer R now allows to use additional randomness. It
takes a n-byte value OptRand. Per default OptRand is set to 0 but it can be filled with random
bits e.g. taken from a TRNG. The randomizer is then computed as

R = PRF(SK.prf, OptRand,M).

That way, deterministic signing becomes optional. Deterministic signing can be a problem
for devices which are susceptible to side-channel attacks as it allows to collect several traces
for the exactly same computation by just asking for a signature on the same message multiple
times.
We could of course also have replaced R by a truly random value on default. This would

have caused the scheme to become susceptible to bad randomness. The new method prevents
this. If OptRand is a high entropy string, R has as much entropy as that string. If OptRand is
left as zero or has only little entropy, R is just a pseudorandom value as in SPHINCS.

8.2. Discarded Changes

In Section 8.1.3, we already explained that we discarded the use of an Octopus-like method
as we found a better alternative.
One more idea which we discarded on the way was a signature - secret key size trade-off. To

further shrink the SPHINCS+ signature size, the top z layers of the hypertree can be merged
together into a a single tree of height zh′. That way an SPHINCS+ signature includes z − 1
less WOTS+ signatures. This decreases the signature size by n · len(z−1) bytes, but typically
comes at the cost of speed as now a tree of height zh′ has to be computed for each signature
generation. This can be prevented by storing the nodes at height ih′, where 0 < i < z, as
part of the secret key. These nodes (auxiliary data) can be used to build the authentication

41

— Internet: Portfolio 725

paths to the root of the merged tree without actually computing the whole tree. Indeed,
authentication path computation in this case gets faster than computing the authentication
paths for z tree layers in the original hypertree. The size of the auxiliary data is n

∑z−1
i=1 2ih

′ .
While this already grows extremely fast, the real problem turned out to be key generation
time. As the full tree still has to be computed once during key generation, key generation
time increases. Key generation would now take 2zh

′ WOTS+ key generations.
Initial experiments suggested that key generation time easily moves into the order of minutes

already for z = 2 while the benefit in signature size is 1KB or 2KB for w = 256 and w = 16
respectively. In addition, this optimization significantly complicates implementations as the
top tree has to be handled differently than the remaining trees. Hence, this idea was discarded.

9. Security Evaluation (including estimated security strength
and known attacks)

The security of SPHINCS+ is based on standard properties of the used function families and
the assumption that the PRF used within the instantiations of the tweakable hash functions
(to generate the bitmasks) can be modeled as a random oracle. We want to emphasize again
that this assumption about the random oracle is limited to the pseudorandom generation of
bitmasks.
In this section we give a security reduction for SPHINCS+ underpinning the above claim.

The security reduction essentially combines the original SPHINCS security reduction from [4],
the XMSS-T security reduction from [9], and a new security analysis for multi-instance FORS.
In our technical specification of SPHINCS+ we used the abstraction of tweakable hash

functions to allow for different ways of keying a function and generating bitmasks. In the
security reduction we will remove this abstraction and assume that each call to the hash
function used to instantiate the tweakable hash is keyed with a different value and inputs
are XORed with a bitmask before being processed. Moreover, we assume that the bitmasks
are generated using a third PRF called PRFBM. The PRF PRFBM is the single function
assumed to behave like a random oracle. Finally, we make a statistical assumption on the
hash function F. Informally we require that every element in the image of F has at least two
preimages, i.e.,

(∀k ∈ {0, 1}n)(∀y ∈ IMG(Fk))(∃x, x′ ∈ {0, 1}n) : x 6= x′ ∧ Fk(x) = fk(x
′). (9)

Informally, we will prove the following Theorem where F, H, and T are the cryptographic
hash functions used to instantiate F and H, respectively.

Theorem 9.1 For security parameter n ∈ N, parameters w, h, d,m, t, k as described above,
SPHINCS+ is existentially unforgeable under post-quantum adaptive chosen message attacks
if

• F, H, and T are post-quantum distinct-function multi-target second-preimage resistant
function families,

• F fulfills the requirement of Eqn. 9,

• PRF,PRFmsg are post-quantum pseudorandom function families,

42

726 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

• PRFBM is modeled as a quantum-accessible random oracle, and

• Hmsg is a post-quantum interleaved target subset resilient hash function family.

More specifically, the insecurity function InSecPQ-EU-CMA (SPHINCS+; ξ, 2h
)
describing the

maximum success probability over all adversaries running in time ≤ ξ against the PQ-EU-CMA
security of SPHINCS+ is bounded by

InSecpq-eu-cma (SPHINCS+; ξ
)
≤ 2(InSecpq-prf (PRF; ξ) + InSecpq-prf (PRFmsg; ξ)

+InSecpq-itsr (Hmsg; ξ)+InSecpq-dm-spr (F; ξ)+InSecpq-dm-spr (H; ξ)+InSecpq-dm-spr (T; ξ))
(10)

9.1. Preliminaries

Before we start with the proof, we have to provide two definitions. In general, we refer the
reader to [9] for formal definitions of the above properties with two exceptions. First, we
use a variant of post-quantum multi-function multi-target second-preimage resistance called
post-quantum distinct-function multi-target second-preimage resistance. The distinction here
is that the targets are given for distinct but predefined functions from the family while for
the multi-function notion, the functions are sampled together with the target, uniformly at
random.
Second, we define a variant of subset-resilience which captures the use of FORS in SPHINCS+

which we call (post-quantum) interleaved target subset resilience. The idea is that from a the-
oretical point of view, one can think of the 2h FORS instances as a single huge HORS-style
signature scheme. The secret key consists of 2h key-sets which in turn consist of k key-subsets
of t secret n-byte values, each. The message digest function Hmsg maps a message to a key-set
(by outputting the index) and a set of indexes such that each index is used to select one secret
value per key-subset of the selected key-set.
Formally, the security of this multi-instance FORS boils down to the inability of an adversary

• to learn actual secret values which were not disclosed before,

• to replace secret values by values of its choosing, and

• to find a message which is mapped to a key-set and a set of indexes such that the
adversary has already seen the secret values indicated by the indexes for that key-set.

The former two points will be shown to follow from the properties of F, H, and T as well
as those of PRF. The latter point is exactly what (post-quantum) interleaved target subset
resilience captures.
We define those properties in the following.

Post-quantum distinct-function, multi-target second-preimage resistance (pq-dm-spr).
In the following let λ ∈ N be the security parameter, α = poly(λ), κ = poly(λ), and
Hλ = {HK : {0, 1}α → {0, 1}λ}K∈{0,1}κ be a family of functions. We define the success
probability of any (quantum) adversary A against pq-mm-spr. This definition is parameter-
ized by the number of targets

43

— Internet: Portfolio 727

Succpq-dm-spr
Hλ,p (A) = Pr [(∀ {Ki}q1 ⊂ ({0, 1}κ)q),Mi

$← {0, 1}α, 0 < i ≤ p;

(j,M ′) $← A((K1,M1), . . . , (Kp,Mp)) :

M ′ 6= Mj ∧HKj (Mj) = HKj (M
′)
]
. (11)

(Post-quantum) interleaved target subset resilience. In the following let λ ∈ N be the
security parameter, α = poly(λ), κ = poly(λ), and Hλ = {HK : {0, 1}α → {0, 1}λ}K∈{0,1}κ
be a family of functions. Further consider the mapping function MAPh,k,t : {0, 1}λ →
{0, 1}h × [0, t − 1]k which for parameters h, k, t maps an λ-bit string to a set of k indexes
((I, 1, J1), . . . , (I, k, Jk)) where I is chosen from [0, 2h−1] and each Ji is chosen from [0, t−1].
Note that the same I is used for all tuples (I, i, Ji).
We define the success probability of any (quantum) adversary A against pq-mm-spr of Hλ.

Let G = MAPh,k,t ◦ Hλ. This definition uses an oracle O(·) which upon input of a α-bit

message Mi samples a key Ki
$← {0, 1}κ and returns Ki and G(Ki,Mi). The adversary may

query this oracle with messages of its choosing. The adversary would like to find another G
input whose output is covered by the G outputs produced by the oracle, without the input
being one of the inputs used by the oracle. Note that the adversary knows the description of
G and can evaluate it on randomizer-message pairs of its choosing. However, these queries do
not count into the set of values which need to cover the adversary’s output.

Succpq-itsr
H,q (A) = Pr

[
(K,M)← AO(·)(1λ) s.t. G(K,M) ⊆

q⋃

j=1

G(Kj ,Mj)

∧ (K,M) 6∈ {(Kj ,Mj)}q1
]

where q denotes the number of oracle queries of A and the pairs {(Kj ,Mj)}q1 represent the
responses of oracle O.
Note that this is actually a strengthening of (post-quantum) target subset resilience in the

multi-target setting. In the multi-target version of target subset resilience, A was able to
freely choose the common index I for its output. In interleaved target subset resilience, I is
determined by G and input M .

9.2. Security Reduction

The security reduction is essentially an application of techniques used especially in [9]. Hence,
we will only roughly sketch it here.
We want to bound the success probability of an adversary A against the PQ-EU-CMA se-

curity of SPHINCS+. We start with GAME.0 which is the original PQ-EU-CMA game.
Now consider a second game GAME.1 where all outputs of PRF are replaced by truly
random values. The difference in success probability of any forger A must be bound by
InSecpq-prf (PRF; ξ) otherwise we could use A to break the pseudorandomness of PRF with
a success probability greater InSecpq-prf (PRF; ξ) which would contradict the definition of
InSecpq-prf (PRF; ξ).
Next, consider a game GAME.2 which is the same as GAME.1 but all outputs of PRFmsg

are replaced by truly random values. Following the same reasoning as above, the difference

44

728 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

in success probability of any adversary A playing in the two games must be bounded by
InSecpq-prf (PRFmsg; ξ).
Next, we consider GAME.3 where we consider the game lost if A outputs a valid forgery

(M,SIG) where the FORS signature part of SIG differs from the signature which would be
obtained by signing M with the secret key of the challenger. The difference of any A in
winning the two games must be bounded by InSecpq-dm-spr (F; ξ) + InSecpq-dm-spr (H; ξ) +
InSecpq-dm-spr (T; ξ). Otherwise, we could use A to break the post-quantum distinct-function,
multi-target second-preimage resistance of F, H, or T. A detailed proof of this follows exactly
along the lines of the security reduction for XMSS-T in [9]. Given distinct challenges for each
call to F, H or T for the key-set defined by PK.seed and the address space, we program
PRFBM to output bitmasks which are the XOR of the input to the according tweakable hash
function and the given challenge. That way we program the actual input to the hash function
to be the challenge value. This allows us to extract a second preimage if a collision happens
between the forgery and the honestly generated signature. A pigeon hole argument can be
used to show that such a collision must exist in this case.
Next, we consider GAME.4 which differs from GAME.3 in that we are considering the game

lost if an adversary outputs a valid forgery (M,SIG) where the FORS signature part of SIG
contains a secret value which is the same as that of an honestly generated signature of M but
was not contained in any of the signatures obtained by A via the singing oracle. The difference
of any (unbounded) A in the two games is bounded by 1/2 times the success probability of
A in GAME.3. The reason is that the secret values which were not disclosed to A before still
contain 1 bit of entropy, even for an unbounded A.
Finally, we have to bound the success probability of A in GAME.4. But GAME.4 can

be viewed as the (post-quantum) interleaved target subset resilience game. Because, if A
returns a valid signature and succeeds in the GAME, the FORS signature must be valid and
consist only of values that have been observed by A in previous signatures. Hence, the success
probability of A in GAME.4 is bounded by InSecpq-itsr (Hmsg; ξ) per definition.
Putting things together we obtain the claimed bound. �

9.3. Security Level / Security Against Generic Attacks

As shown in Theorem 9.1, the security of SPHINCS+ relies on the properties of the functions
used to instantiate all the cryptographic function families (and the way they are used to
instantiate the function families). In the following we assume that there do not exist any
structural attacks against the used functions SHA-256, SHAKE256, and Haraka. In later
sections we justify this assumption for each of the function familes.
For now, we only consider generic attacks. We now consider generic classical and quantum

attacks against distinct-function multi-target second-preimage resistance, pseudorandomness
(of function families), and interleaved target subset resilience. Runtime of adversaries is
counted in terms of calls to the cryptographic function families.

9.3.1. Distinct-Function Multi-Target Second-Preimage Resistance

To evaluate the complexity of generic attacks against hash function properties the hash func-
tions are commonly modeled as (family of) random functions. Note, that for random functions
there is no difference between distinct-function multi-target second-preimage resistance and
multi-function multi-target second-preimage resistance. Every key just selects a new ran-

45

— Internet: Portfolio 729

dom function, independent of the key being random or not. In [9] it was shown that the
success probability of any classical qhash-query adversary against multi-function multi-target
second-preimage resistance of a random function with range {0, 1}8n (and hence also against
distinct-function multi-target second-preimage resistance) is exactly qhash+1

28n
. For qhash-query

quantum adversaries the success probability is Θ((qhash+1)2

28n
). Note that these bounds are

independent of the number of targets.

9.3.2. Pseudorandomness of Function Families

The best generic attack against the pseudorandomness of a function family is commonly
believed to be exhaustive key search. Hence, for a function family with key space {0, 1}8n
the success probability of a classical adversary that evaluates the function family on qkey keys
is again bounded by qkey+1

28n
. For qkey-query quantum adversaries the success probability of

exhaustive search in an unstructured space with {0, 1}8n elements is Θ(
(qkey+1)2

28n
) as implicitly

shown in [9] (just consider this as preimage search of a random function).

9.3.3. Interleaved Target Subset Resilience

To evaluate the attack complexity of generic attacks against interleaved target subset resilience
we again assume that the used hash function family is a family of random functions.
Recall that there are parameters h, k, t where t = 2a. These parameters define the fol-

lowing process of choosing sets: generate independent uniform random integers I, J1, . . . , Jk,
where I is chosen from [0, 2h − 1] and each Ji is chosen from [0, t − 1]; then define S =
{(I, 1, J1), (I, 2, J2), . . . , (I, k, Jk)}. (In the context of SPHINCS+, S is a set of positions of
FORS private key values revealed in a signature: I selects the FORS instance, and Ji selects
the position of the value revealed from the ith set inside this FORS instance.)
The core combinatorial question here is the probability that S0 ⊂ S1 ∪ · · · ∪ Sq, where each

Si is generated independently by the above process. (In the context of SPHINCS+, this is the
probability that a new message digest selects FORS positions that are covered by the positions
already revealed in q signatures.) Write Sα as {(Iα, 1, Jα,1), (Iα, 2, Jα,2), . . . , (Iα, k, Jα,k)}.
For each α, the event Iα = I0 occurs with probability 1/2h, and these events are independent.

Consequently, for each γ ∈ {0, 1, . . . , q}, the number of indices α ∈ {1, 2, . . . , q} such that
Iα = I0 is γ with probability

(
q
γ

)
(1− 1/2h)q−γ/2hγ .

Define DarkSideγ as the conditional probability that (I0, i, J0,i) ∈ S1 ∪ · · · ∪ Sq, given
that the above number is γ. In other words, 1 − DarkSideγ is the conditional probability
that (I0, i, J0,i) /∈ {(I1, i, J1,i), (I2, i, J2,i), . . . , (Iq, i, Jq,i)}. There are exactly γ choices of α ∈
{1, 2, . . . , q} for which Iα = I0, and each of these has probability 1 − 1/t of Jα,i missing J0,i.
These probabilities are independent, so 1−DarkSideγ = (1− 1/t)γ .
The conditional probability that S0 ⊂ S1 ∪ · · · ∪ Sq, again given that the above number is

γ, is the kth power of the DarkSideγ quantity defined above. Hence the total probability ε
that S0 ⊂ S1 ∪ · · · ∪ Sq is

∑

γ

DarkSidekγ

(
q

γ

)(
1− 1

2h

)q−γ 1

2hγ
=
∑

γ

(
1−

(
1− 1

t

)γ)k (q
γ

)(
1− 1

2h

)q−γ 1

2hγ
.

For example, if t = 214, k = 22, h = 64, and q = 264, then ε ≈ 2−256.01 (with most of
the sum coming from γ between 7 and 13). The set S0 thus has probability 2−256.01 of being

46

730 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

covered by 264 sets S1, . . . , Sq. (In the SPHINCS+ context, a message digest chosen by the
attacker has probability 2−256.01 of selecting positions covered by 264 previous signatures.)
Hence, for any classical adversary which makes qhash queries to function family Hn the

success probability is

(qhash + 1)
∑

γ

(
1−

(
1− 1

t

)γ)k (q
γ

)(
1− 1

2h

)q−γ 1

2hγ
.

As this for random Hn is search in unstructured data, the best a quantum adversary can do
is Grover search. This leads to a success probability of

O
(

(qhash + 1)2
∑

γ

(
1−

(
1− 1

t

)γ)k (q
γ

)(
1− 1

2h

)q−γ 1

2hγ

)
.

For computations, note that the O is small, and that (1−1/t)γ is well approximated by 1−γ/t.

9.3.4. Security Level of a Given Parameter Set

If we take the above success probabilities for generic attacks and plug them into Theorem 9.1
we get a bound on the success probability of SPHINCS+ against generic attacks of classical
and quantum adversaries. Let q denote the number of adversarial signature queries. For
classical adversaries that make no more than qhash queries to the cryptographic hash function
used, this leads to

InSeceu-cma (SPHINCS+; qhash
)
≤ 2(

qhash + 1

28n
+
qhash + 1

28n

+ InSecpq-itsr (Hmsg; qhash) +
qhash + 1

28n
+
qhash + 1

28n
+
qhash + 1

28n
)

= 10
qhash + 1

28n
+ 2(qhash + 1)

∑

γ

(
1−

(
1− 1

t

)γ)k (q
γ

)(
1− 1

2h

)q−γ 1

2hγ

= O
(
qhash

28n
+ (qhash)

∑

γ

(
1−

(
1− 1

t

)γ)k (q
γ

)(
1− 1

2h

)q−γ 1

2hγ

)
. (12)

Similarly, for quantum adversaries that make no more than qhash queries to the cryptographic
hash function used, this leads to

InSecpq-eu-cma (SPHINCS+; qhash
)
≤ 2(

(qhash + 1)2

28n
+

(qhash + 1)2

28n

+ InSecpq-itsr (Hmsg; qhash) +
(qhash + 1)2

28n
+

(qhash + 1)2

28n
+

(qhash + 1)2

28n
)

= 10
(qhash + 1)2

28n
+O

(
2(qhash + 1)2

∑

γ

(
1−

(
1− 1

t

)γ)k (q
γ

)(
1− 1

2h

)q−γ 1

2hγ

)

= O
(

(qhash)2

28n
+ 2(qhash)2

∑

γ

(
1−

(
1− 1

t

)γ)k (q
γ

)(
1− 1

2h

)q−γ 1

2hγ

)
. (13)

To compute the security level also known as bit security one sets this bound on the success
probability to equal 1 and solves for qhash.

47

— Internet: Portfolio 731

9.4. Implementation Security and Side-Channel Protection

Timing attacks. Typical implementations of SPHINCS+ are naturally free of any secret-
dependent branches or secretly indexed loads or stores. SPHINCS+ implementations are
thus free of the two most notorious sources of timing variation. An exception is potentially
SPHINCS+-Haraka, because Haraka is based on AES, which is well known to exhibit timing
vulnerabilities in software implementations [3, 15, 5, 14]. Clearly, SPHINCS+-Haraka should
only be used in environments that support AES in hardware (like almost all modern 64-bit
Intel and AMD and many ARMv8a processors). On some processors also certain arithmetic
instructions do not run in constant time; examples are division instructions on Intel proces-
sors and the UMULL multiplication instruction on ARM Cortex-M3 proceesors. Again, typical
implementations of SPHINCS+ naturally do not use these instructions with secret data as
input – secret data is only processed by symmetric cryptographic primitives that are designed
to not make use of such potentially dangerous arithmetic.

Differential and fault attacks. We expect that any implementation of SPHINCS+ without
dedicated protection against differential power or electromagnetic radiation (EM) attacks or
against fault-injection attacks will be vulnerable to such attacks. Deployment scenarios of
SPHINCS+ in which an attacker is assumed to have the power to mount such attacks re-
quire specially protected implementations. For protection against differential attacks this will
typically require masking of the symmetric primitives; for protection against fault-injection
attacks countermeasures on the hardware level. One additional line of defense against such
advanced implementation attacks is included in the specification of SPHINCS+, namely the
option to randomize the signing procedure via the value OptRand (see Subsection 8.1.5).

9.5. Security of SPHINCS+-SHAKE256

NIST has standardized several applications of the Keccak permutation, such as the SHA3-256
hash function and the SHAKE256 extendable-output function, after a multi-year Crypto-
graphic Hash Algorithm Competition involving extensive public input. All of these standard-
ized Keccak applications have a healthy security margin against all attacks known.
Discussions of the theory of cryptographic hash functions typically identify a few important

properties such as collision resistance, preimage resistance, and second-preimage resistance;
and sometimes include a few natural variants of the attack model such as multi-target attacks
and quantum attacks. It is important to understand that cryptanalysts engage in a much
broader search for any sort of behavior that is feasible to detect and arguably “non-random”.
NIST’s call for SHA-3 submissions highlighted preimage resistance etc. but then stated the
following:

Hash algorithms will be evaluated against attacks or observations that may threaten
existing or proposed applications, or demonstrate some fundamental flaw in the
design, such as exhibiting nonrandom behavior and failing statistical tests.

It is, for example, non-controversial to use Keccak with a partly secret input as a PRF: any
attack against such a PRF would be a tremendous advance in SHA-3 cryptanalysis, even
though the security of such a PRF is not implied by properties such as preimage resistance.
Similarly, a faster-than-generic attack against the interleaved-target-subset-resilience property,
being able to find an input with various patterns of output bits, would be a tremendous
advance.

48

732 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

The particular function SHAKE256 used in SPHINCS+-SHAKE256 has an internal “capac-
ity” of 512 bits. There are various attack strategies that search for 512-bit internal collisions,
but this is not a problem even at the highest security category that we aim for. There is
also progress towards showing the hardness of generic quantum attacks against the sponge
construction. Of course, second-preimage resistance is limited by the n-byte output length
that we use.

9.6. Security of SPHINCS+-SHA-256

NIST’s SHA-2 family has been standardized for many more years than SHA-3. The stan-
dardization and popularity of SHA-2 mean that these functions are attractive targets for
cryptanalysts, but this has not produced any attacks of concern: each of the members of this
family has a comfortable security margin against all known attacks.
The broad cryptanalytic goal of finding non-random behavior (see above) is not a new

feature of SHA-3. For example, the security analysis of the popular HMAC-SHA-256 message-
authentication code is based on the security analysis of NMAC-SHA-256, which in turn is based
on a pseudorandomness assumption for SHA-256.
The particular function SHA-256 used in SPHINCS+-SHA-256 has a “chaining value” of

only 256 bits, making it slightly weaker in some metrics than SHAKE256 with 256-bit output.
However, it is still suitable for all of our target security categories.

9.7. Security of SPHINCS+-Haraka

Both Haraka-256 and Haraka-512 provide a (second)-preimage resistance of 256-bit in the
pre-quantum setting and the best known quantum attack is Grover’s search on 256-bit. How-
ever, the sponge construction we use for HarakaS has a capacity of 256-bit which allows at
most security level 2. The best attack breaking any of the security properties required for
SPHINCS+ is a preimage attack which corresponds to a collision search on 256-bit for the
sponge construction we use. Instances with larger output size are limited by this and provide
a less efficient trade-off between security and efficiency.
Another aspect is that we pseudo-randomly generate round constants derived from a seed.

An attacker cannot influence the values of the constants for one instance, but can search for
instances having weak constants. As shown by Jean [10], a weak choice of round constants
can lead to more efficient preimage attacks. In general, a bad choice of round constants does
not break the symmetry of a single round. In the case of Haraka, which combines several
calls of two rounds of AES-128 per round to create bigger blocks, the round constants have
to break the symmetry within two rounds of AES, but also between the different calls of the
two rounds. Let us first focus on Haraka-256.
To break the symmetry within one round of AES, we require that the value of the round con-

stant is not the same for each column. For round constants generated via an extendable-output
function from a random 256-bit seed, we consider this event to happen with a probability of
2−96. Moreover, that the symmetry of two rounds of AES is not broken by round-constants
happens with 2−192. In other words, since one instance of Haraka-256 uses 10 times 2-round
AES, only for a fraction of 10 · 2−192 instances/keys, we expect that the symmetry within one
call of 2 rounds of AES is not broken. Even if this happens, all other 2 round AES calls used
in Haraka-256 have with a high probability constants that break the symmetry of 2 rounds of
AES for all other calls. Hence, we do not expect any negative consequences for the security.

49

— Internet: Portfolio 733

Haraka-256 processes two 2-round AES-calls in parallel per round. So, we also do not want
to have the same round constants in these calls. This condition happens with probability
5 · 2−256. Furthermore, the probability that two rounds have the same round constants is
10 · 2−512. Similar observations are also valid for Haraka-512. Hence, we conclude that it is
very unlikely, that a pseudo-random generation of the round constants per instance leads to
weak round constants.

10. Performance

In order to obtain benchmarks, we evaluate our reference implementation on a machine using
the Intel x86-64 instruction set. In particular, we use a single core of a 3.5 GHz Intel Core i7-
4770K CPU. We follow the standard practice of disabling TurboBoost and hyper-threading.
The system has 32KiB L1 instruction cache, 32KiB L1 data cache, 256KiB L2 cache and
8192KiB L3 cache. Furthermore, it has 32GiB of RAM, running at 1333MHz. When per-
forming the benchmarks, the system ran on Linux kernel 4.9.0-4-amd64, Debian 9 (Stretch).
We compiled the code using GCC version 6.3.0-18, with the compiler optimization flag -O3.

10.1. Runtime

For the defined parameter sets, the resulting cycle counts are listed in Table 4.
For Haraka, it is especially relevant to also examine platforms that have the AES-NI in-

struction set available. We used the same system as described above, this time including the
march=native compiler flag. Performance results are listed in Table 5.

10.2. Space

In Table 6, we list the key and signature sizes (in bytes) for the defined parameter sets. In
terms of memory consumption, we remark that the reference implementation tends towards
low stack usage. This shows for example in procedures such as computing authentication
paths and tree roots, which is done using the treehash algorithm (which requires stack usage
linear in the tree height, rather than the naive exponential approach of first computing the
entire tree and then cherry-picking the relevant nodes).

11. Advantages and Limitations

The advantages and limitations of SPHINCS+ can be summarized in one sentence: On the
one hand, SPHINCS+ is probably the most conservative design of a post-quantum signature
scheme, on the other hand, it is rather inefficient in terms of signature size and speed. In the
following we discuss disadvantages and advantages in some more detail.

Disadvantage: Signature size and speed. The clear drawback of SPHINCS+ is signing
speed and signature size. SPHINCS+ is clearly not competing to be the smallest or fastest
signature scheme. However, as shown in Section 7.1.1 there exists a magnitude of possible
trade-offs allowing to tweak SPHINCS+ as long as one can tolerate at least one of the two,
i.e., somewhat slow signing or somewhat large signatures.

Advantage: “Minimal Security Assumptions”. In contrast to other post-quantum crypto
schemes (including signatures as well as public-key encryption schemes), SPHINCS+ does not

50

734 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

key generation signature generation verification
SPHINCS+-SHAKE256-128s 617 619 732 8 610 599 004 10 222 936
SPHINCS+-SHAKE256-128f 19 348 784 580 904 788 24 826 884
SPHINCS+-SHAKE256-192s 907 587 276 17 586 416 344 15 036 680
SPHINCS+-SHAKE256-192f 28 200 752 757 001 640 40 338 224
SPHINCS+-SHAKE256-256s 1 210 939 356 13 842 403 104 20 889 204
SPHINCS+-SHAKE256-256f 75 031 996 1 664 510 764 41 469 276
SPHINCS+-SHA-256-128s 307 425 484 4 606 958 168 5 514 124
SPHINCS+-SHA-256-128f 9 625 644 302 359 220 12 901 012
SPHINCS+-SHA-256-192s 576 727 832 12 239 247 980 10 740 192
SPHINCS+-SHA-256-192f 17 902 436 487 388 724 26 456 352
SPHINCS+-SHA-256-256s 1 095 050 628 12 893 347 756 19 141 296
SPHINCS+-SHA-256-256f 68 819 608 1 558 148 364 38 316 192
SPHINCS+-Haraka-128s 917 405 356 16 992 635 344 19 360 272
SPHINCS+-Haraka-128f 28 814 020 1 056 761 824 45 964 624
SPHINCS+-Haraka-192s 1 244 530 184 38 062 259 596 27 243 200
SPHINCS+-Haraka-192f 42 782 840 1 276 694 620 69 760 728
SPHINCS+-Haraka-256s 1 817 324 180 28 860 355 888 42 380 420
SPHINCS+-Haraka-256f 113 876 252 3 172 247 452 76 203 004

Table 4: Runtime benchmarks for SPHINCS+

key generation signature generation verification
SPHINCS+-Haraka-128s 49 744 640 894 895 320 1 008 528
SPHINCS+-Haraka-128f 1 571 136 56 112 652 2 416 584
SPHINCS+-Haraka-192s 77 210 192 2215 515 952 1 605 220
SPHINCS+-Haraka-192f 2 438 644 71 288 464 3 815 048
SPHINCS+-Haraka-256s 99 650 528 1461 553 268 2 160 040
SPHINCS+-Haraka-256f 6 255 152 164 592 828 3 975 960

Table 5: Runtime benchmarks for SPHINCS+-Haraka on AES-NI

public key size secret key size signature size
SPHINCS+-128s 32 64 8 080
SPHINCS+-128f 32 64 16 976
SPHINCS+-192s 48 96 17 064
SPHINCS+-192f 48 96 35 664
SPHINCS+-256s 64 128 29 792
SPHINCS+-256f 64 128 49 216

Table 6: Key and signature sizes in bytes

51

— Internet: Portfolio 735

introduce a new intractability assumption. The security of SPHINCS+ is solely based on
assumptions about the used hash function. A secure hash function is required by any efficient
signature scheme that supports arbitrary input lengths.
Moreover, a collision attack against the hash function does not suffice to break the security

of SPHINCS+. We consider this an important feature given the successful collision attacks
on MD5 and SHA1. Especially given that even for MD5 second-preimage resistance has not
been broken, yet.
Finally, the cryptographic community has a good understanding of (exact) hash-function

security, especially after the recent SHA3 competition. This is in contrast to the relatively
new problems used in other areas of post-quantum cryptography. Even though some of those
problems are known already for a long time, estimating the hardness of solving specific problem
instances is far less understood.

Advantage: State-of-the-art attacks are easily analyzed. The most efficient attacks
known against SPHINCS+ are easy to state and analyze, such as searching for a hash input
that has a particular pattern of output bits. The analogous quantum attacks are also easy to
state and analyze, such as using Grover’s algorithm to accelerate the same search. This allows
precise quantification of the security levels provided by SPHINCS+.

Advantage: Small key sizes. Another advantage of SPHINCS+ is the small size of the keys,
in particular the public-key size. In many applications public keys are transmitted frequently;
almost as frequently as signatures. This is typically the case for certificates (or certificate
chains) as used, for example, in TLS.

Advantage: Overlap with XMSS. One more feature of SPHINCS+ is the large overlap
with the stateful hash-based signature scheme XMSS. Especially the verification code of XMSS
is almost entirely contained within the SPHINCS+ verification code. Hence, in scenarios like
virtual private networks where clients authenticate towards a gateway using signatures it is
easy to combine these two. While every client that actually can support to handle a state
can use XMSS, every other client can use SPHINCS+. Only the gateway has to support
verification of both, XMSS and SPHINCS+ signatures. This becomes especially interesting
as SPHINCS+ is not particularly well suited for resource-constrained devices (although it was
shown that it is in principle possible to implement SPHINCS+ on such devices [8]). However,
most resource-constrained devices can deal with a state and XMSS is far better suited for
these devices.

Advantage: Reuse of established building blocks. SPHINCS+ uses the basic hash func-
tion as building block many times. Any speedup to implementations of SHA-256, SHAKE256
or Haraka directly benefits the SPHINCS+ speed. In particular hardware support for hash
functions in the CPU, cryptographic coprocessors, or via instruction-set extensions instantly
leads to faster SPHINCS+ signatures (or to smaller SPHINCS+ signatures via tuning w).

References

[1] Jean-Philippe Aumasson and Guillaume Endignoux. Clarifying the subset-resilience prob-
lem. Cryptology ePrint Archive, Report 2017/909, 2017. https://eprint.iacr.org/
2017/909. 40

52

736 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

[2] Jean-Philippe Aumasson and Guillaume Endignoux. Improving stateless hash-based sig-
natures. Cryptology ePrint Archive, Report 2017/933, 2017. https://eprint.iacr.
org/2017/933. 40

[3] Daniel J. Bernstein. Cache-timing attacks on AES, 2004. Document ID:
cd9faae9bd5308c440df50fc26a517b4, https://cr.yp.to/papers.html#cachetiming. 48

[4] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben Niederha-
gen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe, and Zooko Wilcox-
O’Hearn. SPHINCS: Practical Stateless Hash-Based Signatures. In Elisabeth Oswald
and Marc Fischlin, editors, EUROCRYPT 2015, volume 9056 of LNCS, pages 368–397.
Springer Berlin Heidelberg, 2015. 4, 23, 39, 42

[5] Joseph Bonneau and Ilya Mironov. Cache-collision timing attacks against AES. In Louis
Goubin and Mitsuru Matsui, editors, Cryptographic Hardware and Embedded Systems –
CHES 2006, volume 4249 of Lecture Notes in Computer Science, pages 201–215. Springer-
Verlag Berlin Heidelberg, 2006. http://www.jbonneau.com/AES_timing_full.pdf. 48

[6] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. XMSS - a practical forward
secure signature scheme based on minimal security assumptions. In Bo-Yin Yang, editor,
Post-Quantum Cryptography, volume 7071 of LNCS, pages 117–129. Springer, 2011. 4

[7] Andreas Hülsing. W-OTS+ – shorter signatures for hash-based signature schemes. In Amr
Youssef, Abderrahmane Nitaj, and Aboul-Ella Hassanien, editors, Progress in Cryptology
– AFRICACRYPT 2013, volume 7918 of LNCS, pages 173–188. Springer, 2013. 12

[8] Andreas Hülsing, Joost Rijneveld, and Peter Schwabe. ARMed SPHINCS. In Chen-Mou
Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016, volume
9614 of LNCS, pages 446–470, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg. 52

[9] Andreas Hülsing, Joost Rijneveld, and Fang Song. Mitigating multi-target attacks in
hash-based signatures. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and
Bo-Yin Yang, editors, PKC 2016, volume 9614 of LNCS, pages 387–416. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2016. 5, 9, 39, 40, 42, 43, 44, 45, 46

[10] Jérémy Jean. Cryptanalysis of Haraka. IACR Trans. Symmetric Cryptol., 2016(1):1–12,
2016. 49

[11] Stefan Kölbl, Martin Lauridsen, Florian Mendel, and Christian Rechberger. Haraka v2
– efficient short-input hashing for post-quantum applications. volume 2016, pages 1–29,
2017. 33

[12] Leslie Lamport. Constructing digital signatures from a one way function. Technical
Report SRI-CSL-98, SRI International Computer Science Laboratory, 1979. 4

[13] Ralph Merkle. A certified digital signature. In Gilles Brassard, editor, Advances in
Cryptology – CRYPTO ’89, volume 435 of LNCS, pages 218–238. Springer, 1990. 4

[14] Michael Neve and Jean-Pierre Seifert. Advances on access-driven cache attacks on AES.
In Eli Biham and Amr M. Youssef, editors, Selected Areas in Cryptography, volume 4356
of Lecture Notes in Computer Science, pages 147–162. Springer-Verlag Berlin Heidelberg,
2007. 48

53

— Internet: Portfolio 737

[15] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures: the
case of AES. In David Pointcheval, editor, Topics in Cryptology – CT-RSA 2006, volume
3860 of LNCS, pages 1–20. Springer, 2006. http://eprint.iacr.org/2005/271/. 48

[16] Bart Preneel and Paul C. van Oorschot. MDx-MAC and building fast MACs from hash
functions. In CRYPTO, volume 963 of Lecture Notes in Computer Science, pages 1–14.
Springer, 1995. 38

[17] Leonid Reyzin and Natan Reyzin. Better than BiBa: Short one-time signatures with fast
signing and verifying. In Lynn Batten and Jennifer Seberry, editors, Information Security
and Privacy 2002, volume 2384 of LNCS, pages 1–47. Springer, 2002. 23

54

738 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

A. Parameter-evaluation Sage script

#tsec,hashbytes = 125,16
#tsec,hashbytes = 189,24
tsec,hashbytes = 253,32

F = RealField(100)

def ld(r):
return F(log(r)/log2)

def pow(p,e):
return F(p)**e

def qhitprob(qs,r):
p = F(1/leaves)
return binomial(qs,r)*(pow(p,r))*(pow(1-p,qs-r))

def la(m,w):
return ceil(m / log(w,2))

def lb(m,w):
return floor(log(la(m,w)*(w-1), 2) / log(w,2)) + 1

def lc(m,w):
return la(m,w) + lb(m,w)

for h in range(60,74,2):
leaves = 2**h
for b in range(4,17):

for k in range(5,40):
sigma=0
for r in range(1,300):

r = F(r)
p = min(1,F((r/F(2**b)))**k)
sigma += qhitprob(2^64,long(r))*p

if(sigma<2**-tsec):
for d in range(4,h):

if(h % d == 0 and h <= 64+(h/d)):
for w in [16,256]:

wots = lc(8*hashbytes,w)
sigsize = ((b+1)*k+h+wots*d+1)*hashbytes
if(sigsize < 50000):

print h,
print d,
print b,
print k,
print w,
print int(ld(sigma)),
print sigsize,
Speed estimate based on (rough) hash count
print (k*2**(b+1) + d*(2**(h/d)*(wots*w+1)))

55

— Internet: Portfolio 739

	Introduction
	Overview

