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Abstract

This document provides the PQCRYPTO project’s intermediate report for post-quantum
cryptographic algorithms that focus small devices. Algorithms are selected based on a level
on confidence and their suitability for the constraints of small embedded devices.
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1 Introduction

The EU and governments around the world are investing heavily in building quantum com-
puters. Society needs to be prepared for the consequences, including cryptanalytic attacks
accelerated by these computers. In particular, Shor’s algorithm [50] shatters the foundations
for deployed public-key cryptography: RSA and the discrete-logarithm problem in finite fields
and elliptic curves. Long-term confidential documents such as patient health-care records and
state secrets have to guarantee security for many years, but information encrypted today using
RSA or elliptic curves and stored until quantum computers are available will then be as easy
to decipher as Enigma-encrypted messages are today.

The PQCRYPTO project’s mission is to allow users to switch to post-quantum cryptog-
raphy: cryptographic systems that are not merely secure for today but that will also remain
secure long-term against attacks by quantum computers. During the project, PQCRYPTO
will design a portfolio of high-security post-quantum public-key systems, and will improve the
speed of these systems, adapting to the different performance challenges of mobile devices,
the cloud, and the Internet of Things.

This document provides PQCRYPTO’s intermediate report and recommendations for post-
quantum algorithms suitable for small devices. These systems were selected for confidence in
their security against cryptanalytic attacks and given constraints by common hardware and
software systems.

Beyond these recommendations, this document also lists some further examples of systems
that are currently under evaluation, but this document does not mention any new systems
under construction inside or outside PQCRYPTO. This document focuses on cryptographic
primitives to be used inside higher-level cryptographic protocols and security protocols; it
does not give specific recommendations for those protocols.

2 Target Definition and Requirements

This report discusses algorithms that are suitable for an implementation on embedded de-
vices. As embedded device we consider small and constrained computing platforms that play
an important part in the internet of things. On the one hand we consider the suitability of
the algorithms for hardware implementations, but on the other hand we also consider mi-
crocontroller implementations. While ASIC implementations of the algorithms are possible,
we focus on FPGA implementations as they are much cheaper (for low quantities) and much
faster to develop. The microcontroller implementations in this report have a broad range of
target architectures. While some target low-cost microcontrollers like 8-bit AVR ATxmega or
32-bit ARM Cortex-M0 we also consider implementations for more powerful microcontrollers
like ARM Cortex-M4.

Implementing post-quantum cryptography on embedded devices needs to adopt several
requirements, depending if the implementation targets software, hardware or both. The re-
quirements can be summarized as follows:

1. Minimum Memory (HW+SW). It is important to keep the memory consumption of
the implementation as low as possible as embedded devices only have access to a lim-
ited amount of memory. For software implementation this typically corresponds to the
amount of required registers, on-chip RAM and Flash/EEPROM memory that deter-
mines the cost of an implementation. In hardware this determines the need for flip-flops
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or other storage elements such as ROM or RAM.

2. Low Combinatorial Logic Complexity (HW). Hardware implementations also aim for a
low area consumption as this directly influences the cost. Performance is also important,
especially for real-time applications where there is only a narrow time frame in which a
response is expected.

3. Minimum Energy consumption (HW+SW). As many embedded products are battery-
powered, it is often required to reduce the energy consumption below a specific limit.

4. Minimum Power Consumption (HW). Likewise, in particular for cryptographically sup-
ported RFID units, it is important not to exceed the instantaneous power consumption
beyond a specific threshold at any point in time.

5. Physical Protection (SW+HW). Finally, for devices that store secret keys it is important
that the cryptographic operations executed by this device are secured against physical
attacks, such as side-channel attacks, fault-injection attacks, reverse-engineering or ac-
tive tampering.

3 Symmetric Cryptography

3.1 Encryption

Symmetric systems are usually not affected by Shor’s algorithm, but they are affected by
Grover’s algorithm. Under Grover’s attack, the best security a key of length n can offer is
2n/2, so AES-128 offers only 264 post-quantum security. PQCRYPTO recommends thoroughly
analyzed ciphers with 256-bit keys to achieve 2128 post-quantum security that are (a) AES-
256 [17] for block encryption and (b) Salsa20 [7] with a 256-bit key as stream cipher.

3.1.1 AES-256 Block Cipher

AES was published as Rijndael in 1998 and standardized in FIPS PUB 197 in 2001. Highly
optimized implementations have been written for most common architectures, ranging from
8-bit AVR microcontrollers to x86-64 and NVIDIA GPUs. See, for example, [10, 30, 41].
Implementing optimized AES on any of these architectures essentially requires to start from
scratch to find out which implementation approach is going to be the most efficient. Sometimes
an embedded device contains a coprocessor that can perform AES encryption in hardware, but
such a coprocessor is not always available. It makes a device more expensive and it can increase
the power consumption of a device. Simply compiling an existing implementation written in,
for example, the C programming language, is unlikely to produce optimal performance. Even
worse, embedded systems are typical targets for timing attacks, power analysis attacks, and
other forms of side-channel attacks, so software for those devices typically needs to include
adequate protection against such attacks.

Schwabe et al. [49] fill these gaps by providing highly optimized AES software implemen-
tations for two of the most popular modern microprocessors for constrained embedded devices,
the ARM Cortex-M3 and the Cortex-M4. Their implementations of AES-{128, 192, 256}-CTR
are more than twice as fast as existing implementations. They also provide a single-block
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Algorithm Speed (cycles) ROM (bytes) RAM (bytes)
M3 M4 Code Data I/O Stack

AES-128 key expansion encryption 289.8 294.8 902 1,024 176 32
AES-128 key expansion decryption 1,180.0 1,174.6 3,714 2,048 176 176
AES-128 single block encryption 659.4 661.7 2,034 1,024 176 + 2m 44
AES-128 single block decryption 642.5 648.3 1,974 2,048 176 + 2m 44
AES-128-CTR 546.3 554.4 2,192 1,024 192 + 2m 72
AES-192 key expansion 264.9 272.2 810 1,024 240 32
AES-192-CTR 663.2 673.0 2,576 1,024 224 + 2m 72
AES-256 key expansion 364.8 371.8 1,166 1,024 240 32
AES-256-CTR 786.9 791.7 2,960 1,024 256 + 2m 72
AES-128 bitsliced
key expansion

1,027.8 1,033.8 3,434 1,036 368 188

AES-128-CTR
bitsliced constant-time

1,616.6 1,617.6 12,120 12 368 + 2m 108

AES-128-CTR
masked constant-time

N/A 7,422.6 3,9916 12 368 + 2m 1,588

Table 3.1: Performance of different AES implementations [49]

AES-128 implementation, a constant-time AES-128-CTR implementation and a masked im-
plementation that is secure against first-order power analysis attacks. All of them are the
fastest of their kind. The performance is summarized in Table 3.1.1.

3.1.2 Salsa20 Stream Cipher

Salsa20 is a stream cipher which has been proposed in 2005 [7]. It has been included in the
final portfolio of the eSTREAM project initiated by the European Network of Excellence for
Cryptology (ECRYPT) in 2004. The cipher consists of 20 rounds where an internal state is
modified by various (logical and arithmetic) transformations. It supports various key-lengths;
in the PQCRYPTO context a 32-byte (256-bit) key should be used.

Hutter and Schwabe proposed a high-speed and low-area implementation for the AVR
family [29]. In their work they identify how to efficiently map the initialization and round
function to the 8-bit architectures. Their initialization design consists of 7 loop iterations
where the state x (and a copy of the state j which is later added to the cipher output) gets
initialized with the 32-byte key, the 64-byte input, and a 16-byte nonce. The initialization
takes 718 clock cycles in total. The round-calculation function provides the most promising
potential to increase the speed of Salsa20. It consists of ten loop iterations that include 8
quarterround function calls (thus 80 function calls in total). Within one quarterround function,
three different 32-bit operations (addition, bitwise addition, and rotations) are performed on
either the rows or the columns of the state x. Their quarterround function call requires 174
clock cycles in total. The entire round calculation needs 15,623 clock cycles. The entire
crypto stream function needs 18 166 clock cycles for a 64-byte message. The code size of
their high-speed implementation of Salsa20 is 1,750 bytes. The performance of their low-area
implementation is slightly reduced by 697 clock cycles, resulting in 18,863 clock cycles for
crypto stream; the code size is reduced by 658 bytes to only 1,092 bytes, i.e., by 37.6 % of the
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former code size.

3.2 Authentication

Some message-authentication codes provide “information-theoretic security”, guaranteeing that
they are as secure as the underlying cipher (within a negligible mathematically guaranteed
forgery probability), even against an adversary with unlimited computing power. These au-
thentication mechanisms are not affected by quantum computing. Particular instances that
can be used and are recommend by PQCRYPTO in this context are GCM [37] using a 96-bit
nonce and a 128-bit authenticator. As an alternative, Poly1305 [6] seems to be a suitable
choice for small devices as well.

3.2.1 Authenticated Encryption: AES-GCM

Galois/Counter mode is a NIST-standardized block cipher mode of operation for authenticated
encryption [36]. The 128-bit authentication key H is derived from the master encryption key
K during key setup as the encryption of an all-zero input block. The computation of the
authentication tag then requires, for each 16-byte data block, a 128-bit multiplication by H
in the finite field F2128 = F2[X]/(X128 +X7 +X2 +X + 1). The full details can be found in
the specification [36].

The feasibility of AES-GCM on embedded devices has been shown in several publications.
We exemplarily show the results of a microcontroller implementation [23] and an FPGA im-
plementation [1]. In [23] the target architecture is an MSP430X microcontroller that has an
AES accelerator. Without this accelerator the authors report a runtime of 696 cycles/byte
for a 16-bytes message and 314 cycles/byte for a 4-kbytes message. Using the AES acceler-
ator, it is possible to improve theses results such that processing a 16-bytes message takes
426 cycles/byte and 180 cycles/byte for a 4-kbytes message. The authors of [1] implemented
AES-GCM on a Virtex5 FPGA. They achieve a throughput of 32.46 Gbit/s for a BRAM-based
implementation, 31.36 Gbit/s for an implementation using composite fields, and 36.92 Gbit/s
for a LUT-based implementation.

3.2.2 Message Authentication Codes: Poly1305

Poly1305 is a cryptographic message authentication code as proposed by Bernstein in [6]. The
name is related to the underlying polynomial 2130 − 5. A message m with variable size n
is authenticated using a (random) 32-byte one-time secret key s typically computed from a
nonce. The secret key s consists of two parts, each 16-bytes in length, i.e., s = (k, r). First,
the message m is split into 16-byte blocks where each block is padded with a 1. The resulting
17-byte chunks ci, where i ∈ [1, q] and q = dn/16e, are then represented as unsigned little-
endian integers. After that, one addition and one modular multiplication is performed for
each chunk c resulting in the 16-byte authenticator h, i.e.,

h = (((c1 · rq + c2 · rq−1 + . . .+ cq · r1) mod 2130 − 5) + k mod 2128

Poly1305 has been implemented in 8-bit AVR microcontrollers by Hutter and Schwabe in [29].
They provide a high-speed and a low-area implementation and evaluate the performance for
different message sizes. The results can be found in Table 3.2.
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Implementation Message bytes Cycles Stack bytes
High-speed 8 4,411 148

64 12,525
576 98,477
1024 173,685
2048 345,588

Low-area 8 4,773 148
64 13,270
576 103,286
1024 182,050
2048 362,081

Table 3.2: Poly1305 cycle counts on the AVR ATmega2560 microcontroller.

4 Asymmetric Cryptography

For public-key encryption the currently used algorithms based on RSA and ECC are easily
broken by quantum computers. Code-based cryptography has been studied since 1978 and
has withstood attacks very well, including attacks using quantum computers.

4.1 Encryption

PQCRYPTO recommends the following parameters as included in McBits [8] to achieve 2128

post-quantum security, defined as McEliece with binary Goppa codes using length n = 6960,
dimension k = 5413 and adding t = 119 errors. PQCRYPTO also evaluates quasi-cyclic
MDPC codes [38] for McEliece with parameters at least n = 216 +6, k = 215 +3, d = 274 and
adding t = 264 errors as well as ring-LWE encryption [34] as representative of the family of
lattice-based encryption schemes.

4.1.1 Goppa-based McEliece/Niederreiter

The public-key cryptosystem discussed here is a code-based cryptosystem with a long history
and a well-established security track record: namely, Niederreiter’s dual form [39] of McEliece’s
hidden-Goppa-code cryptosystem [35]. This cryptosystem is well known to provide extremely
fast encryption and reasonably fast decryption. Goppa codes are a conservative choice of code
for the cryptosystem as they are well studied and understood, but they result in rather large
public keys. For instance, the implementation of Bernstein et al. [8] targeting an Intel Ivy
Bridge processor reports a public key size of 221 kbytes at a pre-quantum security level of
128 bits. As the public key usually has to be transferred at some point, such dimensions are
problematic for embedded applications. Hence, up to now only small instances of Goppa-based
McEliece encryption (up to a security level of 80-bit) have been implemented on embedded
systems [19, 21].

4.1.2 QC-MDPC McEliece

To avoid the huge keys that come with the Goppa code-based instatiation of the McEliece
cryptosystem, a variant using QC-MDPC codes instead has been proposed by Misoczki et
al.[38]. While McEliece with Goppa codes usually has key sizes of 50-100 kbytes or more, the
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public key in the QC-MDPC McEliece scheme is only 0.6 kbytes for 80-bit of pre-quantum
security. The difference stems from the additional structure in the parity check matrix. In the
Goppa code-based scheme, the complete matrix has to be stored, but in the in QC-MDPC
code-based scheme, only the first row of the matrix has to be stored and the remaining ones are
generated by cyclic shifts of that row. This additional structure might reduce the security of
the scheme. However, as far as we know, QC-MDPC McEliece has not been broken so far and
is thus a valid candidate for post-quantum public-key encryption. Most implementations focus
on a security level of 80 bits of pre-quantum security [25, 51, 53]. For long-term security this
is obviously not enough and thus we encourage further performance evaluation of parameter
sets with a higher security level.

The performance and resource consumption of QC-MDPC McEliece has been evaluated on
reconfigurable hardware in [25] and [51]. While the work of [25] aims for a high-speed imple-
mentation for Virtex-6 FPGAs, [51] focuses more on developing a lightweight implementation
that even fits on a low-cost Spartan 6-FPGA. Thus the results are very different. While the
high-speed implementation of [25] takes 13.7 microseconds for encryption and 125.4 microsec-
onds for decryption, the lightweight implementation of [51] is two orders of magnitude slower
as it takes 3.4 milliseconds for encryption and 23 milliseconds for decryption. On the other
hand, the lightweight implementation takes much less resources. The encryption takes only
119 FFs, 226 LUTs, and 64 slices while the high-speed encryption needs 14,429 FFs, 9,201
LUTs, and 2,924 Slices. However, the lightweight implementation requires 1 resp. 3 BRAMs
for encryption resp. decryption while the high-speed implementation does not require any.

4.1.3 Ring-LWE Encryption

Beside post-quantum schemes based on codes, lattice-based cryptography also offers encryp-
tion schemes. One candidate is the ring-LWE encryption scheme [34]. Its security is based on
the ring variant of the learning with errors problem. It consists of three algorithms:

• Gen(a): Choose r1, r2 ← Dσ and let p = r1 − a · r2 ∈ R. The public key is p and the
secret key is r2 while r1 is just noise and not needed anymore after key generation. The
value a ∈ R can be defined as a global constant or chosen uniformly random during key
generation.

• Enc(a, p,m ∈ {0, 1}n): Choose the noise terms e1, e2, e3 ← Dσ. Let m′ = encode(m)
∈ R, and compute the ciphertext [c1 = a · e1 + e2, c2 = p · e1 + e3 +m′ ∈ R2.

• Dec(c1, c2, r2): Output decode(c1 · r2 + c2)∈ {0, 1}n.

The first research addressing the feasibility of ring-LWE encryption on reconfigurable hard-
ware was proposed by Göttert et al. [22] in 2012. The authors presented a hardware imple-
mentation of the ring-LWE encryption scheme on a Virtex 7 FPGA. To achieve an acceptable
level of performance, the authors tweaked the parameters of the scheme to be able to use the
Number-theoretic transform (NTT) for lowering the complexity of polynomial multiplication
from O(n2) to O(n log n). In contrast to matrix-vector multiplication, polynomial multipli-
cation in the frequency domain, computed using NTT, can be optimized in several ways.
During the transformation, it is necessary to compute the so called twiddle factors, which are
powers of a root of unity. Those twiddle factors can be precomputed or calculated on-the-fly.
Designers can choose the preferred implementation depending on the design goals, namely
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whether the implementation should be optimized for memory consumption or performance.
The core operation of the NTT is the so called butterfly, which operates on two coefficients of
the polynomial and performs one multiplication, one addition, and one subtraction. Multiple
butterfly operations can be executed in parallel. Furthermore, the Gaussian sampler, a fun-
damental operation in lattice-based schemes, can also be optimized. Three implementation
approaches have been proposed in the past [22]: rejection sampling, which does not need any
precomputations but is usually very slow, a table-based sampler, that requires a large amount
of memory but is very fast, and a rounding-based approach, which however differs from an
actual Gaussian distribution.

Pöppelmann and Güneysu [44] presented an optimized NTT multiplier. Their work was
further extended to implement a complete ring-LWE encryption scheme in 2013 [45]. While
previous designs [22] were area inefficient and needed to be implemented on large FPGAs,
such as the Virtex 7 device, Pöppelmann and Güneysu [45] proposed an architecture suitable
for smaller reconfigurable devices, such as a Spartan 6 device. Furthermore, since their im-
plementation relies on a generic microcode engine, it can also be used for other lattice-based
implementations. Since then, several further optimizations have been proposed. Aysu et al.
reduced the area consumption of the NTT [4]. Roy et al. enhanced the performance of NTT
[48] by optimizing the memory access and simplifying the structure of the algorithm. That
design was further optimized by using a more efficient Knuth-Yao sampler [31] which requires
less FPGA area. The smallest FPGA implementation, to the best of our knowledge, has been
presented by Pöppelmann and Güneysu [46], the overall resource occupation is 32 slices, 1
BRAM, and 1 DSP. To achieve such a low area design, the authors chose a parameter set for
which the modulus is a power of two. As a result, there was no need for a modular reduction
step. The drawback of the proposed set of parameters is that the NTT is no longer applicable.
As a result, the computation time is increased by one order of magnitude.

Furthermore there are implementations targeting 8-bit AVR microcontrollers. The work
of Liu et al. [32] focuses on the modular reduction. The authors provide a highly optimized
implementation of the Barrett reduction [5] in assembly language and thus achieve a perfor-
mance of 21 milliseconds for encryption and 8.6 milliseconds for decryption for n = 256. In
comparison, the work of Pöppelmann et al. [47] focuses on the application and implementation
of the NTT. As their modular reduction is less optimized than the one from [32], they report
a performance of 27 milliseconds for encryption and 6.7 milliseconds for decryption. Another
difference is that the program code of the implementation from [47] has a size of 6,668 bytes
and the one from [32] is significantly bigger code size of 13,604 bytes.

4.1.4 Implementation Results

An overview of selected implementations results is given by Table 4.1 representing the perfor-
mance of aforementioned schemes on microcontrollers while Table 4.2 shows hardware imple-
mentations.

4.2 Digital Signatures

Similar to encryption, currently used signatures are based on problems that become easy
to solve with a quantum computer. Signatures use cryptographic hash functions in order
to hash the message and then sign the hash. Hash-based signatures use nothing but such
a hash function and thus assume the minimum requirement necessary to build signatures.
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Scheme Security Platform Encryption Decryption
QC-MDPC McE[25] 80 bits ATxmega256 26,767,463 86,874,388
QC-MDPC McE[52] 80 bits STM32F4 2,623,432 18,416,012
QC-MDPC McE[52] 128 bits STM32F4 13,725,688 80,260,696
Goppa McE [19] 80 bits ATxmega256 14,406,080 19,751,094
Ring-LWE[47] 105 bits ATxmega128A1 874,347 215,863

Table 4.1: Microcontroller implementation cycle counts of post-quantum encryption schemes.
The given security is the pre-quantum security.

Scheme Security Platform FFs LUTs Slices BRAMs Time
QC-MDPC McE enc[25] 80 bits XC6VLX240T 14,429 9,201 2,924 0 13.7 µs
QC-MDPC McE dec[25] 80 bits XC6VLX240T 32,974 36,554 10,271 0 125.4 µs
QC-MDPC McE enc[51] 80 bits XC6SLX4 119 226 64 1 3.4 ms
QC-MDPC McE dec[51] 80 bits XC6SLX4 413 605 159 3 23.0 ms
Goppa McE enc[19] 80 bits XC3S1400AN 804 1,044 668 3 2.2 ms
Goppa McE dec[19] 80 bits XC3S1400AN 8,977 22,034 11,218 20 21.6 ms
Ring-LWE enc[47] 105 bits XC6SLX9 238 317 95 2 0.9 ms
Ring-LWE dec[47] 105 bits XC6SLX9 87 112 32 1 0.4 ms

Table 4.2: FPGA implementation results of post-quantum encryption schemes. Note that the
given security levels are considering the pre-quantum setting.

PQCRYPTO recommends the following two hash-based systems to achieve 2128 post-quantum
security:

• XMSS [16] with any of the parameters specified in [27]. XMSS requires maintaining a
state.

• SPHINCS-256 [9]. SPHINCS is stateless.

We furthermore also evaluate the lattice-based signature scheme BLISS [18].

4.2.1 XMSS

XMSS [16] is short for extended Merkle signature scheme. It belongs to the family of hash-
based signature schemes as it consists of a tree of hash values. Its security is only based on
the assumption that the underlying hash function is secure and it provides forward secrecy.
The leaves of the hash tree are hashes of one-time public keys, i.e. public keys that can only
be used once. Thus the number of signatures the can be generated from a key pair is limited
and the signer has to maintain a state that keeps track of which one-time public keys have
been used already.

An optimized variant of this scheme has been implemented by Hülsing et al. in [26].
Their target platform is the Infineon SLE78 16-bit microcontroller that runs at 33 MHz.
For a security level of 128 considering the best known attacks it is possible to generate one
signature in 97 milliseconds (worst case) and verify it in 83 milliseconds (average case). The
key generation is noticeably slower and takes 6.7 seconds and has to be repeated for every 216

signatures. The secret key has a size of 3,232 byte.
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4.2.2 SPHINCS

Another hash-based signature is SPHINCS [9]. Unlike most hash-based designs, this signature
scheme is stateless, allowing it to be a drop-in replacement for current signature schemes as
standard APIs cannot deal with stateful signatures that require to update the secret key
after each signing. SPHINCS is carefully designed so that its security can be based on
weak standard-model assumptions, avoiding collision resistance and the random-oracle model.
Hash-based signature schemes are usually organized as Merkle trees. SPHINCS introduces
two new ideas that together drastically reduce signature size. First, to increase the security
level of randomized index selection, SPHINCS replaces the leaf one-time signature (OTS) with
a hash-based few-time signature scheme (FTS). An FTS is, as the name suggests, a signature
scheme designed to sign a few messages; in the context of SPHINCS this allows a few index
collisions, which in turn allows a smaller tree height for the same security level.

Second, SPHINCS views Goldreich’s construction as a hyper-tree construction with h
layers of trees of height 1, and generalizes to a hyper-tree with d layers of trees of height h/d.
This introduces a tradeoff between signature size and time controlled by the number of layers
d. The signature size is |σ| ≈ d|σOTS | + hn assuming a hash function with n-bit outputs.
Recall that the size of a one-time signature |σOTS | is roughly O(n2), so by decreasing the
number of layers we get smaller full signatures. The tradeoff is that signing time increases
exponentially in the decrease of layers: signing takes d2h/d OTS key generations and d2h/d−d
hash computations.

The selected parameters provide 128 bits of security against quantum attackers and keep
a balance between signature size and time. Using this parameter set results in a signature
size of 41 KB that exceeds the memory capabilities of most low-cost microcontrollers. To get
an implementation of SPHINCS running on a Cortex-M3, Hülsing et al. [28] implemented a
streaming interface and divide the signature into portions that get streamed out of the board
over the serial port before the next portion is computed. At a clock frequency of 32 MHz
the key generation takes 0.88 ms. The signing takes 18.41 seconds and the verification 513
milliseconds. The slow speed of the signing process is mainly due to the fact that SPHINCS
is a stateless hash-based signature scheme (in comparison to XMSS that is stateful). The
communication overhead for the streaming of the signature is not significant.

4.2.3 BLISS

Another family of post-quantum signature schemes is based on hard lattice problems. The
Bimodal Lattice Signature scheme (BLISS) as presented in [18] is one famous example and
offers a high efficiency and terms of speed and signature size. The algorithms for key gener-
ation, signing, and verification are given in Alg. 4.1-4.3. The security of BLISS is based on
NTRU assumption and the ring variant of the short integer solution problem. Lattice-based
signature schemes that were generated using the Fiat-Shamir transform ([20], [18], [24], [33])
have in common that they feature a rejection step that prevents the leakage of secret informa-
tion through the signature. The main improvement of BLISS in comparison to the previous
signature schemes is that the authors make use of a bimodal Gaussian distribution to reduce
the rejection rate and thus improve the performance of the scheme.

The performance of BLISS on embedded devices has been studied well. There are imple-
mentations on microcontrollers (AVR [47, 12, 4] and ARM[40]) as well as FPGA implementa-
tions [43]. In the following we briefly summarize the results of these implementations. Note
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that the discussed implementations target a security level of 128 bits against classical attack-
ers. Thus the actual post-quantum security is expected to be lower than 128 bits. We are not
aware of any BLISS implementation that explicitly implements a post-quantum parameter set.
In [40] BLISS has been implemented on a (in comparison to other embedded devices) rather
powerful ARM Cortex-M4F. The sampling is performed by using the Bernoulli approach as
presented in [18]. This first implementation of BLISS on an embedded device achieved a
performance of 35.3 and 6 ms for signing and verification. The downside is that the key gen-
eration is quite slow and takes 2.19 seconds. The reason is that the NTRU-like approach of
the key generation of BLISS requires the inversion of a polynomial, there is a restart condition
in the key generation, and the computation of the Nκ(S) bound is quite expensive. However,
an embedded device typically stores long-term keys for signing and verification and thus the
key generation is only executed rarely or even never if there are factory-set keys. The imple-
mentation also takes a lot of memory, as signing requires 18.5 kbytes of RAM and 24.6 kbytes
of Flash memory. In return, the signature size is only 5,600 bits what is the theoretically
smallest possible signature size for the given parameter set. It has been achieved by applying
a Huffman encoding to the signature.

The FPGA implementation in [43] uses a different sampling approach that is based in
table-look ups and improve this approach even further by exploiting the Kullback-Leibler di-
vergence. As a result, the authors are able to reduce the size of the precomputed table and
make the implementation fit into a low-cost Xilinx Spartan-6 FPGA. As expected a hardware
implementation performs much better than a software implementation and thus the authors
report only 114.1 microseconds per signing operation and 61.2 microseconds per verification.
Their BLISS-I core uses 2,291 slices, 5.5 BRAMs, and 5 DSPs. This implementation applies
Huffman encoding as well. Boorghany et al. implemented an authentication protocol based
on BLISS for AVR microcontrollers [12, 13]. The main difference is that the sparse polyno-
mial c is not obtained from a random oracle but randomly generated by the other protocol
party. As the target devices (ATmega64 and ATxmega64A3) belong to an older generation of
microcontrollers and are less powerful than current ones, the reported performance is only 5.3
seconds ([12]) and 0.6 seconds ([13]) per protocol run.

Algorithm 4.1: BLISS Key Generation
Result: Key Pair (A,S) = q mod 2q

1 begin
2 Choose f, g as uniform polynomials with exactly d1 entries in {±1} and d2 entries

in {±2}
3 S = (s1, s2)← (f, 2g+ 1)t

4 if Nκ(S) ≥ C2 · 5 · (dδ1n+ 4δ2n) · κ then
5 restart

6 aq = (2g+ 1)/f mod q restart if f is not invertible)
7 A← (2aq, q − 2) mod 2q

4.2.4 Implementation Results

Selected implementation results of lattice-based signature schemes for microcontrollers are
given in Table 4.3.
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Algorithm 4.2: BLISS Signature Algorithm

Data: Message µ, public key A = (a1, q − 2) ∈ R1×2
2q , secret key S = (s1, s2)t ∈ R2×1

2q

Result: Signature (z1, z
†
2, c)

1 begin
2 y1,y2 ← DZn,σ

3 u = ζ · a1 · y1 + y2 mod 2q
4 c = H(bued mod p, µ)
5 Choose a random bit b
6 z1 ← y1 + (−1)bs1c
7 z2 ← y2 + (−1)bs2c
8 Continue with a probability 1/(Mexp(− ||Sc||2

2σ2 )cosh( 〈z,Sc〉
σ2 )) otherwise restart

9 z†2 = (bued − bu− z2ed) mod p

Algorithm 4.3: BLISS Verification Algorithm

Data: Message µ, public key A = (a1, q − 2) ∈ R1×2
2q , Signature (z1, z

†
2, c)

Result: Accept or Reject
1 begin
2 if ||(z1|2d · z†2)||2 > B2 then
3 Reject

4 if ||(z1|2d · z†2)||∞ > B∞ then
5 Reject

6 Accept if and only if c = H(bζ · a1 · z1 + ζ · q · ced + z†2 mod p, µ)
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Scheme Security Platform Signing Verification
SPHINCS[28] 256 bits STM32L100C 584,384,791 5,991,643
XMSSMT [28] 256 bits STM32L100C 19,441,021 4,961,447
BLISS [40] 128 bits STM32F4 5,927,441 1,002,299

Table 4.3: Microcontroller implementation cycle counts of post-quantum signature schemes.
The given security is the pre-quantum security.

4.3 Key Exchange

The third important family of algorithms in asymmetric cryptography consists of key exchange
schemes. We evaluate a key encapsulation mechanism based on the McEliece cryptosystem
[42] as well as the “A new hope” lattice-based key exchange scheme [2].

4.3.1 QC-MDPC KEM

QC-MDPC codes can also be used to construct a hybrid encryption scheme. Hybrid encryption
schemes are divided into two independent components: (1) a key encapsulation mechanism
(KEM) and (2) a data encapsulation mechanism (DEM). The KEM is a public-key encryption
scheme that encrypts a randomly generated symmetric session key under the public key of the
intended receiver. The DEM then encrypts the plaintext under the randomly generated session
key using a symmetric encryption scheme. Hybrid encryption is usually beneficial in practice
because symmetric encryption is orders of magnitude more efficient than pure asymmetric
encryption, especially for large plaintexts. On the other hand sole usage of symmetric schemes
is not practical due to the symmetric key distribution problem. Hybrid encryption takes
the best of two worlds, efficient symmetric data encryption combined with asymmetric key
distribution. The idea behind the code-based KEM from [42] is to derive a key from an error
vector and send the syndrome of the error vector to the other party. The scheme has been
implemented on ARM Cortex-M4F by Maurich et al. [52]. The key generation takes 386.4 ms
for 80 bits of security, the hybrid encryption takes 16.5 ms and the hybrid decryption takes
111.0 ms. For 128 bits of security the performance is 1511.8 ms for key generation, 83.2 ms
for encryption, 477.5 ms for decryption.

4.3.2 NewHope

In this section we cover the lattice-based key exchange by Alkim et al. [2] that is called “a
new hope” and is an extension of previous lattice-based key exchange schemes [15, 54]. The
algorithm is given in Protocol 1 and all polynomials except for r ∈ R4 are defined in the
ring Rq = Zq[X]/(Xn + 1) with n = 1024 and q = 12289. The authors decided to keep the
dimension n = 1024 the same as in [15] to be able to achieve appropriate long-term security.
As polynomial arithmetic is fast and also scales better (doubling n roughly doubles the time
required for a polynomial multiplication), the choice of n appears to be acceptable from a
performance point of view. The modulus q = 12289 is chosen as it is the smallest prime for
which it holds that q ≡ 1 mod 2n so that the number-theoretic transform (NTT) can be
realized efficiently. The main improvements of “a new hope” in comparison to [15] stem from
a more detailed security analysis and an improved analysis of the failure probability of the
protocol that allows an instantiation of the protocol with smaller parameters. Furthermore, the
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authors replaced the almost-perfect discrete Gaussian distribution by a binomial distribution
that is relatively close, but much easier to sample from.

Parameters: q = 12289 < 214, n = 1024
Error distribution: ψ16

Alice (server) Bob (client)
seed

$← {0, 1}256
a←Parse(SHAKE-128(seed))

s, e
$← ψn16 s′, e′, e′′

$← ψn16

b←as+ e
(b,seed)−−−−−→ a←Parse(SHAKE-128(seed))

u←as′ + e′

v←bs′ + e′′

v′←us
(u,r)←−−− r

$← HelpRec(v)
ν←Rec(v′, r) ν←Rec(v, r)

µ←SHA3-256(ν) µ←SHA3-256(ν)

Protocol 1: NewHope key exchange.

Alkim et al. also present a microcontroller implementation of the “a new hope” key ex-
change scheme in [3]. The target architectures are the Cortex-M0 and Cortex-M4 and the
implemented parameter set achieves 128 bits of post-quantum security (with a comfortable
margin). The implementation makes heavy use of optimization techniques on assembly level
like merging multiple stages of the NTT and pipelining of load and store instructions. As far
as we know, they provide the fastest implementation of the NTT on Cortex-M microcontrollers
and thus other ARM Cortex implementations of ideal lattice-based schemes will benefit from
this NTT implementation if they adapt it. The overall performance of the scheme on the
Cortex-M0 is 1.5 million cycles on the server side and 1.7 million cycles and the client side
what translates to 31/36 milliseconds at a clock frequency of 48 MHz. On the more powerful
Cortex-M4 the runtime is 860,388 cycles at the server side and 984,761 cycles at the client side.
When operated at 168 MHz, this means that the server needs 5.1 milliseconds for execution
and the client 5.9.

4.3.3 Frodo

While the security of “a new hope” is based on ideal lattice problems, the Frodo proposal
by Bos et al. [14] is a key exchange scheme based on standard lattices. While ideal lattices
facilitate major efficiency and storage benefits over their non-ideal counterparts, the additional
ring structure that enables these advantages also raises concerns about the assumed difficulty
of the underlying problems. Protocol 2 summarizes the key exchange scheme. Both Alice
and Bob generate the same large matrix A ∈ Zn×nq that is combined with the LWE secrets
to compute their public keys as instances of the LWE problem. Alice’s n LWE instances
and Bob’s m LWE instances are combined to compute a secret matrix in Zm×nq , where B
uniform bits are extracted from each entry to form the session key K. Thus, the dimensions
n and m should be chosen such that K has (at least) the number of required bits for the
target security level. For example, in targeting 128 bits of post-quantum security, it should
be the case that n · m · B ≥ 256. This condition ensures that we obtain a uniform 256-bit
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secret for the session key and even an exhaustive key search via Grover’s quantum algorithm
would take 2128 operations. Protocol 2 allows for the ratio between n and m to be changed,
in order to trade-off between Bob’s amount of uploaded data for Alice’s computational load.
The major challenge for the implementation of Frodo on embedded devices is to deal with the
large parameters. To avoid storing complete matrices it would be possible to heavily exploit
on-the-fly computation and use a streaming interface to transmit the matrix B. On-the-fly
computation usually comes with a performance penalty. A designer of embedded systems thus
has to carefully find a good trade-off between the memory requirement and the performance
of the scheme.

Alice Bob

seedA
$← U({0, 1}s)

A←Gen(seedA)

S,E
$← χ(Zn×n

q )

B←AS+E seedA,B

∈ {0, 1}s × Zn×n
q A←Gen(seedA)

S′,E′
$← χ(Zm×n

q )

B′←S′A+E′

E′′
$← χ(Zm×n

q )

V←S′B+E′′

B′,C C←〈V〉2B
∈ Zm×n

q × Zm×n
2

K←rec(B′S,C) K←bVe2B

Protocol 2: The LWE-based key exchange protocol with LWE parameters (n, q, χ), and pro-
tocol specific parameters n,m,B ∈ Z. The matrix A ∈ Zn×nq is generated from seedA via a
pseudo-random function Gen.

4.3.4 Implementation Results

Table 4.4 shows selected microcontroller implementations of key exchange/key encapsulation
schemes.

Scheme Security Platform Server Client
NewHope [3] 281 bits STM32F0 1,467,101 1,738,922
NewHope [3] 281 bits STM32F4 1,143,314 1,418,124
McEliece/Niederreiter KEM[52] 128 bits STM32F4 80,260,696 13,725,688

Table 4.4: Microcontroller implementation cycle counts of post-quantum key exchange
schemes. The given security margin is considering the pre-quantum setting.
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5 Directions & Outlook

As discussed in the previous sections, a range of implementations of post-quantum cryptosys-
tem for embedded devices have been reported to date. However, still very few implementation
already meet a security level that is conjectured to provide medium-term or long-term resis-
tance against quantum computers. We briefly review our findings and identify directions for
future work.

Symmetric Cryptography. For encryption and authentication efficient solutions based on
AES-256 or Salsa20 seem already available and ready for deployment. Still additional
options for post-quantum secure authenticated encryption is currently under investiga-
tion as part of the CAESAR competition.

Asymmetric Cryptography – Code-based Cryptography. Encryption systems over bi-
nary Goppa codes with conservative post-quantum-secure parameters (n = 6960, dimen-
sion k = 5413, t = 119 errors) seem to be impossible with available versions of 8-bit and
32-bit microcontrollers or (moderate-cost) FPGAs. Experimental QC-MDPC McEliece
encryption exhibit a significantly smaller memory footprint and reasonable performance
on 32-bit ARM Cortex-M4 microcontrollers and low-cost FPGAs. However, reported
embedded implementations have been investigated for a short-term pre-quantum se-
curity level only. Further investigation is required to identify how QC-MDPC-based
designs can still be efficiently implemented on embedded devices in the post-quantum
setting with larger security parameters.

Asymmetric Cryptography – Hash-based Cryptography. XMSS and SPHINCS are both
promising hash-based digital signatures schemes that come with solid security guarantees
in the post-quantum settings. Due to their maturity, recent standardization processes
are particularly focussing on these cryptosystems. In the context of embedded systems,
successful implementations were reported. Yet SPHINCS suffers from large signatures
and comparably low performance, XMSS has the disadvantage of maintaining a state.
For deployment, the appropriate and secure realization of maintaining this state for
XMSS pose an additional challenge for security applications and protocols.

Asymmetric Cryptography – Lattice-based Cryptography. Considering lattice-based
cryptography a number of proposals have emerged, including encryption, digital signa-
ture schemes and key exchange schemes. In the context of embedded systems it has
been shown that particularly schemes based on ideal lattices are extremely efficient, yet
cryptanalytically experimental. Assuming thorough cryptanalysis and given maturity,
however, lattice-based cryptography to date provide the best fit with respect to efficiency
and versatility for the embedded context.

Asymmetric Cryptography – MQ-based Cryptography. Although it seems that there
is less activity on MQ-based cryptosystems, Unbalanced Oil-and-Vinegar or HFEv- sig-
nature schemes might be viable further alternatives. Due to the absence of recent results
considering their implementation on embedded systems, further investigation is required.
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