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Abstract

This document provides the PQCRYPTO project’s intermediate overview of reference imple-
mentations of post-quantum cryptographic primitives and schemes targeting (or suitable for)
small embedded devices.
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1 Introduction

This document lists the reference software implementations of post-quantum schemes that
are suitable for use in “small devices”, in particular embedded microcontrollers. The main
reference platform we are targeting with the implementations is the ARM Cortex-M4, a
relatively high-end 32-bit microcontroller. There are essentially three reasons that we decided
to choose this microcontroller as reference platform:

• Microcontrollers of the ARM Cortex-M family are becoming more and more widely
deployed; we expect that they will dominate the market for small devices over the next
years.

• Choosing a rather high-end microcontroller allows us to also consider schemes that may
not be feasible on smaller devices.

• By the time that post-quantum cryptography is deployed in products, even lower-end
microcontrollers will probably have grown to the size of high-end microcontrollers to-
day. Choosing a high-end microcontroller now includes this prediction of increase in
computing power (and size) of future microcontrollers.

Picking the M4 as a reference platform does not mean that we exclude smaller devices from
the Cortex-M family or even smaller 8-bit microcontrollers. For some space-efficient schemes
we also include software implementations for those lower-end platforms.

2 Implementations

The goal of this deliverable is to provide software reference implementations of post-quantum
cryptographic schemes for embedded microcontrollers. The following two subsections list such
software implementations developed as part of research within the PQCRYPTO project. In
Subsection 2.1 we first list implementations written in C that would typically be consid-
ered “reference” implementations. However, it turns out that in many cases it is necessary
to adapt those implementations to make them fit into the restrictions of embedded micro-
controllers. The C reference implementations typically serve as a good starting point and
reference to provide test vectors for more specialized implementations that we list in Sub-
section 2.2. Those implementations are also written in C, but use hand-optimized assembly
for certain subroutines. Most of those specialized microcontroller implementations target the
ARM Cortex-M family of 32-bit microcontrollers, but some extend to the lower-end 8-bit
AVR microcontrollers.

For some schemes (in particular symmetric schemes like AES or ChaCha20) there already
exist many portable implementations in C that can serve as a reference (and starting point)
for microcontroller implementations. We do not list those implementations here; however,
many of them are included in the SUPERCOP benchmarking framework [4].

2.1 Portable software in C

1. The C reference implementation of the SPHINCS stateless hash-based signature scheme
described in [3] is included in the SUPERCOP benchmarking framework [4] in subdi-
rectory crypto hash/sphincs256/ref.
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2. C reference implementation of the XMSS-MT hash-based signature scheme described
in [6]:
https://joostrijneveld.nl/papers/multitarget_xmss/

3. C reference implementation of the NewHope (lattice-based) key-exchange scheme
described in [2]:
https://cryptojedi.org/crypto/#newhope

4. C reference implementation of the TESLA (lattice-based) signature scheme described
in [1]:
https://cryptojedi.org/crypto/#tesla

5. C reference implementation of the MQDSS multivariate signature scheme described
in [5]:
https://joostrijneveld.nl/papers/mqdss/

6. C reference implementation of McEliece/Niederreiter code-based public-key encryp-
tion:
http://www.win.tue.nl/~tchou/mcbits/

2.2 Software for specific embedded microcontrollers

2.2.1 Software targeting ARM Cortex-M

1. Optimized AES for Cortex M3 and M4:
https://github.com/Ko-/aes-armcortexm

2. Implementation of the ChaCha20 stream cipher for Cortex-M:
https://gitlab.science.ru.nl/mneikes/arm-chacha20.

3. Implementation of the SPHINCS hash-based signature scheme for ARM Cortex-M3:
https://joostrijneveld.nl/papers/armedsphincs/.

4. Implementation of the NewHope lattice-based key-exchange scheme on ARM Cortex-
M0, M3, and M4:
https://github.com/erdemalkim/newhopearm

5. Implementation of the BLISS lattice-based signature scheme for ARM Cortex-M4F
https://www.emsec.rub.de/media/crypto/veroeffentlichungen/2016/08/26/bliss_

arm.zip

6. Implementation of the TESLA lattice-based signature scheme for ARM Cortex-M4F
https://github.com/OtoriTakeo/Flying_TESLA

7. Implementation of lattice-based (binary Ring-LWE) encryption for ARM Cortex-M0:
https://www.emsec.rub.de/media/crypto/veroeffentlichungen/2016/08/26/bin_

lwe_arm.zip

8. Implementation of the QcBits code-based (QC-MDPC) encryption scheme for ARM
Cortex M4:
http://www.win.tue.nl/~tchou/qcbits/

https://joostrijneveld.nl/papers/multitarget_xmss/
https://cryptojedi.org/crypto/#newhope
https://cryptojedi.org/crypto/#tesla
https://joostrijneveld.nl/papers/mqdss/
http://www.win.tue.nl/~tchou/mcbits/
https://github.com/Ko-/aes-armcortexm
https://gitlab.science.ru.nl/mneikes/arm-chacha20
https://joostrijneveld.nl/papers/armedsphincs/
https://github.com/erdemalkim/newhopearm
https://www.emsec.rub.de/media/crypto/veroeffentlichungen/2016/08/26/bliss_arm.zip
https://www.emsec.rub.de/media/crypto/veroeffentlichungen/2016/08/26/bliss_arm.zip
https://github.com/OtoriTakeo/Flying_TESLA
https://www.emsec.rub.de/media/crypto/veroeffentlichungen/2016/08/26/bin_lwe_arm.zip
https://www.emsec.rub.de/media/crypto/veroeffentlichungen/2016/08/26/bin_lwe_arm.zip
http://www.win.tue.nl/~tchou/qcbits/
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2.2.2 Software targeting AVR

1. Implementation of lattice-based (Ring-LWE-based) encryption and BLISS signatures
for AVR ATMega:
https://www.sha.rub.de/media/crypto/veroeffentlichungen/2016/06/08/High-

Performance-Lattice-Crypto-Code.zip

2. Implementation of code-based (QC-MDPC) encryption for AVR ATMega:
http://www.sha.rub.de/media/attachments/files/2013/08/MDPC_Atmel.rar
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