
PQCRYPTO

Post-Quantum Cryptography for Long-Term Security

Project number: Horizon 2020 ICT-645622

Small Devices: Reference implementations

Due date of deliverable: 30. September 2016
Actual submission date: 15. November 2016

Start date of project: 1. March 2015 Duration: 3 years

Coordinator:
Technische Universiteit Eindhoven
Email: coordinator@pqcrypto.eu.org
www.pqcrypto.eu.org

Revision 1

Project co-funded by the European Commission within Horizon 2020

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission services)

RE Restricted to a group specified by the consortium (including the Commission services)

CO Confidential, only for members of the consortium (including the Commission services)





Small Devices: Reference implementations

Tung Chou, Tim Güneysu, Tobias Oder, Peter Schwabe

15. November 2016
Revision 1

The work described in this report has in part been supported by the Commission of the European Commu-
nities through the Horizon 2020 program under project number 645622 PQCRYPTO. The information in this
document is provided as is, and no warranty is given or implied that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.





Abstract

This document provides the PQCRYPTO project’s intermediate overview of reference imple-
mentations of post-quantum cryptographic primitives and schemes targeting (or suitable for)
small embedded devices.

Keywords: Post-quantum cryptography, small devices, microcontrollers, public-key encryp-
tion, public-key signatures, secret-key encryption, secret-key authentication



ii



— Small Devices: Reference implementations 1

1 Introduction

This document lists the reference software implementations of post-quantum schemes that
are suitable for use in “small devices”, in particular embedded microcontrollers. The main
reference platform we are targeting with the implementations is the ARM Cortex-M4, a
relatively high-end 32-bit microcontroller. There are essentially three reasons that we decided
to choose this microcontroller as reference platform:

• Microcontrollers of the ARM Cortex-M family are becoming more and more widely
deployed; we expect that they will dominate the market for small devices over the next
years.

• Choosing a rather high-end microcontroller allows us to also consider schemes that may
not be feasible on smaller devices.

• By the time that post-quantum cryptography is deployed in products, even lower-end
microcontrollers will probably have grown to the size of high-end microcontrollers to-
day. Choosing a high-end microcontroller now includes this prediction of increase in
computing power (and size) of future microcontrollers.

Picking the M4 as a reference platform does not mean that we exclude smaller devices from
the Cortex-M family or even smaller 8-bit microcontrollers. For some space-efficient schemes
we also include software implementations for those lower-end platforms.

2 Implementations

The goal of this deliverable is to provide software reference implementations of post-quantum
cryptographic schemes for embedded microcontrollers. The following two subsections list such
software implementations developed as part of research within the PQCRYPTO project. In
Subsection 2.1 we first list implementations written in C that would typically be consid-
ered “reference” implementations. However, it turns out that in many cases it is necessary
to adapt those implementations to make them fit into the restrictions of embedded micro-
controllers. The C reference implementations typically serve as a good starting point and
reference to provide test vectors for more specialized implementations that we list in Sub-
section 2.2. Those implementations are also written in C, but use hand-optimized assembly
for certain subroutines. Most of those specialized microcontroller implementations target the
ARM Cortex-M family of 32-bit microcontrollers, but some extend to the lower-end 8-bit
AVR microcontrollers.

For some schemes (in particular symmetric schemes like AES or ChaCha20) there already
exist many portable implementations in C that can serve as a reference (and starting point)
for microcontroller implementations. We do not list those implementations here; however,
many of them are included in the SUPERCOP benchmarking framework [4].

2.1 Portable software in C

1. The C reference implementation of the SPHINCS stateless hash-based signature scheme
described in [3] is included in the SUPERCOP benchmarking framework [4] in subdi-
rectory crypto hash/sphincs256/ref.



2 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

2. C reference implementation of the XMSS-MT hash-based signature scheme described
in [6]:
https://joostrijneveld.nl/papers/multitarget_xmss/

3. C reference implementation of the NewHope (lattice-based) key-exchange scheme
described in [2]:
https://cryptojedi.org/crypto/#newhope

4. C reference implementation of the TESLA (lattice-based) signature scheme described
in [1]:
https://cryptojedi.org/crypto/#tesla

5. C reference implementation of the MQDSS multivariate signature scheme described
in [5]:
https://joostrijneveld.nl/papers/mqdss/

6. C reference implementation of McEliece/Niederreiter code-based public-key encryp-
tion:
http://www.win.tue.nl/~tchou/mcbits/

2.2 Software for specific embedded microcontrollers

2.2.1 Software targeting ARM Cortex-M

1. Optimized AES for Cortex M3 and M4:
https://github.com/Ko-/aes-armcortexm

2. Implementation of the ChaCha20 stream cipher for Cortex-M:
https://gitlab.science.ru.nl/mneikes/arm-chacha20.

3. Implementation of the SPHINCS hash-based signature scheme for ARM Cortex-M3:
https://joostrijneveld.nl/papers/armedsphincs/.

4. Implementation of the NewHope lattice-based key-exchange scheme on ARM Cortex-
M0, M3, and M4:
https://github.com/erdemalkim/newhopearm

5. Implementation of the BLISS lattice-based signature scheme for ARM Cortex-M4F
https://www.emsec.rub.de/media/crypto/veroeffentlichungen/2016/08/26/bliss_

arm.zip

6. Implementation of the TESLA lattice-based signature scheme for ARM Cortex-M4F
https://github.com/OtoriTakeo/Flying_TESLA

7. Implementation of lattice-based (binary Ring-LWE) encryption for ARM Cortex-M0:
https://www.emsec.rub.de/media/crypto/veroeffentlichungen/2016/08/26/bin_

lwe_arm.zip

8. Implementation of the QcBits code-based (QC-MDPC) encryption scheme for ARM
Cortex M4:
http://www.win.tue.nl/~tchou/qcbits/

https://joostrijneveld.nl/papers/multitarget_xmss/
https://cryptojedi.org/crypto/#newhope
https://cryptojedi.org/crypto/#tesla
https://joostrijneveld.nl/papers/mqdss/
http://www.win.tue.nl/~tchou/mcbits/
https://github.com/Ko-/aes-armcortexm
https://gitlab.science.ru.nl/mneikes/arm-chacha20
https://joostrijneveld.nl/papers/armedsphincs/
https://github.com/erdemalkim/newhopearm
https://www.emsec.rub.de/media/crypto/veroeffentlichungen/2016/08/26/bliss_arm.zip
https://www.emsec.rub.de/media/crypto/veroeffentlichungen/2016/08/26/bliss_arm.zip
https://github.com/OtoriTakeo/Flying_TESLA
https://www.emsec.rub.de/media/crypto/veroeffentlichungen/2016/08/26/bin_lwe_arm.zip
https://www.emsec.rub.de/media/crypto/veroeffentlichungen/2016/08/26/bin_lwe_arm.zip
http://www.win.tue.nl/~tchou/qcbits/


— Small Devices: Reference implementations 3

2.2.2 Software targeting AVR

1. Implementation of lattice-based (Ring-LWE-based) encryption and BLISS signatures
for AVR ATMega:
https://www.sha.rub.de/media/crypto/veroeffentlichungen/2016/06/08/High-

Performance-Lattice-Crypto-Code.zip

2. Implementation of code-based (QC-MDPC) encryption for AVR ATMega:
http://www.sha.rub.de/media/attachments/files/2013/08/MDPC_Atmel.rar

References

[1] Erdem Alkim, Nina Bindel, Johannes Buchmann, and Özgür Dagdelen. Tesla: Tightly-
secure efficient signatures from standard lattices, 2016. http://cryptojedi.org/papers/
#tesla.

[2] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum key
exchange – a new hope. In Proceedings of the 25th USENIX Security Symposium. USENIX
Association, 2016. http://cryptojedi.org/papers/#newhope.

[3] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben Niederha-
gen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe, and Zooko Wilcox-
O’Hearn. SPHINCS: practical stateless hash-based signatures. In Marc Fischlin and
Elisabeth Oswald, editors, Advances in Cryptology – EUROCRYPT 2015, volume 9056
of Lecture Notes in Computer Science, pages 368–397. Springer-Verlag Berlin Heidelberg,
2015. http://cryptojedi.org/papers/#sphincs.

[4] Daniel J. Bernstein and Tanja Lange. eBACS: ECRYPT benchmarking of cryptographic
systems. http://bench.cr.yp.to (accessed 2016-09-30).

[5] Andreas Hülsing, Joost Rijneveld, Simona Samardjiska, and Peter Schwabe. From 5-pass
mq-based identification to mq-based signatures. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, Advances in Cryptology – Asiacrypt 2016, Lecture Notes in Computer Science.
Springer-Verlag Berlin Heidelberg, 2016 (to appear). http://cryptojedi.org/papers/

#mqdss.

[6] Andreas Hlsing, Joost Rijneveld, and Fang Song. Mitigating multi-target attacks in hash-
based signatures. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-
Yin Yang, editors, Public-Key Cryptography – PKC 2016, volume 9614 of Lecture Notes
in Computer Science, pages 387–416. Springer-Verlag Berlin Heidelberg, 2016. https:

//eprint.iacr.org/2015/1256.

https://www.sha.rub.de/media/crypto/veroeffentlichungen/2016/06/08/High-Performance-Lattice-Crypto-Code.zip
https://www.sha.rub.de/media/crypto/veroeffentlichungen/2016/06/08/High-Performance-Lattice-Crypto-Code.zip
http://www.sha.rub.de/media/attachments/files/2013/08/MDPC_Atmel.rar
http://cryptojedi.org/papers/#tesla
http://cryptojedi.org/papers/#tesla
http://cryptojedi.org/papers/#newhope
http://cryptojedi.org/papers/#sphincs
http://bench.cr.yp.to
http://cryptojedi.org/papers/#mqdss
http://cryptojedi.org/papers/#mqdss
https://eprint.iacr.org/2015/1256
https://eprint.iacr.org/2015/1256

	Introduction
	Implementations
	Portable software in C
	Software for specific embedded microcontrollers
	Software targeting ARM Cortex-M
	Software targeting AVR



