
PQCRYPTO

Post-Quantum Cryptography for Long-Term Security

Project number: Horizon 2020 ICT-645622

Small Devices: D1.4 Intermediate Report on Optimized
Hardware

Due date of deliverable: 30. September 2016
Actual submission date: May 3, 2017

Start date of project: 1. March 2015 Duration: 3 years

Coordinator:
Technische Universiteit Eindhoven
Email: coordinator@pqcrypto.eu.org
www.pqcrypto.eu.org

Revision 1

Project co-funded by the European Commission within Horizon 2020
Dissemination Level

PU Public X
PP Restricted to other programme participants (including the Commission services)
RE Restricted to a group specified by the consortium (including the Commission services)
CO Confidential, only for members of the consortium (including the Commission services)





Small Devices: D1.4 Intermediate Report on
Optimized Hardware

Tim Güneysu, Tobias Oder

Contributors:

May 3, 2017
Revision 1

The work described in this report has in part been supported by the Commission of the European Commu-
nities through the Horizon 2020 program under project number 645622 PQCRYPTO. The information in this
document is provided as is, and no warranty is given or implied that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.





Abstract

This document provides the PQCRYPTO project’s intermediate report on optimized hard-
ware. It provides the preliminary hardware implementation results of selected post-quantum
schemes and corresponding parameters for embedded systems.
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1 Introduction

Modern asymmetric cryptosystems that are designed to face multiple threats and maintain
long-term security require conservative parameter choices that typically pose a major im-
plementation challenge for hardware devices. In this report we survey modern post-quantum
schemes in regard to their implementation on reconfigurable and static hardware, also known as
Field-Programmable Gate Array (FPGA) and Application Specific Integrated Circuit (ASIC)
devices respectively. This report elaborates the advantages and disadvantages of both plat-
forms and describes which platform should be used in which use cases. It reviews the most
popular schemes in post-quantum cryptography that support confidentiality (by encryption)
and authentication (by digital signatures). Note that the report is designed to focus on the
implementation challenges and does not include any detailed discussion of the mathemati-
cal background required to understand the design rationales of the respective post-quantum
constructions.

2 Target Platforms

In this report, we cover two classes of target architectures for efficient cryptographic implemen-
tations, field-programmable gate arrays (FPGAs) and application-specific integrated circuits
(ASICs). An FPGA is a reconfigurable integrated circuit. In contrast to an ASIC, an FPGA
is not bounded to one specific purpose since the configuration can be changed at any time
after manufacturing and even after distribution in the field. This is especially useful when the
security measures of a production system in the field turn out to be insecure. To achieve a
high level of flexibility, the FPGA largely consists of a regular grid of configurable logic blocks
(CLBs). The CLBs themselves consist of a number of slices and a switching matrix. While the
slices contain the reconfigurable logic, the switch matrices connect adjacent CLBs and realize
the routing of the signals. Besides CLBs, there are other resources available such as block
RAM memory and digital signal processors (DSPs). FPGAs are used increasingly often in
commercial products since their reconfigurability allows fast prototyping and therefore reduces
the time to market. Also the regular structure leads to a simpler design cycle since routing,
placement, and timing can mostly be automated.

On the other side, ASICs are designed to serve one particular purpose for which it com-
prises a specifically tailored hardware circuit. Once manufactured, the design is static and
adjustments can only be made by physically exchanging the hardware. But this allows for
more compact designs and speed optimizations since only components that are actually neces-
sary are included in the design while FPGA designs most likely will not reach 100% utilization.
More compact designs mean cheaper unit costs for high volume designs. Additionally, ASIC
designs are usually less power-consuming than FPGA designs. But on the other hand, de-
signing an ASIC comes with upfront non-recurring costs for development tools and expensive
respins.

The choice of the target architecture mainly depends on the use case. If a highly optimized
implementation is expected to meet the design requirements and high quantities of the product
should be produced, it is probably best to choose an ASIC as the target platform as they are
cheaper in production. For lower quantities and greater flexibility after distribution, FPGA
implementations should be considered as they offer faster prototyping and are cheaper in
development. In particular, the aspect of flexibility by FPGAs is often regarded as highly
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beneficial for security applications since their cryptographic cores can be easily replaced in
the field in case they turn out to be insecure. This particularly holds true for post-quantum
cryptography: since many of the proposed constructions are rather new and thus have not
undergone a thorough and long-lasting cryptanalytic review yet. FPGA implementations are
preferable when quick upgrades are necessary and expected over the lifetime of the service. In
this sense, we will put particular emphasis on FPGA implementations in this report.

3 Hardware Optimization

The efficiency of a hardware implementation strongly depends on the implemented algorithm
and its opportunities for optimization. Optimization can happen on different levels. The
implemented algorithms can be adjusted such that they better fit the constraints of a target
platform (e.g. set the word size of the architecture as bit size of the modulus). During design
stage, optimization can also happen on the architectural level. Finally, technical optimization
includes the use of specific features of the target platform, like DSPs.

Commonly, algorithms that have a high degree of parallelism benefit more from hardware
optimization than algorithms with a mostly serial structure. Parallelization can be used as
an optimization technique on different levels. Basic operations, like XOR, can be executed
in parallel; also, a design can contain multiple instances of an algorithm that run in parallel.
Furthermore, algorithms with emphasis on the data flow instead of the control flow are better
suited for hardware optimization since a simple control flow leads to simple state machines
and a higher utilization of the used components. Finally, an efficient hardware implementation
requires algorithms with operations that can easily be mapped to efficient hardware structures.

A hardware design can be improved with respect to different optimization goals. One goal
is to reduce the area that is occupied by the implementation, which means a decrease in the
number of components used. This is of particular interest since a smaller area consumption
directly translates to a less expensive design. The second goal is to reduce the execution
time and increase the throughput of the implementation, which matter, for instance, if the
implementation has to be compliant with standard protocols that require a message to be
delivered in a certain time frame. Real-time applications are another example where a low
latency implementation is crucial. Finally, a wide range of use cases require a hardware imple-
mentation to be energy-efficient. In the Internet of Things, many devices only have access to
a limited power supply (e.g., sensor networks) and therefore energy-efficient implementations
are of notable importance for these applications. In many cases, the developer has to choose
between one optimization goal and the other. That is, a faster design can often be achieved
by making the design larger (more parallelization). On the other hand, reducing the number
of used components usually leads to a lower power consumption. A careful assessment of the
demands of the use case is necessary.

In a security-critical context, side-channel attacks have to be taken into account when
developing hardware implementations. It is crucial to make sure an attacker with physical
access to the target platform is not able to extract secret information by using side-channel
information, like timing, power consumption, or electromagnetic emanation (EM). Counter-
measures against side-channel attacks usually imply a massive overhead in at least one of the
aforementioned metrics.

There are several approaches that can be used to optimize hardware implementations for
a given optimization goal. The execution time of an implementation is determined by the
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number of clock cycles and the frequency of the device. In order to increase the performance,
it is possible to insert buffer storage elements for intermediate results (pipelining) that reduce
the critical path and therefore allow a higher maximum frequency but also increase the number
of clock cycles it takes to finish the operation. Loops in which one iteration step does not
depend on the previous one can be unrolled to be executed in parallel and therefore increase
the performance. On the downside, multiple processing elements are necessary. To allow faster
memory access, multiple block RAM instances can be used to allow multiple read accesses in
one clock cycle. Digital signal processors (DSP) can be used to speed up arithmetic operations.

Increasing the performance often means increasing the number of used components. Tech-
niques to minimize the area consumption of an implementation are the reverse of the performance-
oriented approach we described above. A serial execution of operations that share the same
components can significantly reduce the resource consumption of the scheme. If block RAM
units are used, they can store the maximum amount of data to keep the number of used
memory components small even though that means that only one memory access per clock
cycle is possible (two for dual-port memories). Large pre-computed tables can be calculated
on-the-fly to avoid storing them in memory blocks. A smaller design usually refers to a more
energy-efficient design. A low-power implementation can also be achieved by running the
device at a lower clock frequency.

To make a design secure against side-channel attacks, one has to also design and implement
dedicated countermeasures. Ensuring that an implementation has a constant execution time
prevents an attacker from deducing information about the secret key by observing the running
time of the device. The typical countermeasures against power and EM side-channels are
masking and hiding of secret data.

4 Hardware Implementations

In this section we give an overview of existing implementations of post-quantum schemes. We
are not aware of any hardware implementations of multivariate quadratic schemes. For hash-
based scheme, there are implementations of one-time signature schemes [4], but as those are
only able to generate a single signature for a given key pair, we did not consider those. Thus
we mainly focus on implementations of lattice-based and code-based schemes. We also briefly
review some hardware implementations of hash-functions as those are the building blocks for
the hash-based signature schemes XMSS [7] and SPHINCS [5].

4.1 Encryption

There are several hardware implementations of post-quantum encryption schemes. The most
relevant ones are reviewed here and summarized in Table 4.1.

4.1.1 Lattice-based Cryptography

Lattice-based cryptography can be divided into two groups, one for the schemes that base their
security on standard lattices and one for schemes that base their security on ideal lattices.
While the latter offers a higher performance and smaller key sizes they also introduce an
additional structure in the underlying lattice and that is why standard lattice schemes are
usually considered to be a more conservative choice.
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Scheme Security Platform FFs LUTs Slices BRAMs Time
QC-MDPC McE enc[17] 80 bits XC6VLX240T 14,429 9,201 2,924 0 13.7 µs
QC-MDPC McE dec[17] 80 bits XC6VLX240T 32,974 36,554 10,271 0 125.4 µs
QC-MDPC McE enc[39] 80 bits XC6SLX4 119 226 64 1 3.4 ms
QC-MDPC McE dec[39] 80 bits XC6SLX4 413 605 159 3 23.0 ms
Goppa McE enc[11] 80 bits XC3S1400AN 804 1,044 668 3 2.2 ms
Goppa McE dec[11] 80 bits XC3S1400AN 8,977 22,034 11,218 20 21.6 ms
Ring-LWE enc[36] 105 bits XC6SLX9 238 317 95 2 0.9 ms
Ring-LWE dec[36] 105 bits XC6SLX9 87 112 32 1 0.4 ms
Ring-LWE enc/dec[35] 105 bits V6LX75T 3624 4549 1506 12 26 µs
Standard-LWE enc[20] 128 bits S6LX45 4,676 6,078 1,866 73 0.8 ms
Standard-LWE dec[20] 128 bits S6LX45 58 63 32 13 0.2 ms
Lattice-based IBE [38] 80 bits S6LX25 6,067 7,023 - 16 80 µs
Lattice-based IBE [38] 192 bits S6LX25 8,686 8,882 - 27 164 µs

Table 4.1: FPGA implementation results of post-quantum encryption schemes. Note that the
given security levels are considering the pre-quantum setting.

The (standard) learning with errors (LWE) encryption scheme [31] has been implemented
by Howe et al [20]. The two main operations in this scheme are matrix-vector multiplication
and Gaussian sampling. The matrix-vector multiplications are performed serially with the
help of a single DSP. Gaussian samples are generated using a Bernoulli sampler [9] as it does
not require large precomputed tables. The uniformly distributed random numbers that the
Gaussian sampler requires as input are generated using the stream cipher Trivium [8]. Their
implementation of the LWE encryption requires 6,078 LUTs, 4,676 FFs, and 1,811 slices on
a Spartan-6 FPGA. Due to the size of the keys the implementation also requires 73 BRAM
modules. This number can be reduces by generating parts of the public key on-the-fly instead
of storing it precomputed in BRAMs.

The counterpart to LWE in ideal lattices is called ring learning with errors (R-LWE) [28].
This scheme has been implemented several times. The first implementation of R-LWE has
been published by Göttert et al. in 2012 [14]. he authors presented a hardware implemen-
tation of the RLWE encryption scheme on a Virtex 7 FPGA. To achieve an acceptable level
of performance, the authors tweaked the parameters of the scheme to be able to use the
Number-theoretic transform (NTT) for lowering the complexity of polynomial multiplication
from O(n2) to O(n log(n). In contrast to matrix-vector multiplication, polynomial multipli-
cation in the frequency domain, computed using NTT, can be optimized in several ways.
During the transformation, it is necessary to compute the twiddle factors, which are powers of
a root of unity. Those twiddle factors can be precomputed or calculated on-the-fly. Designers
can choose the preferred implementation depending on the design goals, namely whether the
implementation should be optimized for memory consumption or performance. The core op-
eration of the NTT is the butterfly operation that takes two coefficients of the polynomial and
performs one multiplication, one addition, and one subtraction. Multiple butterfly operations
can be executed in parallel.

Pöppelmann and Güneysu [34] presented an optimized NTT multiplier. Their work was
further extended to implement a complete RLWE encryption scheme in 2013 [35]. While the
design by Göttert et al. was large and could only be placed on large Virtex-7 FPGAs, Pöppel-
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mann and Güneysu proposed an architecture suitable for smaller reconfigurable devices, such
as a Spartan 6 device. Furthermore, since their implementation relies on a generic microcode
engine, it can also be used for other lattice-based implementations. Since then, several further
optimizations have been proposed. Aysu et al. reduced the area consumption of the NTT
[3]. Roy et al. enhanced the performance of NTT [37] by optimizing the memory access
and simplifying the structure of the algorithm. That design was further optimized by using
a more efficient Knuth-Yao sampler [25] which requires less FPGA resources. The smallest
FPGA implementation, to the best of our knowledge, has been presented by Pöppelmann and
Güneysu [36], the overall resource occupation of which is 32 slices, 1 BRAM, and 1 DSP. To
achieve such a low area design, the authors chose a parameter set for which the modulus is
a power of two. As a result, there was no need for a modular reduction step. The drawback
of the proposed set of parameters is that the NTT is no longer applicable. As a result, the
computation time is increased by one order of magnitude.

There are also a number of FPGA implementations of the NTRU encryption scheme [19],
like [22] or [27]. However as NTRU is still protected by patents [18] we do not further consider
NTRU implementations.

Lattice-based cryptography also allows practical identity-based encryption. The identity-
based encryption proposed by Ducas et al. [10] has been implemented for an FPGA as well
[38]. However, the implementation only covers the encryption and the decryption that are
very similar the the R-LWE encryption scheme. The master key generation and the user
key generation has not been implemented as the constrained resources of an FPGA are not
sufficient to perform these operations.

4.1.2 Code-based Cryptography

The code-based encryption scheme McEliece [29] and its variant by Niederreiter [30] have also
been implemented on hardware devices. McEliece can be instantiated with different codes.
While the original scheme uses Goppa codes, quasi-cyclic modest density parity-check (QC-
MDPC) codes provide a better efficiency. However, QC-MDPC codes provide an additional
structure that might be exploitable. Choosing QC-MDPC codes over Goppa codes is therefore
similar to choosing ideal lattices over standard lattice.

McEliece with Goppa codes has been implemented on a Xilinx Spartan-3AN FPGA by
Eisenbarth et al [11]. As the implementation relies on Goppa codes, the public and the secret
key are huge matrices. The McEliece decryption is much more complex than the encryption
due to the decoding algorithm that is used to recover the message. Thus, the implementation
of [11] needs 668 slices, 1,044 LUTs, 804 FFs, and 3 BRAMs for the encryption, but 11,218
slices, 22,034 LUTs, 8,977 FFs, 20 BRAMs for the decryption. Both modules (encryption and
decryption) also need 4,644 Kbits of Flash memory. The design was improved by Ghosh et al.
[13] by reducing the number of required slices during the decryption to 2,979 and the number
BRAMs to 5. Furthermore the decryption latency was reduced to 1 ms instead of 10.8 ms.

The performance and resource consumption of QC-MDPC McEliece has been evaluated on
reconfigurable hardware in [17] and [39]. While the work of [17] aims for a high-speed imple-
mentation for Virtex-6 FPGAs, [39] focuses more on developing a lightweight implementation
that even fits on a low-cost Spartan 6-FPGA. Thus the results are very different. While the
high-speed implementation of [17] takes 13.7 microseconds for encryption and 125.4 microsec-
onds for decryption, the lightweight implementation of [39] is two orders of magnitude slower
as it takes 3.4 milliseconds for encryption and 23 milliseconds for decryption. On the other
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hand, the lightweight implementation takes much less resources. The encryption takes only
119 FFs, 226 LUTs, and 64 slices while the high-speed encryption needs 14,429 FFs, 9,201
LUTs, and 2,924 Slices. However, the lightweight implementation requires 1 resp. 3 BRAMs
for encryption resp. decryption while the high-speed implementation does not require any.

4.2 Digital Signatures

For post-quantum digital signatures, less hardware implementations exist. The implementa-
tions we are aware of are summarized in Table 4.2.

Scheme Security Platform FFs LUTs Slices BRAMs Time
GLP-Sign[15] 80 bits XC6SLX16 8,993 7,465 2,273 29.5 1 ms
GLP-Verify[15] 80 bits XC6SLX16 6,663 6,225 2,263 15 1 ms
BLISS-Sign[33] 128 bits XC6SLX16 6,420 7,193 2,291 5.5 114 µs
BLISS-Verify[33] 128 bits XC6SLX16 4,312 5,065 1,687 4 58 µs

Table 4.2: FPGA implementation results of post-quantum signature schemes. Note that the
given security levels are considering the pre-quantum setting.

4.2.1 Lattice-based Cryptography

Implementing lattice-based signature schemes is a more challenging task, since the standard
deviation of the Gaussian sampler is usually much higher compared to encryption schemes.
Furthermore, additional components, such as hash functions and a rejection step, are required.
So far, only ideal lattice-based signature schemes have been implemented on FPGAs. The main
reason is that standard lattice signature schemes like TESLA [1] need to be instantiated with
very large parameters.

The GLP signature scheme [15] was presented by G"̆neysu et al. in 2012 and implemented
on a Spartan 6 FPGA. The BLISS digital signature scheme [9] was also implemented in hard-
ware [33]. The major difference between both schemes is that the error polynomials in BLISS
have Gaussian distributed coefficients and ternary coefficients in GLP. The BLISS FPGA de-
sign uses a table-based Gaussian sampler which, thanks to the Kullback-Leibler divergence,
can be implemented using little memory without affecting the performance. Implementing
Gaussian samplers in hardware is a challenging task: Many samplers have an non-constant
running time; e.g., when using rejection sampling, the sampler could theoretically require an
infinite number of iterations. Other samplers need large precomputed tables that contribute
to a significant share of the implementations overall memory consumption. In general, the
Knuth-Yao sampler is considered a good trade-off between runtime and memory consumption.
For small standard deviations, the binomial sampler [2] is a good choice since it does not re-
quire any precomputed tables and has a constant running time. But as the standard deviation
grows, other techniques, like the already mentioned Knuth-Yao, become more interesting since
they feature a lower average running time and entropy consumption. The entropy consump-
tion of a sampler is important because it is also necessary to implement a pseudo-random
number generator that produces uniformly random bits.
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4.2.2 Hash-based Cryptography

We are not aware of any hardware implementations of hash-based signature schemes apart from
one-time signature schemes. However, the main building block in hash-based cryptography
are hash functions and hardware implementations of those are plentiful. The Third SHA-3
Candidate Conference brought up lots of implementations results, like [16, 12, 26, 24, 23, 21].
It outperforms SHA-2 by an order of magnitude and is therefore an interesting candidate to
instantiate hash-based signature schemes with.

4.3 Key Exchange

While there are promising lattice-based key exchange schemes, like New Hope [2] and Frodo
[6], we are not aware of any hardware implementations of those schemes. Furthermore, the
McEliece encryption scheme can be used as key encapsulation mechanism[32]. There are
microcontroller implementations of a McEliece KEM [40] but unfortunately no hardware im-
plementations.

5 Conclusions

A lot of post-quantum schemes have been implemented already, especially lattice-based and
code-based schemes. So far, ideal lattice-based schemes appear to be the most efficient. How-
ever, the additional structure in the underlying lattice is still considered to be a potential
thread to its security even though no attacks have been found yet that could exploit this
structure. It would be interesting to also compare these implementations to implementations
of hash-based schemes, like XMSS or SPHINCS.
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