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1 Introduction

This document describes libpqcrypto, a new cryptographic software library produced by the
PQCRYPTO project.

PQCRYPTO, working jointly with many other researchers around the world, submitted
22 proposals to NIST’s ongoing post-quantum standardization project.1 Each submission
specifies a family of cryptographic systems, offering various tradeoffs between performance
and security. Each submission includes software: a (portable) reference C implementation,
and in many cases additional (not necessarily portable) implementations providing better
performance (often using assembly language or “intrinsics”). libpqcrypto includes software
for the following 77 cryptographic systems (50 signature systems and 27 encryption systems)
from 19 of the 22 PQCRYPTO submissions:

• BIG QUAKE: crypto_kem_bigquake{1,3,5}

• Classic McEliece: crypto_kem_mceliece{6960119,8192128}

• CRYSTALS-DILITHIUM: crypto_sign_dilithium{2,3,4}

• CRYSTALS-KYBER: crypto_kem_kyber{512,768,1024}

• DAGS: crypto_kem_dags{3,5}

• FrodoKEM: crypto_kem_frodokem{640,976}

• Gui: crypto_sign_gui{184,312,448}

• KINDI: crypto_kem_kindi{256342,256522,512222,512241,512321}

• LUOV: crypto_sign_luov{863256,890351,8117404,4849242,6468330,8086399}

• MQDSS: crypto_sign_mqdss{48,64}

• NewHope: crypto_kem_newhope{512,1024}cca

• NTRU-HRSS-KEM: crypto_kem_ntruhrss701

• NTRU Prime: crypto_kem_{ntrulpr,sntrup}4591761

• Picnic: crypto_sign_picnicl{1,3,5}{fs,ur}

• qTESLA: crypto_sign_qtesla{128,192,256}

• Rainbow: crypto_sign_rainbow{1a,1b,1c,3b,3c,4a,5c,6a,6b}

• Ramstake: crypto_kem_ramstakers{216091,756839}

• SABER: crypto_kem_{firesaber,lightsaber,saber}

• SPHINCS+: crypto_sign_sphincs{f,s}{128,192,256}{haraka,sha256,shake256}

1NIST issued a formal call for submissions in 2016, set a submission deadline at the end of November
2017, received 82 submissions, and posted 69 “complete and proper” submissions: https://csrc.nist.gov/

projects/post-quantum-cryptography/round-1-submissions.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions


4 PQCRYPTO — Post-Quantum Cryptography for Long-Term Security

libpqcrypto collects this software into an integrated library, with

• a unified compilation framework,

• an automatic test framework,

• automatic selection of the fastest implementation of each system,

• a unified C interface following the NaCl/TweetNaCl/SUPERCOP/libsodium API,

• a unified Python interface,

• command-line signature/verification/encryption/decryption tools, and

• command-line benchmarking tools.

libpqcrypto also integrates some symmetric-crypto software from SUPERCOP, including
the AES-256-CTR stream cipher (an OpenSSL wrapper and a separate implementation from
Romain Dolbeau), the Salsa20-256 and ChaCha20-256 stream ciphers (implementations from
Daniel J. Bernstein, Romain Dolbeau, Martin Goll, Shay Gueron, Ted Krovetz, Tanja Lange,
Andrew Moon, Samuel Neves, and Peter Schwabe), the Poly1305 MAC (implementations
from Daniel J. Bernstein, Billy Brumley, Andrew Moon, and Peter Schwabe), the SHA-512
hash function (an OpenSSL wrapper, a separate implementation from Daniel J. Bernstein,
and a separate implementation from Thomas Pornin via sphlib), portions of the Keccak Code
Package (from Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and Ronny
Van Keer), and the SHAKE256 hash function (a KCP wrapper and implementations from
David Leon Gil). For credits regarding the public-key software, see the individual submission
packages to NIST.

Beware that the components of libpqcrypto vary in licenses. Some parts are in the public
domain, but others are not.

2 Security warnings

Most of the primitives (mathematical functions) in libpqcrypto are new. For quantitative
and qualitative security analysis, see the individual submission packages, and
watch NIST’s pqc-forum for updates.

There could be security problems in libpqcrypto even if all the proposed primitives
achieve their security goals. Most of the software in libpqcrypto is new and has not been
audited. In particular:

• There could be software bugs that result in the software computing different functions
from the proposals, and these differences could destroy security.

• The command-line tools have additional code (input, output, KEM-DEM hybrids,
etc.) and have not been audited.

• Some of the software has data-dependent branches and data-dependent array indices,
presumably leaking secrets through timings.

New projects in high-assurance cryptographic software are working towards engineering
a new generation of software with formally verified guarantees of constant-time behavior and
full functional correctness. Future updates to libpqcrypto will take advantage of this.
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3 Installation

3.1 Prerequisites

The following instructions are for Debian/Ubuntu systems. Other modern Linux/BSD/UNIX
systems should work with minor adjustments to the instructions. These instructions need the
following packages:

• gcc and other compiler tools: apt install build-essential

• OpenSSL header files: apt install libssl-dev

• GMP header files: apt install libgmp-dev

• Python 3: apt install python3

Check that df /home/ shows at least 300000 1K-blocks available, and that df -i /home/

shows at least 30000 inodes free. Currently a typical compile-and-test run uses about 200MB
and about 15000 inodes.

3.2 Download, unpack, compile, test, install

In a root terminal, create a libpqcrypto user:

adduser --disabled-password --gecos libpqcrypto libpqcrypto

Run a shell as that user:

su - libpqcrypto

As that user, download and unpack the latest version of libpqcrypto:

wget -m https://libpqcrypto.org/libpqcrypto-latest-version.txt

version=$(cat libpqcrypto.org/libpqcrypto-latest-version.txt)

wget -m https://libpqcrypto.org/libpqcrypto-$version.tar.gz

tar -xzf libpqcrypto.org/libpqcrypto-$version.tar.gz

cd libpqcrypto-$version

ln -s $HOME link-build

ln -s $HOME link-install

Compile, test, and install (this takes time):

./do

Exit the user shell:

exit

That’s it.

3.3 Options

3.3.1 Remote installation

The download-unpack-compile-test-install process runs entirely from the command line. The
process is compatible with the root shell being run under screen, and is compatible with this
screen being run on another machine accessed through ssh.
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3.3.2 Skipping prerequisites

If OpenSSL and/or GMP are not present, libpqcrypto will continue compilation, but it will
limit the installation to what it can test. For example, the ramstake functions need GMP,
and if you compile without GMP then libpqcrypto will omit ramstake. You can install
GMP later and recompile libpqcrypto.

3.3.3 Skipping primitives

./do will skip a signature system or encryption system if you set the sticky bit on the relevant
crypto_sign or crypto_kem subdirectory. For example, chmod +t crypto_sign/*/ skips
all signature systems; chmod -t crypto_sign/*/ undoes this. Similar comments apply to
lower-level directories for particular implementations.

3.3.4 Compiler options

./do tries a list of compilers in compilers/c, keeping the fastest working implementation of
each primitive. Before running ./do you can edit compilers/c to adjust compiler options or
to try additional compilers. Beware that each compiler takes time and disk space.

3.3.5 Multi-ABI support

If you put both 32-bit and 64-bit compilers into compilers/c then ./do will produce both
32-bit and 64-bit libraries, available through lib-x86 and lib-amd64 (on Intel/AMD CPUs)
or lib-armeabi and lib-aarch64 (on ARM CPUs). You should put the 64-bit compilers
first so that they are used (if possible) for the command-line tools.

3.4 Future possibilities

3.4.1 Fewer prerequisites

Not many functions in libpqcrypto use OpenSSL, and eliminating the OpenSSL dependency
will not take much more work. There are already alternative non-OpenSSL implementations
for crypto_stream_aes256ctr and crypto_hash_sha512. OpenSSL is also used for AES-
128-CTR in frodo*; for SHA-256, SHA-384, and SHA-512 in gui* and rainbow*; and for
SHA-256 in sphincs*sha256.

3.4.2 Faster compilation and testing

Some effort will allow compilation and testing to be parallelized on multi-core systems. See
also the discussion of shared binaries in Section 8. Speed improvements to libpqcrypto

will also save time in testing, and increased sharing of internal subroutines will save time in
compilation.

3.4.3 Cross-compilation

libpqcrypto already has some internal support for cross-compilation. The first stage of
./do, namely ./build, only generates .o files without running any. The next stage, namely
./test, links and runs binaries and creates libraries but does not make any new .o files.
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4 Command-line interface

4.1 Location

To access the libpqcrypto command-line tools, add /home/libpqcrypto/command to your
PATH:

export PATH=$PATH:/home/libpqcrypto/command

You can instead put /home/libpqcrypto/command/ in front of each command name; but this
does not work for the pq-*-all wrappers.

4.2 Signature systems

There is a unified interface for all signature systems; these examples use sphincsf256sha256.
To generate a key pair:

pq-keypair-sphincsf256sha256 5>publickey 9>secretkey

To sign a message:

pq-sign-sphincsf256sha256 <message 8<secretkey >signedmessage

To verify a signed message and recover the original message:

pq-open-sphincsf256sha256 <signedmessage 4<publickey >message

If verification fails, pq-open-sphincsf256sha256 produces an empty output, prints an error
message on stderr, and exits 100.

4.3 Encryption systems

There is a unified interface for all encryption systems; these examples use mceliece8192128.
To generate a key pair:

pq-keypair-mceliece8192128 5>publickey 9>secretkey

To encrypt a message:

pq-encrypt-mceliece8192128 <message 4<publickey >ciphertext

To decrypt a ciphertext and recover the original message:

pq-decrypt-mceliece8192128 <ciphertext 8<secretkey >message

If decryption fails, pq-decrypt-mceliece8192128 produces an empty output, prints an error
message on stderr, and exits 100.

4.4 Benchmarking

Run pq-size-all to see key sizes etc. (For picnic*fs, signature sizes are message-dependent;
the maximum possible signature size is reported.) Run pq-speed-all to see key-generation
times etc. Run pq-notes-all for implementation notes. The output formats are subject to
change.
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5 Python interface

5.1 Location and interface conventions

To access the Python functions provided by libpqcrypto, add /home/libpqcrypto/python

to your PYTHONPATH:

export PYTHONPATH="/home/libpqcrypto/python${PYTHONPATH+:$PYTHONPATH}"

Also insert

import pqcrypto

into your Python 2 or Python 3 script.
All inputs and outputs are byte strings, the bytes type in Python (which is the same as

str in Python 2 but different in Python 3). Verification failures and decapsulation failures
raise exceptions.

5.2 Signature systems

There is a unified interface for all signature systems; these examples use mqdss64. To generate
a key pair:

pk,sk = pqcrypto.hash.mqdss64.keypair()

To sign a message m:

sm = pqcrypto.hash.mqdss64.sign(m,sk)

To recover a message from a signed message:

m = pqcrypto.hash.mqdss64.open(sm,pk)

As a larger example, the following test script signs and then recovers a message under a
random key pair:

import pqcrypto

sig = pqcrypto.sign.mqdss64

pk,sk = sig.keypair()

m = b"hello world"

sm = sig.sign(m,sk)

assert m == sig.open(sm,pk)

5.3 Key-encapsulation mechanisms

There is a unified interface for all KEMs; these examples use newhope1024cca. To generate
a key pair:

pk,sk = pqcrypto.kem.newhope1024cca.keypair()

To generate a ciphertext c encapsulating a randomly generated session key k:

c,k = pqcrypto.kem.newhope1024cca.enc(pk)
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To recover a session key from a ciphertext:

k = pqcrypto.kem.newhope1024cca.dec(c,sk)

As a larger example, the following test script creates a key pair, creates a ciphertext and
session key, and then recovers the session key from the ciphertext:

import pqcrypto

kem = pqcrypto.kem.newhope1024cca

pk,sk = kem.keypair()

c,k = kem.enc(pk)

assert k == kem.dec(c,sk)

As another example, the following script generates 10000 key pairs and checks that they are
all different:

import pqcrypto

kem = pqcrypto.kem.newhope1024cca

n = 10000

assert len(set(kem.keypair() for i in range(n))) == n

5.4 Lower-level primitives

There are interfaces for various lower-level functions such as stream ciphers (stream), one-
time authenticators (onetimeauth), and hash functions (hash). For example, the following
test script checks the SHA-512 hash of a string against Python’s hashlib library:

import pqcrypto

m = pqcrypto.randombytes(1234567)

h = pqcrypto.hash.sha512(m)

import hashlib

H = hashlib.sha512()

H.update(m)

assert H.digest() == h

The following test script computes and checks an authenticator:

import pqcrypto

mac = pqcrypto.onetimeauth.poly1305

k = pqcrypto.randombytes(mac.klen)

m = pqcrypto.randombytes(1234567)

a = mac.auth(m,k)

mac.verify(a,m,k)

Beware that the key for a one-time authenticator must not be used for more than one message.
The following test script checks an AES-256-CTR ciphertext against Python’s Crypto

library:
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import pqcrypto

cipher = pqcrypto.stream.aes256ctr

k = pqcrypto.randombytes(cipher.klen)

n = pqcrypto.randombytes(cipher.nlen)

m = pqcrypto.randombytes(1234567)

c = cipher.xor(m,n,k)

assert m == cipher.xor(c,n,k)

from Crypto.Cipher import AES

from Crypto.Util import Counter

import binascii

nint = int(binascii.hexlify(n),16)

s = AES.new(k,AES.MODE_CTR,counter=Counter.new(128,initial_value=nint))

assert s.encrypt(m) == c

Beware that nonces must be handled carefully in general, to avoid having the same nonce
used for two messages under the same key; and even more carefully for AES-CTR, since each
new 16-byte message block moves to a new nonce.

The following script has the same effect as the pq-decrypt-mceliece8192128 command:

import os

import sys

import pqcrypto

kem = pqcrypto.kem.mceliece8192128

hash = pqcrypto.hash.shake256

enc = pqcrypto.stream.salsa20

auth = pqcrypto.onetimeauth.poly1305

with os.fdopen(0,"rb") as f: c = f.read()

with os.fdopen(8,"rb") as f: sk = f.read()

k = kem.dec(c[-kem.clen:],sk)

c = c[:-kem.clen]

h = hash(k)

kenc,h = h[:enc.klen],h[enc.klen:]

kauth = h[:auth.klen]

a,c = c[:auth.alen],c[auth.alen:]

auth.verify(a,c,kauth)

n = b"\0"*enc.nlen

m = enc.xor(c,n,kenc)

with os.fdopen(1,"wb") as f: f.write(m)
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6 C library interface

The C API follows the principles of the NaCl/TweetNaCl/SUPERCOP/libsodium API, and in
particular supports the previously defined crypto_sign and crypto_kem interfaces. However,
to avoid namespace conflicts with NaCl, libpqcrypto uses pqcrypto_* names instead of
crypto_* names. For example, put the following code into testsign.c:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "pqcrypto_sign_mqdss64.h"

unsigned char pk[pqcrypto_sign_mqdss64_PUBLICKEYBYTES];

unsigned char sk[pqcrypto_sign_mqdss64_SECRETKEYBYTES];

#define mlen 7

unsigned char m[mlen] = "hello\n";

unsigned char sm[pqcrypto_sign_mqdss64_BYTES + mlen];

unsigned long long smlen;

unsigned char t[sizeof sm];

unsigned long long tlen;

int main()

{

if (pqcrypto_sign_mqdss64_keypair(pk,sk)) abort();

if (pqcrypto_sign_mqdss64(sm,&smlen,m,mlen,sk)) abort();

if (pqcrypto_sign_mqdss64_open(t,&tlen,sm,smlen,pk)) abort();

if (tlen != mlen) abort();

if (memcmp(t,m,mlen)) abort();

return 0;

}

Compile and run as follows:

gcc -o testsign testsign.c \

-I /home/libpqcrypto/include \

-L /home/libpqcrypto/lib -Wl,-rpath=/home/libpqcrypto/lib \

-lpqcrypto

./testsign && echo ok

The output will be ok.
If you have also compiled x86 libraries on an amd64 machine (see Section 3.3.5), you can

compile in 32-bit mode as follows:

gcc -m32 -o testsign testsign.c \

-I /home/libpqcrypto/include \

-L /home/libpqcrypto/lib-x86 -Wl,-rpath=/home/libpqcrypto/lib-x86 \

-lpqcrypto
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libpqcrypto does not include NaCl-type selection of default primitives. The caller needs
to select which pqcrypto_sign function to use and which pqcrypto_kem function to use.

Some of the software included in libpqcrypto uses malloc and is not suitable for envi-
ronments that control memory usage statically.

7 Comparison to the implementations submitted to NIST

7.1 Namespacing

Each global symbol defined in libpqcrypto, and each header file provided by libpqcrypto,
is in one of the following namespaces: pqcrypto; pqrandombytes; pqkernelrandombytes.
The libpqcrypto compilation script issues warnings for any violations of this rule.

Implementations now follow this rule on several tested platforms (but this has not yet
been comprehensively enforced at the source-code level and might still fail on other plat-
forms). For externally visible functions, .c files now include crypto_kem.h, crypto_sign.h,
randombytes.h, etc. For internal functions, new namespacing files use #define to move each
internal function name into a private namespace, and are used via -imacros namespacing.
Various .s files are now .S and also use the namespacing macros.

Some asm names were manually assigned in avx2 implementations in dilithium*, kyber*,
newhope*, and ntruhrss*. These assignments are now gone in favor of namespacing.

Global symbols outside the defined API now have hidden visibility, preventing interposi-
tion when libpqcrypto is used as a shared library.

7.2 Randomness and tests

Various RNG software layers are now gone, including randombytes.c and randombytes.h

in dilithium*; random.c in frodo*; prng_seed* in gui* and rainbow*; rand_bytes and
randomness.h in picnic*; and various copies of NIST’s rng.c and rng.h. All randomness is
now obtained from randombytes(), provided by #include "randombytes.h". libpqcrypto
includes a centralized randombytes() implementation, the same as fastrandombytes from
SUPERCOP; and a centralized deterministic randombytes() implementation for checksums,
the same as knownrandombytes from SUPERCOP. The deterministic implementation is used
only for tests and is not included in -lpqcrypto.

The NIST KAT-generation code (PQCgen* and the simplified kat_*) is now gone. Other
test drivers (test.c, test_qtesla.c, PQCtestKAT_sign.c, etc.) are also gone. The library
has a centralized test/checksum mechanism, computed the same way as in SUPERCOP.

7.3 Compilation instructions

Each per-implementation Makefile is now gone. These files were used for several purposes:

• Specifying compiler choices (e.g., gcc -Ofast) and prerequisite libraries (e.g., -lkeccak
-lcrypto). libpqcrypto handles this centrally.

• Specifying files to compile. libpqcrypto, like NaCl and SUPERCOP, always compiles
all .c, .s, and .S files in the top directory of an implementation. Files in the aes and
sha3 subdirectories for frodo*, and the sha3 subdirectory for qtesla*, are now in the
top directory.
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• Specifying files to not compile. libpqcrypto, like NaCl and SUPERCOP, does not
compile files outside the top directory. Included files in the top directory under the
name *.c that were not meant to be compiled directly (e.g., poly_mul.c in saber) are
now renamed *.inc.

• For frodo*: Specifying various macros. Some of these were unused and are now elimi-
nated. Others are now incorporated into .h files.

7.4 Bug fixes and portability improvements

dags* had a printf for the occasional “Non systematic matrix”. This was caught by the
automatic tests and is now removed.

frodo*/x64 had some vectorized _load_ and _store_ (rather than the safe _loadu_ and
_storeu_) on data that was not necessarily aligned, crashing when the data was not aligned.
This was caught by the automatic tests. The relevant arrays are now aligned.

gui* had a stack buffer overflow. This was caught by Address Sanitizer and is now fixed.
The luov*/portable implementation leaked memory. This was caught by valgrind and

is now fixed.
mceliece*/avx used 0X for quad hex values in consts.S, and now uses 0x. 0X works with

gcc but not clang.
mqdss64 was reading uninitialized data. This was caught by valgrind (and also indirectly

by other tests) and is now fixed.
qtesla* allocated mlen bytes on the stack, crashing for messages above about 4 megabytes.

This is now handled with malloc.
rainbow*a had a stack buffer overflow. This was caught by Address Sanitizer and is now

fixed.
ramstake756839 wrote a zero byte past the end of the secret-key buffer. This was caught

by the automatic tests and is now fixed.
sphincs* now includes various post-submission code updates.

7.5 Following existing interface rules

kindi* included a crypto_encrypt interface, but ignored the message length provided as
input in that API, and instead assumed a fixed-length message. This was caught by the auto-
matic tests. libpqcrypto provides only crypto_kem and crypto_sign, not crypto_encrypt.

dilithium*, gui*, luov*, mqdss*, qtesla*, rainbow*, and sphincs* did not allow the
message pointer to match the signed-message pointer. This was caught by the automatic tests
in some cases, including all cases where signatures were shorter than the message lengths
in the tests. memcpy is now replaced by memmove where appropriate, and in some cases
crypto_sign_open now copies the incoming signature to a temporary buffer.

dilithium*, gui*, and rainbow* did not allow the public-key pointer to match the output
pointer in crypto_sign_open. This was caught by the automatic tests. crypto_sign_open

now copies the public key to a temporary buffer.

7.6 Following additional interface rules

api.h is now stripped down to numeric definitions of CRYPTO_BYTES etc., so it can be easily
parsed without C preprocessing.
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The NIST submission rules were less restrictive and allowed api.h to be used as a
general-purpose configuration mechanism. Various .c files that included api.h now include
apiorig.h instead, with the original api.h renamed as apiorig.h. Probably some of these
apiorig.h files can be removed, but this cleanup has not happened yet.

Each kem primitive now has a goal-indcca2 file meaning that it tries to provide IND-
CCA2 security (libpqcrypto does not include newhope*cpa), and a goal-indcpa file mean-
ing that it tries to provide IND-CPA security (which is implied by IND-CCA2 security).
However, the quantitative target security level is not indicated.

mceliece*/avx, newhope*/avx2, and ntruhrss*/avx2 now use rip-relative addressing
for constants in memory used in assembly. Previously they used absolute addressing, which
works in a static library but not in a shared library.

Precomputed constants in dilithium*, gui*, kyber*, luov*, mceliece*, newhope*,
ntruhrss*, qtesla*, rainbow*, and ramstake* are now defined as const (equivalently,
.section .rodata in assembly) so that they are placed in the text segment and shared
across processes. This is not comprehensive: some implementations of some primitives have
variables in the data segment, and some functions (notably randombytes) are not thread-safe.

7.7 Fewer compiler warnings

By default, libpqcrypto compiles with -Wall with both gcc and clang. The following
changes reduce the volume of warnings:

• gui*: The unused num_nonzero_terms function is now removed.

• luov* now closes comments in parameters.h. Various unused variables are now re-
moved. An initializer {0} is replaced with {{0}} (and could simply be omitted).

• qtesla*: Various unused variables are now removed.

• sphincs* now has a revised TRUNCSTORE definition.

• picnic* now says #ifndef api_h instead of #ifndef api_.

7.8 More centralization

Most extracts from the Keccak Code Package (e.g., in picnic*) are now gone. The library
has a centralized copy of a larger extract from the Keccak Code Package. However:

• KeccakP-1600-times4-SIMD256.c is still included in individual implementations since
the Keccak Code Package does not have a portable implementation of the underlying
KeccakP1600times4_PermuteAll_24rounds function.

• The Keccak Code Package is only one of the SHA-3 implementations; these implemen-
tations have not yet been merged.

cpucycles() implementations are now gone. The library has a centralized (and more
portable) cpucycles().
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8 Notes on shared binaries

Most users install most packages through operating-system distributions such as Ubuntu. The
packages are compiled and tested on a relatively small number of central systems, and are then
installed as binaries on many more user systems. Similar comments apply to heterogeneous
clusters of computers sharing binaries through NFS.

The idea of sharing binaries is limited by the fact that each binary runs efficiently on
a limited set of CPUs: for example, the ARM CPU in a Raspberry Pi has a very different
instruction set from an Intel or AMD CPU. If a binary is compiled for one CPU, and a user
then tries running it on another CPU, then everything might be fine; or performance could
be suboptimal but still acceptable; or performance could be so poor as to be unacceptable; or
the binary could fail to run. There are “emulation” tools aiming at ensuring that all binaries
run, but this still does not ensure acceptable performance.

Distributions deal with part of this problem by separately compiling binaries for different
types of CPUs. For example, Debian distributes one set of binaries for 64-bit ARM CPUs
(arm64), two sets for 32-bit ARM CPUs (armhf and armel), another set for 64-bit Intel/AMD
CPUs (amd64), and another set for 32-bit Intel/AMD CPUs (i386). These are five of Debian’s
ten official “ports”, and Debian also distributes many other unofficial “ports”.

However, CPU manufacturers frequently release new “microarchitectures” that can run
older binaries but that have new performance characteristics that allow new binaries to obtain
better speeds. For example, Intel’s “Sandy Bridge” microarchitecture (2011) added “AVX”
support (some 256-bit vector instructions), and Intel’s “Haswell” microarchitecture (2013)
added “AVX2” support (more 256-bit vector instructions). For some important computa-
tions, including cryptographic computations, binaries that use AVX2 instructions will run
much faster on Haswell (and newer) CPUs than binaries that do not; but if the binaries are
distributed for all 64-bit Intel/AMD CPUs then they will be installed on some Sandy Bridge
(and older) CPUs and will fail to run.

Operating-system distributions try to handle new microarchitectures in several ways, none
of which are satisfactory:

• Prohibit use of new instructions such as AVX2. This works but produces a slowdown,
often an unacceptable slowdown.

• Split off another “port” for the new processors. For example, armhf allows use of
various instructions that armel does not allow. As a general rule, distributions resist
the introduction of new ports, and new ports have historically been very slow to keep
up with new microarchitectures. Each new port is a new hassle for users trying to figure
out which port to choose, and a new hassle for distributions providing documentation
to the users, even if all other aspects of porting are automated.

• Allow each package the option of also distributing non-default package variants that
target the new processors. This is even more of a hassle for the users, who have no easy
way to figure out which packages are best to install.

Without help from the distributions, programmers sometimes create “fat binaries” that
include many different instruction sequences and that, at run time (when a program starts),
inspect the CPU to predict which sequence will work best. However, reliably mapping various
CPU details to the best instruction sequence is a software-engineering nightmare, limiting the
deployment of this approach.
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A much simpler, much more reliable way to select instruction sequences is to systematically
benchmark each sequence, selecting the fastest sequence that works. However, doing this at
run time is often unacceptably slow. An improvement is to perform systematic benchmarks
at install time for performance-critical libraries (or at boot time to smoothly handle the
occasional CPU replacements; a few functions are already benchmarked at boot time by the
Linux kernel). This approach is taken in NaCl, and an improved version of this approach is
taken in libpqcrypto. NaCl’s benchmarking-and-installation process is tied to compilation;
the improvement is that libpqcrypto has a first stage of compilation that does not need to
be repeated (this can be performed centrally as part of preparing a “port”), and a second
stage of selecting implementations.

9 Notes on building PKEs from KEMs

The command-line tools in libpqcrypto follow the traditional concept of public-key encryp-
tion systems (PKEs): they encrypt and decrypt user-specified messages.

The underlying encryption submissions to NIST instead specify key-encapsulation mech-
anisms (KEMs), which encapsulate and decapsulate random session keys. libpqcrypto con-
verts each KEM to a PKE using the Cramer–Shoup “KEM-DEM” approach: the PKE uses
the KEM to produce a session key, and then uses the session key as the key for an authenti-
cated cipher that encrypts and authenticates the user’s message.

libpqcrypto puts the DEM ciphertext before the KEM ciphertext. A receiver seeing
the DEM ciphertext first is unable to decrypt it and must buffer it until seeing the KEM
ciphertext. Common practice is to put the KEM ciphertext first, so that a receiver can
immediately compute the session key and begin decrypting the DEM ciphertext without
buffering; but this generally means releasing unverified plaintext, which is dangerous.2 The
order in libpqcrypto makes this dangerous behavior more difficult, although obviously still
possible, to implement.

One way to attack a KEM-DEM is to guess the session key. If this attack is applied to T
targets, each using a b-bit session key for the same plaintext, then each guess has probability
approximately T/2b of success. For the typical choice b = 256, this attack is not a serious
threat for any plausible value of T (and analogous quantum attacks are also not a serious
threat). However, some KEMs use b = 128, and then the attack is a serious threat.

One can reduce T/2b to 1/2b by deviating from the deterministic DEM framework: specif-
ically, including a random number with the ciphertext and using this random number as a
nonce for the authenticated cipher. However, it is simpler and stronger to skip this random-
ization and upgrade to KEMs that use b ≥ 256. In the context of libpqcrypto, this means
avoiding frodokem640 (which uses b = 128) and frodokem976 (which uses b = 192).

2A straightforward application of a PKE does not authenticate the sender, so the application receiving
the data must be protected in some other way against forgeries. However, even when applications are not
damaged by forgeries, they often give the attacker information about the plaintexts corresponding to some
ciphertexts, including ciphertexts that the attacker obtained by modifying legitimate user ciphertexts whose
plaintexts would not otherwise have been leaked. (Consider, e.g., a legitimate user plaintext that begins with
a long user password known to the server and continues with a series of commands to be run under that user’s
credentials.) The authenticator in a DEM protects against this, but only if it is checked. “RUP security”, as
provided by some authenticated ciphers, does not protect against this; it only means that such leaks do not
destroy the security of the cipher itself. A different solution is to split data into small packets, each packet
being authenticated; this has a small bandwidth overhead, but has the advantage of not requiring buffering.
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The authenticated cipher used in libpqcrypto follows a conventional encrypt-then-MAC
framework, using a stream cipher to encrypt the user’s message and a one-time authenticator
to authenticate the ciphertext. libpqcrypto applies SHAKE256 to the session key to obtain
the stream-cipher key and the authenticator key.

The stream cipher is Salsa20 (with nonce 0), and the one-time authenticator is Poly1305.
The other choices mentioned in PQCRYPTO’s initial recommendations in 2015 were AES-
256 and GMAC, but those produce big slowdowns on small CPUs, with common speedup
techniques leaking secrets through timing. AES also has quantitative security problems as a
direct result of its small block size.

Of course, all details of this construction and implementation should be carefully audited.
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